Skip to main content

Molecular Aspects and Oxygen Relations of Nitrogen Fixation in Cyanobacteria

  • Chapter
  • First Online:
Soil Nitrogen Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 62))

Abstract

The biological reduction of nitrogen is catalyzed by nitrogenase enzyme which is irreversibly inhibited by molecular oxygen. Cyanobacteria are nitrogen-fixing organisms that produce oxygen as a by-product of the process of photosynthesis, and which must negotiate the presence of molecular oxygen with an essentially anaerobic enzyme. This chapter draws together an international group of leading cyanobacterial investigators’ experience and excitement to include a state-of-the-art review of the area and addresses problems around cyanobacterial life. On our planet, for quite a long time there have been cyanobacteria. They are mostly widespread, making them ideal model organisms for the study of microbial biogeography as problems of evolution. Aerobic nitrogen fixation is localized in heterocysts and these heterocysts protect nitrogenase from inactivation by atmospheric oxygen. Cyanobacteria contribute greatly to the primary production of oceans and are one of the most important groups that release molecular nitrogen. We confirm that their pigmentation is due to the strength and sometimes even to the color of the light available. Others display remarkable life tolerance under anaerobic conditions; several forms of cyanobacteria thrive at extreme temperatures; other organisms can endure adverse conditions for long periods in salinity and pH, including when growth conditions are not acceptable. Many forms of cyanobacteria are simple to grow in the laboratory, and those in axenic culture have been collected and examined. Cyanobacteria are the most broadly dispersed community of photosynthetic prokaryotes present in virtually every region of the world and play an important role in the nitrogen and carbon cycle of the planet. Research efforts in the past 10 years have revealed a range of O2 sensitivity of nitrogenase in different strains of cyanobacteria and a variety of adaptations for the protection of nitrogenase from damage by both atmospheric and photosynthetic sources of O2. The most complex and apparently most efficient mechanisms for the protection of nitrogenase are incorporated in the heterocysts, the nitrogen-fixing cells of cyanobacteria. Several genetic studies have shown that the controls of heterocyst development and nitrogenase synthesis are closely interrelated and that the expression of nitrogen fixation (nif) genes is regulated by pO2. The incremental transition from decreasing environment to oxidizing atmosphere has become a turning point in the Earth’s evolutionary past which has made possible the conditions for present life types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeliovich A, Shilo M (1972) Photooxidative death in blue-green algae. J Bacteriol 111:682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams DG, Carr NG (1981) The developmental biology of heterocyst and akinete formation in cyanobacteria. Crit Rev Microbiol 9:45–100

    Article  CAS  PubMed  Google Scholar 

  • Agardh CA (1824) Systema algarum. Litteris Berlingianis, Lundae

    Book  Google Scholar 

  • Ahlborn F (1895) Uber die Wasserbl¨ute Byssus flos-aquaeund ihr Verhalten gegen Druck. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 3:25–36

    Google Scholar 

  • Allison FF, Hoover SR, Morris H (1937) Physiological studies with the nitrogen-fixing alga Nostoc muscorum. Bot Gaz 98:433–463

    Article  CAS  Google Scholar 

  • Barnum SR, Gendel SM (1985) Organization of nitrogen fixation genes in a non-heterocystous filamentous cyanobacterium. FEMS Microbiol Lett 29:339–342

    Article  CAS  Google Scholar 

  • Bauld, J. 1984. Microbial mats in marginal marine environments: Shark Bay, Western Australia and Spencer Gulf, South Australia, in Microbial mats: stromatolites (eds Y. Cohen, R.W. Castenholz and H.O. Halvorson), Alan R. Liss, New York, pp. 39–58

    Google Scholar 

  • Becana M, Rodriguez-Barrueco C (1989) Protective mechanisms of nitrogenase against oxygen excess and partially reduced oxygen intermediates. Physiol Plant 75:429–438

    Article  CAS  Google Scholar 

  • Bergersen FJ (1962) The effect of partial pressure of oxygen upon respiration and nitrogen fixation by soybean root nodules. J Gen Microbiol 29:113–125

    Article  CAS  Google Scholar 

  • Bergersen FJ (1965) Ammonia, an early stable product of nitrogen fixation by soybean root nodules. Aust J Biol Sci 18:1–9

    Article  CAS  Google Scholar 

  • Bergersen FJ (1980) Leghaemoglobin, oxygen supply and nitrogen fixation: studies with soybean nodules. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 139–160

    Google Scholar 

  • Berman-Frank I, Lundgren P, Chen Y-B (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Bernal JD (1967) The origin of life. Weidenfeld & Nicolson, London

    Google Scholar 

  • Biggins DR, Postgate JR (1969) Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J Gen Microbiol 56(2):181–193

    Article  CAS  PubMed  Google Scholar 

  • Bond G (1961) The oxygen relations of nitrogen fixation in root nodules. Z Allg Mikrobiol 1:93–99

    Article  CAS  Google Scholar 

  • Bothe H, Neuer G, Kalbe I, Eisbrenner G (1980) Electron donors and hydrogenase in nitrogen-fixing microorganisms. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 83–112

    Google Scholar 

  • Bothe H, Tripp HJ, Zehr JP (2011) Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192:783–790

    Article  CAS  Google Scholar 

  • Bottomley PJ, Stewart WDP (1977) ATP and nitrogenase activity in nitrogen-fixing heterocystous blue green algae. New Phytol 79:625–638

    Article  CAS  Google Scholar 

  • Broda E, Peschek GA (1983) Nitrogen fixation as evidence for the reducing nature of the early biosphere. Biosystems 16:1–8

    Article  CAS  PubMed  Google Scholar 

  • Brusca JS, Hale MA, Carrasco CD, Golden JW (1989) Excision of an 11-kilobase-pair DNA element from within the nifD gene in Anabaena variabilis heterocysts. J Bacteriol 171:4138–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryceson I, Fay P (1981) Nitrogen fixation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation. Mar Biol 61:159–166

    Article  Google Scholar 

  • Bulen WA, LeComte JR (1966) The nitrogenase system from Azotobacter. Proc Natl Acad Sci U S A 56:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulen WA, Burns RC, LeComte JR (1965) Nitrogen fixation: hydrosulfite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc Natl Acad Sci U S A 53:532–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burk D (1930) The influence of oxygen gas upon the organic catalysis of nitrogen fixation by Azotobacter. J Phys Chem 34:1195–1209

    Article  CAS  Google Scholar 

  • Burms RH, Magee WE, Bach MK (1955) The pN2 and P02 function for nitrogen fixation by excised soybean nodules. Ann Acad Sci Fenn Ser 60:190–199

    Google Scholar 

  • Burris RH, Arp DJ, Benson DR, Emerich DW, Hagerman RV, Ljones T, Ludden PW, Sweet WJ (1980) The biochemistry of nitrogenase. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 37–54

    Google Scholar 

  • Capone DG, Carpenter EJ (1982) Nitrogen fixation in the marine environment. Science 217:1140–1142

    Article  CAS  PubMed  Google Scholar 

  • Capone DG, Subramaniam A, Montoya JP, Voss M, Humborg C, Johansen AM, Siefert RL, Carpenter EJ (1998) An extensive bloom of the N(2)-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar Ecol Prog Ser 172:281–292

    Article  Google Scholar 

  • Cardinale M (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities applied and environmental microbiology

    Google Scholar 

  • Carnahan JE, Mortenson LE, Mower HF, Castle JE (1960) Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim Biophys Acta 44:520–535

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Capone DG (2008) Nitrogen fixation in the marine environment. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment. Academic, San Diego, pp 141–198

    Chapter  Google Scholar 

  • Cloud P (1974) Evolution of ecosystems. Am Sci 62:54–66

    CAS  Google Scholar 

  • Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2:351–387

    Article  CAS  Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn F (1853) Untersuchungen uber die entwicklungsgeschichte mikroskopischer algen und pilze. Nova Acta Academia Caesarea Leopoldina Carolina 24:103–256

    Google Scholar 

  • Cohn F (1872) Untersuchungen uber Bakterien. Beitrage Biol Pflanzen 1:127–224

    Google Scholar 

  • Cohn F (1875) Untersuchungen uber Bakterien. Beitrage Biol Pflanzen 1:141–207

    Google Scholar 

  • Cohn F (1897) Die Pflanze. Votrage aus dem Gebiete der Botanik, vol 2. J.U. Kern’s Verlag, Breslau

    Google Scholar 

  • Cox RM (1966) Physiological studies on nitrogen fixation in the blue-green alga Anabaena cylindrica. Arch Mikrobiol 53:263–276

    Article  CAS  PubMed  Google Scholar 

  • Cox RM, Fay P (1969) Special aspects of nitrogen fixation by blue-green algae. Proc R Soc London, Ser B 172:357–366

    Article  CAS  Google Scholar 

  • Dalton H (1980) Chemotrophic nitrogen fixation. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 177–195

    Google Scholar 

  • Dalton H, Postgate JR (1969) Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous culture. J Gen Microbiol 54:463–473

    Article  CAS  Google Scholar 

  • Damerval T, Franche C, Rippka RM, Cohen-Bazire G (1985) Rearrangement of nif structural genes in Nostoc PCC7906. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, New York, p 517

    Google Scholar 

  • Davis CS, McGillicuddy DJ (2006) Transatlantic abundance of the N(2)-fixing colonial cyanobacterium Trichodesmium. Science 312:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Dingler C, Oelze J (1987) Superoxide dismutase and catalase in Azotobacter vinelandii grown in continuous culture at different dissolved oxygen concentrations. Arch Microbiol 147:291–294

    Article  CAS  Google Scholar 

  • Ditta G, Virts E, Palomares A, Kim CH (1987) The nifA gene of Rhizobium meliloti is oxygen regulated. J Bacteriol 169:3217–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon R (1972) Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol 85:193–201

    Article  CAS  PubMed  Google Scholar 

  • Drewes K (1928) Ueber die Assimilation des Luftstickstoffs durch Blaualgen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 76:88–101

    CAS  Google Scholar 

  • Dugdale RC, Menzel DW, Ryther JH (1961) Nitrogen fixation in the Sargasso Sea. Deep-Sea Res 7:298–300

    Google Scholar 

  • Eady RR, Issack R, Kennedy C, Postgate JR, Ratcliffe HD (1978) Nitrogenase synthesis in Klebsiella pneumoniae: comparison of ammonium and oxygen regulation. J Gen Microbiol 104:277–285

    Article  CAS  PubMed  Google Scholar 

  • Eady RR, Imam S, Lowe DJ, Miller RW, Smith BE, Thorneley RNF (1980) The molecular enzymology of nitrogenase. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 19–35

    Google Scholar 

  • Eady RR, Maryan PS, Gallon JR, Chaplin AE (1985) Nitrogen fixation by Gloeothece sp. (PCC6909): respiration and not photosynthesis is the major source of energy for nitrogenase activity in the light, abstr. 252. Abstr. 5th Int. Symp. Photosynth. Prokaryotes, Grindelwald, Switzerland

    Google Scholar 

  • Elhai J, Wolk CP (1990) Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J 9:3379–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerich DW, Burris RH (1978) Complementary functioning of the component proteins of nitrogenase from several bacteria. J Bacteriol 134:936–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Science Foundation (1999) Cyanobacterial nitrogen fixation (CYANOFIX), An ESF scientific programme

    Google Scholar 

  • Fact Sheet (2020) rRNA in evolutionary studies and environmental sampling. https://microbe.net/simple-guides/fact-sheet-rrna-in-evolutionary-studies-and-environmental-sampling

  • Fay P (1965) Heterotrophy and nitrogen fixation in Chlorogloea fritschii. J Gen Microbiol 39:11–20

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1976) Factors influencing dark nitrogen fixation in a blue-green alga. Appl Environ Microbiol 31:376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay P (1980) Nitrogen fixation in heterocysts, p. 121-165. In: Subba Rao NS (ed) Recent advances in biological nitrogen fixation. Edward Arnold, London

    Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Queen Mary and Westfield College, University of London, London, pp 340–373

    Google Scholar 

  • Fay P, Cox RM (1967) Oxygen inhibition of nitrogen fixation in cell-free preparations of blue-green algae. Biochim Biophys Acta 143:562–569

    Article  CAS  PubMed  Google Scholar 

  • Fay P, Stewart WDP, Walsby AE, Fogg GE (1968) Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature 220:810–812

    Article  CAS  PubMed  Google Scholar 

  • Fleming H, Haselkorn R (1973) Differentiation in Nostoc muscorum: nitrogenase is synthesized in heterocysts. Proc Natl Acad Sci U S A 70:2727–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming H, Haselkorn R (1974) The program of protein synthesis during heterocyst differentiation in nitrogen-fixing blue-green algae. Cell 3:159–170

    Article  CAS  Google Scholar 

  • Fogg GE (1949) Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism. Ann Bot 13:241–259

    Article  CAS  Google Scholar 

  • Fogg GE, Wolfe M (1954) The nitrogen metabolism of the blue-green algae (Myxophyceae). In: Fry BA, Peel JL (eds) Autotrophic microorganisms. Cambridge University Press, Cambridge, pp 99–125

    Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic, London

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luemsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Article  CAS  PubMed  Google Scholar 

  • Frank B (1889) Ueber den experimentellen Nachweis der Assimilation freien Stickstoffs durch erdboden-bewohnende Algen. Ber Dtsch Bot Ges 7:34–42

    Google Scholar 

  • Fredriksson C, Bergmann B (1997) Ultrastructural characterisation of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium, Trichodesmium sp. Protoplasma 197:76–85

    Article  CAS  Google Scholar 

  • Fridovich J (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fritsch FE (1951) The heterocyst: a botanical enigma. Proc Linnean Soc 162:194–211

    Article  Google Scholar 

  • Gallon JR (1980) Nitrogen fixation by photoautotrophs. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 197–238

    Google Scholar 

  • Gallon JR (1981) The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem Sci 6:19–23

    Article  CAS  Google Scholar 

  • Gallon JR, Hamadi AF (1984) Studies on the effect of oxygen on acetylene reduction (nitrogen fixation) in GCloeothece sp. ATCC27152. J Gen Microbiol 130:495–503

    CAS  Google Scholar 

  • Gallon JR, LaRue TA, Kurz WGW (1974) Photosynthesis and nitrogenase activity in the blue-green alga Gloeocapsa. Can J Microbiol 20:1633–1637

    Article  CAS  PubMed  Google Scholar 

  • Gallon JR, Kurz WGW, LaRue TA (1975) The physiology of nitrogen fixation by a Gloeocapsa sp. In: Stewart WDP (ed) Nitrogen fixation by free-living microorganisms. Cambridge University Press, Cambridge, pp 159–173

    Google Scholar 

  • Ganf GG, Horne AJ (1975) Diurnal stratification, photosynthesis and nitrogen fixation in a shallow equatorial lake (Lake George, Uganda). Freshw Biol 5:13–39

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P (1991) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria. II. An ultrastructural study. New Phytol 118:485–492

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamen-Flora von Deutschland, Osterreich under Schweiz, vol 14. Akademische Verlag, Leipzig

    Google Scholar 

  • Giani D, Krumbein WE (1986) Growth characteristics of non-heterocystous cyanobacterium Plectonema boryanum with N2 as nitrogen source. Arch Microbiol 145:259–265

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GT, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden JW (1988) Genome rearrangement during Anabaena heterocyst differentiation. Can J Bot 66:2098–2102

    Article  CAS  Google Scholar 

  • Golden JW, Wiest DR (1988) Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of xisA gene. Science 242:1421–1423

    Article  CAS  PubMed  Google Scholar 

  • Golden JW, Robinson SJ, Haselkorn R (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature 314:419–423

    Article  CAS  PubMed  Google Scholar 

  • Golden JW, Carrasco CD, Mulligan ME, Schneider GJ, Haselkorn R (1988) Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC7120. J Bacteriol 170:5034–5041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon YK (1981) Introduction to the nitrogen-fixing prokaryotes. In: Starr MP, Stolp H, Trueper HG, Balows A, Schlegel HG (eds) Prokaryotes, vol I. Springer-Verlag, Berlin, pp 781–794

    Chapter  Google Scholar 

  • Gotto JW, Yoch DC (1982) Regulation of Rhodospirillum rubrum nitrogenase activity. Properties and interconversion of active and inactive Fe-protein. J Biol Chem 257:2868–2873

    Article  CAS  PubMed  Google Scholar 

  • Grau FH, Wilson PW (1963) Hydrogenase and nitrogenase in cell-free extracts of Bacillus polymyxa. J Bacteriol 85:446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobbelaar N, Huang TC, Lin HY, Chow TJ (1986) Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37:173–177

    Article  CAS  Google Scholar 

  • Gussin GN, Ronson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC (1987) Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Crit Rev Microbiol 14:1–48

    Article  CAS  PubMed  Google Scholar 

  • Hamilton PB, Wilson PW (1955) Nitrogen fixation by Aerobacter aerogenes. Ann Acad Sci Fenn Ser 60:139–150

    Google Scholar 

  • Haselkorn R (1978) Heterocysts. Annu Rev Plant Physiol 29:319–344

    Article  CAS  Google Scholar 

  • Haselkorn R (1986) Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria. Annu Rev Microbiol 40:525–547

    Article  CAS  PubMed  Google Scholar 

  • Hassam HM, Fridovich I (1984) Oxygen toxicity in prokaryotes. In: Bannister JV, Bannister WH (eds) Biology and chemistry of active oxygen. Elsevier Science Publishing, Inc., New York, pp 128–138

    Google Scholar 

  • Haystead A, Robinson R, Stewart WDP (1970) Nitrogenase activity in extracts of heterocystous and nonheterocystous blue-green algae. Arch Mikrobiol 75:235–243

    Article  Google Scholar 

  • Helber JT, Johnson TR, Yarbrough LR, Hirschberg R (1988) Regulation of nitrogenase gene expression in anaerobic cultures of Anabaena variabilis. J Bacteriol 170:552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennecke H, Kaluza K, Thoeny B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348

    Article  CAS  Google Scholar 

  • Henry LE, Gogotov IN, Hall DO (1978) Superoxide dismutase and catalase in the protection of the proton-donating systems of nitrogen fixation in the blue-green alga Anabaena cylindrica. Biochem J 174:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero A, Flores E (2008) The cyanobacteria molecular biology, genomics and evolution

    Google Scholar 

  • Hill S (1971) Influence of oxygen concentration on the colony type of Derxia gummosa grown in nitrogen free medium. J Gen Microbiol 67:77–83

    Article  CAS  Google Scholar 

  • Hino S, Wilson PW (1958) Nitrogen fixation by a facultative Bacillus. J Bacteriol 75:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochman A, Bums RH (1981) Effect of oxygen on acetylene reduction by photosynthetic bacteria. J Bacteriol 147:492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland HD (1990) Origins of breathable air. Nature 347:17

    Article  Google Scholar 

  • Horne AJ, Fogg GE (1970) Nitrogen fixation in some English lakes. Proc R Soc London, Ser B 175:351–366

    Article  CAS  Google Scholar 

  • Huang TC, Chow TJ (1990) Characterization of the rhythmic nitrogen-fixing activity of Synechococcus sp. RF-1 at the transcriptional level. Curr Microbiol 20:23–26

    Article  Google Scholar 

  • Kallas T, Rippka R, Coursin T, Rebiere MC, Tandeau de Marsac N, Cohen-Bazire G (1983) Aerobic nitrogen fixation by non-heterocystous cyanobacteria. In: Papageorgiou GC, Packer L (eds) Photosynthetic prokaryotes: cell differentiation and function. Elsevier Science Publishing, Inc., New York, pp 281–392

    Google Scholar 

  • Kallas T, Coursin T, Rippka R (1985) Different organization of nif genes in non heterocystous and heterocystous cyanobacteria. Plant Mol Biol 5:321–329

    Article  CAS  PubMed  Google Scholar 

  • Kellar PE, Paerl HW (1980) Physiological adaptations in response to environmental stress during an N2-fixing Anabaena bloom. Appl Environ Microbiol 40:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy C, Cannon F, Cannon M, Dixon R, Hill S, Jensen J, Kumar S, McLean P, Merrick M, Robson R, Postgate J (1981) Recent advances in the genetics and regulation of nitrogen fixation. In: Gibson AH, Newton WE (eds) Proc. 4th Int. Symp. nitrogen fixation. Australian Academy of Science, Canberra, pp 146–156

    Google Scholar 

  • Keswani J, Whitman WB (2001) Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678

    Article  CAS  PubMed  Google Scholar 

  • Khoja TM, Whitton BA (1975) Heterotrophic growth of filamentous blue-green algae. Br Phycol J 10:139–148

    Article  Google Scholar 

  • Klebahn H (1895) Gasvakuolen, ein Bestandteil der Zellen des wasserbl¨utebildenden Phycochromaceen. Flora Allgemeine Botanische Zeitung 80:241–282

    Google Scholar 

  • Klucas R (1972) Nitrogen fixation by Klebsiella grown in the presence of oxygen. Can J Microbiol 18:1845–1850

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH (1979) Archean photoautotrophy: some alternatives and limits. Orig Life 9:313–327

    Article  CAS  PubMed  Google Scholar 

  • Kohls K, Abed RMM, Polerecky L (2010) Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environ Microbiol 12:567–575

    Article  CAS  PubMed  Google Scholar 

  • Kranz RG, Foster-Hartnett D (1990) Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors. Mol Microbiol 4:1793–1800

    Article  CAS  PubMed  Google Scholar 

  • Kranz RG, Haselkorn R (1985) Transcriptional regulation of nitrogen fixation genes in Rhodopseudomonas capsulata studied using lac fusions. Gene 40:203–215

    Article  CAS  PubMed  Google Scholar 

  • Kranz RG, Haselkorn R (1986) Anaerobic regulation of nitrogen fixation genes in Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A 83:6805–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg NR, Hoffman PS (1986) Microaerophily and oxygen toxicity. Arnu Rev Microbiol 40:107–130

    Article  CAS  Google Scholar 

  • Kuhla J, Oelze J (1988) Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii. J Bacteriol 170:5325–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulasooriya SA, Lang NJ, Fay P (1972) The heterocysts of blue-green algae. III. Differentiation and nitrogenase activity. Proc R Soc London, Ser B 181:199–209

    Article  CAS  Google Scholar 

  • Kutzing FT (1849) Tabulae phycologicae oder abbildungender tange. Wilhelm Kohne, Nordhausen

    Google Scholar 

  • Lammers PJ, Ryncarz AJ (1991) Evidence that oxygen does not inhibit Anabaena DNA rearrangements, abstr. 151B. Abstr. 7th Int. Symp. Photosynth. Prokaryotes, Amherst, Mass

    Google Scholar 

  • Lang NJ, Fay P (1971) The heterocysts of blue-green algae. II. Details of ultrastructure. Proc R Soc London, Ser B 178:193–203

    Article  Google Scholar 

  • Layzell DB, Hunt S, Palmer GR (1990) Mechanism of nitrogenase inhibition in soybean nodules. Plant Physiol 92:1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lex M, Silvester W, Stewart WDP (1972) Photorespiration and nitrogenase activity in the blue-green alga, Anabaena cylindrica. Proc R Soc London, Ser B 180:87–102

    Article  CAS  Google Scholar 

  • Logan BW (1961) Cryptozoon and associate stromatolites from the recent of Shark Bay, Western Australia. J Geol 69:517–533

    Article  Google Scholar 

  • Lyngbye HC (1819) Tentamen Hydrophytologiae Danicae.Continens Omina Hydrophyta Cryptogama Daniea, Holsatiae, Faeroae, Islandiae, Groenlandiae . . . , Hafniae, In Commissis Librariae Gyldendaliae

    Google Scholar 

  • Malin G, Pearson HW (1988) Aerobic nitrogen fixation in aggregate-forming cultures of the non heterocystous cyanobacterium Microcoleus chthonoplastes. J Gen Microbiol 134:1755–1763

    Google Scholar 

  • Margulis L (1982) Early life. Science Books International, Boston

    Google Scholar 

  • Martin TC, Wyatt JT (1974) Comparative physiology and morphology of six strains of stigonematacean blue-green algae. J Phycol 10:57–65

    Article  Google Scholar 

  • Maryan PS, Eady RR, Chaplin AE, Gallon JR (1986a) Nitrogen fixation by Gloeothece sp. PCC6909; respiration and not photosynthesis supports nitrogenase activity in the light. J Gen Microbiol 132:789–796

    CAS  Google Scholar 

  • Maryan PS, Eady RR, Chaplin AE, Gallon JR (1986b) Nitrogen fixation by the unicellular cyanobacterium Gloeothece. Nitrogenase synthesis is only transiently repressed by oxygen. FEMS Microbiol Lett 34:251–255

    Article  CAS  Google Scholar 

  • Meyer J, Kelley BC, Vignais PM (1978) Aerobic nitrogen fixation by Rhodopseudomonas capsulata. FEBS Lett 85:224–228

    Article  CAS  PubMed  Google Scholar 

  • Meyerhof O, Burk D (1928) Ueber die Fixation der Luftstickstoffs durch Azotobakter. Z Phys Chem Ser A 139:117–142

    Article  CAS  Google Scholar 

  • Microbiology and Molecular Biology (1969) Published 31 December

    Google Scholar 

  • Mitsui A, Cao S, Takahashi A, Arai T (1987) Growth synchrony and cellular parameters of the unicellular nitrogenfixing marine cyanobacterium, Synechococcus sp. strain Miami BG043511, under continuous illumination. Physiol Plant 69:1–8

    Article  CAS  Google Scholar 

  • Mortenson LE (1978) The role of dihydrogen and hydrogenase in nitrogen fixation. Biochemie 60:219–224

    Article  CAS  Google Scholar 

  • Mortenson LE, Thorneley RNF (1979) Structure and function of nitrogenase. Annu Rev Biochem 48:387–418

    Article  CAS  PubMed  Google Scholar 

  • Mortenson LE, Mower HF, Carnahan JE (1962) Nitrogen fixation by enzyme preparations. Bacteriol Rev 26:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan ME, Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC7120. J Biol Chem 264:19200–19207

    Article  CAS  PubMed  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1984) Heterocyst differentiation in the cyanobacterium Mastigocladus laminosus. J Bacteriol 157:514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohki K, Fujita Y (1982) Laboratory culture of the pelagic blue-green alga Trichodesmium thiebautii: conditions for unialgal culture. Mar Ecol Prog Ser 7:185–190

    Article  Google Scholar 

  • Ohki K, Fujita Y (1988) Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Mar Biol 98:111–114

    Article  CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2013) Cyanobacteria: biology, ecology and evolution. Wiley, Hoboken

    Google Scholar 

  • Padan E, Cohen Y (1982) Anoxygenic photosynthesis. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications Ltd., Oxford, pp 215–238

    Google Scholar 

  • Paerl HW (1980) Ecological rationale for H2 metabolism during aquatic bloom of the cyanobacterium Anabaena. Oecologia 47:43–45

    Article  PubMed  Google Scholar 

  • Paerl HW, Kellar PE (1979) Nitrogen-fixing Anabaena: physiological adaptations instrumental in maintaining surface blooms. Science 204:620–622

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Bebout BM, Prufert LE (1989a) Bacterial associations with marine Oscillatoria sp. (Tnchodesmium sp.) populations: ecophysiological implications. J Phycol 25:773–784

    Article  Google Scholar 

  • Paerl HW, Priscu JC, Brawner DL (1989b) Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: relationship to N2 fixation potential. Appl Environ Microbiol 55:2965–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker CA, Scutt PB (1960) The effect of oxygen on nitrogen fixation by Azotobacter. Biochim Biophys Acta 38:230–238

    Article  CAS  PubMed  Google Scholar 

  • Pearson HW, Howsley R (1980) Concomitant photoautotrophic growth and nitrogenase activity by cyanobacterium Plectonema boryanum in continuous culture. Nature 288:263–265

    Article  CAS  Google Scholar 

  • Pearson HW, Howsley R, Kjeldsen CK, Walsby AE (1979) Aerobic nitrogenase activity associated with a nonheterocystous filamentous cyanobacterium. FEMS Microbiol Lett 5:163–167

    Article  CAS  Google Scholar 

  • Pengra RM, Wilson PW (1938) Physiology of nitrogen fixation by Aerobacter aerogenes. J Bacteriol 75:21–25

    Article  Google Scholar 

  • Peterson JB (1989) Respiratory differences associated with culture aeration in Azotobacter vinelandii. Can J Microbiol 35:918–924

    Article  CAS  Google Scholar 

  • Peterson RB, Friberg EE, Bums RH (1977) Diurnal variation in N2 fixation and photosynthesis by aquatic bluegreen algae. Plant Physiol 59:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Post E, Kleiner D, Oelze J (1983) Whole cell respiration and nitrogenase activities in Azotobacter vinelandii growing in oxygen controlled continuous culture. Arch Microbiol 134:68–72

    Article  CAS  PubMed  Google Scholar 

  • Postgate JR (1978) Nitrogen fixation. Edward Arnold, London

    Google Scholar 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, Cambridge

    Google Scholar 

  • Postgate JR, Eady RR (1988) The evolution of biological nitrogen fixation. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, pp 31–40

    Google Scholar 

  • Postgate JR, Eady RR, Dixon RA, Hill S, Kahn D, Kennedy C, Partridge P, Robson R, Yates MG (1981) Some aspects of the physiology of dinitrogen fixation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 103–115

    Chapter  Google Scholar 

  • Reich S, Boeger P (1989) Regulation of nitrogenase activity in Anabaena variabilis by modification of the Fe protein. FEMS Microbiol Lett 58:81–86

    Article  CAS  Google Scholar 

  • Reynolds CS, Walsby AE (1975) Water-blooms. Biol Rev 50:437–481

    Article  CAS  Google Scholar 

  • Rice D, Mazur BI, Haselkorn R (1982) Isolation and physical mapping of nitrogen fixation genes from cyanobacterium Anabaena 7120. J Biol Chem 257:13157–13163

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Waterbury JB (1977) The synthesis of nitrogenase in nonheterocystous cyanobacteria. FEMS Microbiol Lett 2:83–86

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Roberts GP, Brill WJ (1981) Genetics and regulation of nitrogen fixation. Annu Rev Microbiol 35:207–235

    Article  CAS  PubMed  Google Scholar 

  • Robson RL (1979) Repression of nitrogenase synthesis in Azotobacter chroococcum. FEMS Microbiol Lett 5:259–262

    Article  CAS  Google Scholar 

  • Robson RL, Postgate JR (1980) Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol 34:183–207

    Article  CAS  PubMed  Google Scholar 

  • Rogerson AC (1980) Nitrogen-fixing growth by non-heterocystous cyanobacterium. Nature 284:563–564

    Article  CAS  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archean sea-floor sediments from Greenland – indications of>3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    Article  CAS  Google Scholar 

  • RossellĂł-MĂłra R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67. https://doi.org/10.1111/j.1574-6976.2001.tb00571.x

    Article  PubMed  Google Scholar 

  • Roth AG (1797) Catalecta botanica, vol 1–3. G. Muller, Leipzig

    Google Scholar 

  • Saville B, Straus N, Coleman JR (1987) Contiguous organization of nitrogenase genes in a heterocystous cyanobacterium. Plant Physiol 85:26–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW (1970) Precambrian microorganisms and evolutionary events prior to the origin of vascular plants. Biol Rev 45:319–352

    Article  Google Scholar 

  • Schopf JW (1974) Paleobiology of the Precambrian: the age of blue-green algae. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology, vol 7. Plenum, New York, pp 1–43

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (2012) The fossil record of cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 15–36

    Chapter  Google Scholar 

  • Schopf JW, Barghoorn ES (1967) Algae-like fossils from the early Precambrian of South Africa. Science 156:508–512

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3- billion to 3.5-billion-year old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Walter MR (1982) Origin and early evolution of cyanobacteria: the geological evidence. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications Ltd, Oxford, p 564

    Google Scholar 

  • Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A 74:3249–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam KT, O’Gara F, Andersen K, Valentine RC (1978) Biological nitrogen fixation. Annu Rev Plant Physiol 29:263–276

    Article  CAS  Google Scholar 

  • Sheehy JE, Bergersen FJ (1986) A simulation study of the functional requirements and distribution of leghemoglobin in relation to biological nitrogen fixation in legume root nodules. Ann Bot 58:121–136

    Article  CAS  Google Scholar 

  • Shindler DB, Paerl HW, Kellar PE, Lean DRS (1980) Environmental constraints on Anabaena N2- and C02- fixation: effects of hyperoxia and phosphate depletion on blooms and chemostat cultures. In: Barica J, Mur LR (eds) Developments in hydrobiology, vol 2. W. Junk, The Hague, pp 221–229

    Google Scholar 

  • Silver VS (1969) Biology and ecology of nitrogen fixation by symbiotic associations of non-leguminous plants. Proc R Soc London, Ser B 172:289–340

    Google Scholar 

  • Silver VS, Postgate JR (1973) Evolution of asymbiotic nitrogen fixation. J Theor Biol 40:1–10

    Article  CAS  PubMed  Google Scholar 

  • Simpson FB, Burris RH (1984) A nitrogen pressure of 50 atmosphere does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Stevens SE, Bryant DA (1987) Molecular cloning and physical mapping of the nitrogenase structural genes from the filamentous non-heterocystous cyanobacterium Pseudanabaena sp. PCC7409. FEMS Microbiol Lett 48:53–58

    Article  CAS  Google Scholar 

  • Smith GM (1938) Cryptogamic botany, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94:972–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprent JI, Raven JA (1985) Evolution of nitrogenfixing symbioses. Proc R Soc Edinb Ser B 85:215–237

    Google Scholar 

  • St. John RT, Shah VK, Brill WJ (1974) Regulation of nitrogenase synthesis by oxygen in Klebsiella pneumoniae. J Bacteriol 119:266–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staal M, Meysman FJR, Stal LJ (2003) Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504–507

    Article  CAS  PubMed  Google Scholar 

  • Stal LT (1995) Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ (2012) Cyanobacterial mats and stromatolites. In: Whitton BA (ed) Ecology of cyanobacteria II. Their diversity in time and space. Springer, Dordrecht, pp 65–125

    Chapter  Google Scholar 

  • Stal LJ, Bergman B (1990) Immunological characterization of nitrogenase in the filamentous non-heterocystous cyanobacterium Oscillatoria limosa. Planta 182:287–291

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ, Krumbein WE (1981) Aerobic nitrogen fixation in pure cultures of the benthic marine Oscillatonia (cyanobacteria). FEMS Microbiol Lett 11:295–298

    Article  CAS  Google Scholar 

  • Stal LJ, Krumbein WE (1985) Oxygen protection of nitrogenase in the aerobically nitrogen-fixing non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 143:72–76

    Article  CAS  Google Scholar 

  • Stewart WDP (1971) Physiological studies on nitrogen-fixing blue-green algae. In: Lie TA, Mulder EG (eds) Biological nitrogen fixation in natural and agricultural habitats. Plant soil. Martinus Nijhoff Publishers, Dordrecht, pp 377–391

    Google Scholar 

  • Stewart WDP (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34:497–536

    Article  CAS  PubMed  Google Scholar 

  • Stewart WDP, Lex M (1970) Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch Microbiol 73:250–260

    CAS  Google Scholar 

  • Stewart WDP, Haystead A, Pearson HW (1969) Nitrogenase activity in heterocysts of blue-green algae. Nature 224:226–228

    Article  CAS  PubMed  Google Scholar 

  • Stewart WDP, Mague T, Fitzgerald GP, Burris RH (1971) Nitrogenase activity in Wisconsin lakes of differing degrees of eutrophication. New Phytol 70:497–509

    Article  CAS  Google Scholar 

  • Stewart WDP, Rowell P, Rai AN (1983) Cyanobacteria-eukaryotic plant symbioses. Ann Microbiol 134:205–228

    Google Scholar 

  • Storch TA, Saunders GW, Ostrofsky ML (1990) Diel nitrogen fixation by cyanobacterial surface blooms in Sanctuary Lake, Pennsylvania. Appl Environ Microbiol 56:466–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strodtmann S (1895) Die Ursache des Schwebvermogens bei den Cyanophyceen. Biol Centralblatt 15:113–115

    Google Scholar 

  • Tel-Or E, Hufleit ME, Packer L (1986) Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys 246:396–402

    Article  CAS  PubMed  Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117:405–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari A (2014) Cyanobacteria: nature, potentials and applications. Astral International Publishing House, New Delhi

    Google Scholar 

  • Toezuem SRD, Gallon JR (1979) The effects of methyl viologen on Gloeocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen. J Gen Microbiol 111:313–326

    Article  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94

    Article  CAS  PubMed  Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell T, Maranon E, Poulton AJ, Bowie AR, Harbour DS, Woodward EMS (2003) Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. J Plankton Res 25:405–416

    Article  CAS  Google Scholar 

  • Van der Oost J, Kanneworff WA, Krab K, Kraayenhof R (1987) Hydrogen metabolism of three unicellular nitrogen-fixing cyanobacteria. FEMS Microbiol Lett 48:41–45

    Article  Google Scholar 

  • Walsby AE (1981) Cyanobacteria: Planktonic gas-vacuolate forms. In: Starr MP, Stolp H, Truper HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, Berlin, pp 224–235

    Chapter  Google Scholar 

  • Walsby AE (1987) Mechanism of buoyancy regulation in planktonic cyanobacteria with gas vesicles. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier/Science Publishers B.V., Amsterdam, pp 377–392

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterbury JB, Willey JM, Franks DG (1985) A cyanobacterium capable of swimming motility. Science 230:74–76

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrand E, Starr MP, TrĂĽper HG (1987) Report of the ad-hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weare NM, Benemann JR (1974) Nitrogenase activity and photosynthesis in Plectonema boryanum. J Bacteriol 119:258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westberry TK, Siegel DA (2006) Spatial and temporal distribution of Trichodesmium blooms in the world’s oceans. Glob Biochem Cycl 20:4

    Google Scholar 

  • Willison JC, Jouanneau Y, Colbeau A, Vignais PM (1983) H2 metabolism in photosynthetic bacteria and relationship to N2 fixation. Ann Microbiol 134:115–135

    Google Scholar 

  • Wilmotte A (2001) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant D (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 1–25

    Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone RD, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, The archaea and the deeply branching phototrophic bacteria, vol 1, 2nd edn. Springer, New York, pp 487–494

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk CP (1965) Heterocyst germination under defined conditions. Nature 205:201–202

    Article  Google Scholar 

  • Wolk CP (1968) Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol 96:2138–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk CP (1982) Heterocysts. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications Ltd., Oxford, pp 359–386

    Google Scholar 

  • Wolk CP (1988) Heterocysts. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of Berkeley Press, Berkeley, pp 359–386

    Google Scholar 

  • Wyatt JT, Silvey JKG (1969) Nitrogen fixation by Gloeocapsa. Science 165:908–909

    Article  CAS  PubMed  Google Scholar 

  • Wyman M, Fay P (1986) Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria). I. The influence of light quantity. Proc R Soc London, Ser B 227:367–380

    Article  Google Scholar 

  • Yates MG, Partridge CDP, Walker CC, Van der Werf AN, Campbell F, Postgate JR (1980) Recent research in the physiology of heterotrophic non-symbiotic nitrogen-fixing bacteria. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 161–176

    Google Scholar 

  • Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Ohki K, Fujita Y (1991) Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium. J Bacteriol 173:7055–7058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr JP, Dominic B, Chen Y-B (1999) Nitrogen fixation in the marine cyanobacterium Trichodesmium. A challenging model for ecology and molecular biology. In: Peschek GA, Loffelhardt W, Schmetter G (eds) The phototrophic prokaryotes. Kluwer/Plenum, New York, pp 485–500

    Chapter  Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–638

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Bench SR, Carter BJ (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The above paragraphs contain major highlights and display some facets of cyanobacteria’s interesting community. The topic of selection is entirely personal. However, I hope that the material covered will be sufficiently large for a general overview of the nature of cyanobacteria, molecular aspects, and oxygen relations of nitrogen fixation in cyanobacteria. I would like to thank and I am grateful to the authors cited in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smriti Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, D., Shukla, K., Mishra, A., Jindal, T., Sharma, S., Shukla, S. (2021). Molecular Aspects and Oxygen Relations of Nitrogen Fixation in Cyanobacteria. In: Cruz, C., Vishwakarma, K., Choudhary, D.K., Varma, A. (eds) Soil Nitrogen Ecology. Soil Biology, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-71206-8_26

Download citation

Publish with us

Policies and ethics