Skip to main content

Nanostructures Obtained with Plasma Discharge Processes

  • Chapter
  • First Online:
Electrochemical Methods of Nanostructure Preparation

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 481 Accesses

Abstract

Arc disharges provide en environment in which the reactions are related to the current passed and the formation of the products obtained cannot be achieved by merely the heat effect of the discharge. Therefore, reactions taking place in arc discharges can be classified as electrochemical reactions, even though they cannot be described with the same formalism as electrochemical reactions under ambient condtions. The products discussed in this chapter are primarily various carbon nanostructures, and a short outlook is given for metallic and ceramic nanoparticles synthesized by arc discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  2. Radushkevich LV, Lukyanovich VM (1952) Zurn Fisic Chim 26:88–95

    CAS  Google Scholar 

  3. Oberlin A, Endo M, Koyama T (1976) J Cryst Growth 32:335–349

    Article  CAS  Google Scholar 

  4. Ebbesen TW, Ajayan PM (1992) Nature 358:220–222

    Article  CAS  Google Scholar 

  5. Ijima S, Ichihashi T (1993) Nature 363:603–605

    Article  Google Scholar 

  6. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: Synthesis, structure, properties, and applications. Springer, Berlin

    Book  Google Scholar 

  7. Dervishi E, Li Z, Xu Y, Saini V, Biris AR, Lupu D, Biris AS (2009) Particul Sci Technol 27:107–125

    Article  CAS  Google Scholar 

  8. Baddour CE, Briens C (2005) Int J Chem React Eng 3:R3(1–22)

    Google Scholar 

  9. Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB (2010) Materials 3:3092–3140

    Article  PubMed Central  CAS  Google Scholar 

  10. Ando Y, Zhao X (2006) New Diam Front C Tec 16:123–137

    CAS  Google Scholar 

  11. Ando Y (2010) J Nanosci Nanotechnol 10:3726–3738

    Article  CAS  PubMed  Google Scholar 

  12. Arora N, Sharma NN (2014) Diam Relat Mater 50:135–150

    Article  CAS  Google Scholar 

  13. Su Y, Zhang Y (2015) Carbon 83:90–99

    Article  CAS  Google Scholar 

  14. Ying LS, Salleh MAM, Yusoff HM, Rashid SBA, Razak JA (2011) J Ind Eng Chem 17:367–376

    Article  CAS  Google Scholar 

  15. Harris PJF (2007) Carbon 45:229–239

    Article  CAS  Google Scholar 

  16. Kumar U, Sikarwar S, Sonker RK, Yadav BC (2016) J Inorg Organomet Polym 26:1231–1242

    Article  CAS  Google Scholar 

  17. Choudhary V, Gupta A (2011) Polymer/Carbon nanotube nanocomposites. In: Yellampalli S (ed) Carbon nanotubes—polymer nanocomposites. InTech Europe, Rijeka

    Chapter  Google Scholar 

  18. Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang SL (2000) J Phys Chem Solid 61:1031–1036

    Article  CAS  Google Scholar 

  19. Huang H, Kajiura H, Tsutsui S, Murakami Y, Ata M (2003) J Phys Chem B 107:8794–8798

    Article  CAS  Google Scholar 

  20. Ishigami M, Cumings J, Zettl A, Chen S (2000) Chem Phys Lett 319:457–459

    Article  CAS  Google Scholar 

  21. Cui S, Scharff P, Siegmund C, Schneider D, Risch K, Klötzer S, Spiess L, Romanus H, Schawohl J (2004) Carbon 42:931–939

    Article  CAS  Google Scholar 

  22. Imasaka K, Kanatake Y, Ohshiro Y, Suehiro J, Hara M (2006) Thin Solid Films 506–507:250–254

    Article  CAS  Google Scholar 

  23. Chang BH, Xie SS, Zhou WY, Qian LX, Pan ZW, Mao JM, Li WZ (1998) J Mat Sci Lett 17:1015–1017

    Article  CAS  Google Scholar 

  24. Wang XK, Lin XW, Dravid VP, Ketterson JB, Chang RPH (1995) Appl Phys Lett 66:2430–2432

    Article  CAS  Google Scholar 

  25. Setlur AA, Lauerhaas JM, Dai JY, Chang RPH (1996) Appl Phys Lett 69:345–347

    Article  CAS  Google Scholar 

  26. Ando, Zhao X (2000) Mol Crys Liq Cryst Sci Technol A. 340:707–712

    Google Scholar 

  27. Tang DS, Zhou WY, Ci LJ, Yan XQ, Yuan HJ, Zhou ZP, Liang YX, Liu DF, Liu W (2002) Chinese Phys 11:496–501

    CAS  Google Scholar 

  28. Ajayan PM, Lambert JM, Bemier P, Barbedette L, Colliex C, Planeix JM (1993) Chem Phys Lett 215:509–517

    Article  CAS  Google Scholar 

  29. Journet C, Maser WM, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Leek R, Fischer JE (1997) Nature 388:756–758

    Google Scholar 

  30. Hosoi K, Kuroda S, Kubota H (2008) Chem Lett 37:54–55

    Article  CAS  Google Scholar 

  31. Charinpanitkul T, Kanjanaprapakul K, Leelaviwat N, Kurukitkoson N, Kim KS (2010) J Ind Eng Chem 16:912–917

    Article  CAS  Google Scholar 

  32. Hsin YL, Hwang KC, Chen FR, Kai JJ (2001) Adv Mater 113:830–833

    Article  Google Scholar 

  33. Lee1 H, Wada Y, Kaneko A, Li OL, Ishizaki T (2018) Jap J Appl Phys 57:0102BD(1–6)

    Google Scholar 

  34. Ando Y, Zhao X, Hirahara K, Suenaga K, Bandow S, Iijima S (2000) Chem Phys Lett 323:580–585

    Article  CAS  Google Scholar 

  35. Choi SI, Nam JS, Lee CM, Choi SS, Kim JI, Park JM, Hong SH (2006) Curr Appl Phys 6:224–229

    Article  Google Scholar 

  36. Zhu HW, Li XS, Jiang B, Xu CL, Zhu YF, Wu DH, Chen XH (2002) Chem Phys Lett 366:664–669

    Article  CAS  Google Scholar 

  37. Horváth ZE, Kertész K, Pethő L, Koós AA, Tapasztó L, Vértesy Z, Osváth Z, Darabont A, Nemes-Incze P, Sárközi Z, Biró LP (2006) Curr Appl Phys 6:135–140

    Article  Google Scholar 

  38. Lee SJ, Baik HK, Yoo JE, Han JH (2002) Diam Relat Mater 11:914–917

    Article  CAS  Google Scholar 

  39. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008) Appl Phys Lett 92:043129

    Article  CAS  Google Scholar 

  40. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008) J Appl Phys 103:094318 (1–8)

    Google Scholar 

  41. Li J, Volotskova O, Shashurin A, Keidar M (2011) J Nanosci Nanotechnol 11:10047–10052

    Article  CAS  PubMed  Google Scholar 

  42. Yokomichi H, Ichihara M, Kishimoto N (2014) Jap J App Phys 53:02BD05(1–4)

    Google Scholar 

  43. Maiti A, Brabec CJ, Roland C, Bernholc J (1995) Phys Rev B 52:14850–14860

    Article  CAS  Google Scholar 

  44. Keidar M, Waas AM (2004) Nanotechnology 15:1571–1575

    Article  CAS  Google Scholar 

  45. Keidar M, Waas AM, Raitses Y, Waldorff EI (2006) J Nanosci Nanotechnol 6:1309–1314

    Article  CAS  PubMed  Google Scholar 

  46. Hinkov I, Farhat S, Scott CD (2005) Carbon 43:2453–2462

    Article  CAS  Google Scholar 

  47. Yeh YW, Raitses Y, Yao N (2016) Carbon 105:490–495

    Article  CAS  Google Scholar 

  48. Fang X, Shashurin A, Teel G, Keidar M (2016) Carbon 107:273–280

    Article  CAS  Google Scholar 

  49. Zhao J, Wei L, Yang Z, Zhang Y (2012) Physica E 44:1639–1643

    Article  CAS  Google Scholar 

  50. Li YB, Xie SS, Zou XP, Tang DS, Liu ZQ, Zhou WY, Wang G (2001) J Crys Growth 223:125–128

    Article  CAS  Google Scholar 

  51. Li H, Guan L, Shi Z, Gu Z (2004) J Phys Chem B 108:4573–4575

    Article  CAS  Google Scholar 

  52. Durbach SH, Witcomb MJ, Coville NJ (2005) Fuller Nanotub Car N 13:155–169

    Google Scholar 

  53. Wang H, Li Z, Ghosh K, Maruyama T, Inoue S, Ando Y (2010) Carbon 48:2882–2889

    Article  CAS  Google Scholar 

  54. Fang L, Sheng L, An K, Yu L, Ren W, Ando Y, Zhao X (2013) Physica E 50:116–121

    Article  CAS  Google Scholar 

  55. Hutchison JL, Kiselev NA, Krinichnaya EP, Krestininc AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Carbon 39:761–770

    Article  CAS  Google Scholar 

  56. Saito Y, Nakahira T, Uemura S (2003) J Phys Chem B 107:931–934

    Article  CAS  Google Scholar 

  57. Su Y, Yang Z, Wei H, Kong ESW, Zhang Y (2011) Appl Surf Sci 257:3123–3127

    Article  CAS  Google Scholar 

  58. Stephan O, Ajayan PM, Colliex C, Redlich P, Lambert JM, Bernier P, Lefin P (1994) Science 266:1683–1685

    Article  CAS  PubMed  Google Scholar 

  59. Belgacem AB, Hinkov I, Yahia SB, Brinza O, Farhat S (2016) Mater Today Commun 8:183–195

    Article  CAS  Google Scholar 

  60. Paladugu MC, Manesh K, Kesavan Nair P, Haridoss P (2005) J Nanosci Nanotechnol 5:747–752

    Article  CAS  PubMed  Google Scholar 

  61. Zhao J, Zhang J, Su Y, Yang Z, Wei L, Zhang Y (2012) J Mater Sci 47:6535–6541

    Article  CAS  Google Scholar 

  62. Su Y, Zhou P, Zhao J, Yang Z, Zhang Y (2013) Mater Res Bull 48:3232–3235

    Article  CAS  Google Scholar 

  63. Sano N, Nakano J, Kanki T (2004) Carbon 42:667–691

    Article  CAS  Google Scholar 

  64. Scalese S, Scuderi V, Bagiante S, Gibilisco S, Faraci G, Piluso N, La Via F, Privitera V (2012) Physica E 44:1005–1008

    Article  CAS  Google Scholar 

  65. Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Nature 414:506–507

    CAS  Google Scholar 

  66. Sano N, Wang H, Alexandrou I, Chhowalla M, Teo KBK, Amaratunga GAJ, Iimura K (2002) J Appl Phys 92:2783–2788

    Article  CAS  Google Scholar 

  67. Yao Y, Wang R, Wei DZ, Du D, Liang J (2004) Nanotechnology 15:555–558

    Article  CAS  Google Scholar 

  68. Bera D, Johnston G, Heinrich H, Seal S (2006) Nanotechnology 17:1722–1730

    Article  CAS  PubMed  Google Scholar 

  69. Yousef S, Khattab A, Osman TA, Zaki M (2013) J Nanomat 392126(1–9)

    Google Scholar 

  70. Lange H, Sioda M, Huczko A, Zhu YQ, Kroto HW, Walton DRM (2003) Carbon 41:1617–1623

    Article  CAS  Google Scholar 

  71. Contini V, Mancini R, Marazzi R, Mirabile Gattia D, Vittori Antisari M (2007) Phil Mag 87:1123–1137

    Article  CAS  Google Scholar 

  72. Dehghani Kiadehi A, Jahanshahi M, Mozdianfard MR, Vakili-Nezhaad GHR, Jabari Seresht R (2011) J Exp Nanosci 6:432–440

    Article  CAS  Google Scholar 

  73. Wang SD, Chang MH, Lan KMD, Wu CC, Cheng JJ, Chang HK (2005) Carbon 43:1778–1814

    Article  CAS  Google Scholar 

  74. Mao B, Kang Z, Wang E, Tian C, Wang C, Lan Y (2006) J Nanosci Nanotechnol 6:1392–1395

    Article  CAS  PubMed  Google Scholar 

  75. Sagara T, Kurumi S, Suzuki K (2014) Appl Surf Sci 292:39–43

    Article  CAS  Google Scholar 

  76. Liu W, Miao Y, Meng Q (2012) Integr Ferroelectr 138:77–82

    Article  CAS  Google Scholar 

  77. Ryzhkov VA (2002) Physica B 323:324–326

    Article  CAS  Google Scholar 

  78. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605–607

    Article  CAS  Google Scholar 

  79. Lin X, Wang XK, Dravid VP, Chang RPH, Ketterson JB (1994) Appl Phys Lett 64:181–183

    Article  CAS  Google Scholar 

  80. Wang M, Wang X, Li Z, Liu Z, He P (2006) Mater Chem Phys 97:243–246

    Article  CAS  Google Scholar 

  81. Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H, Li Y (2011) Carbon 49:4792–4800

    Article  CAS  Google Scholar 

  82. Jahanshahi M, Raoof J, Seresht RJ (2009) J Exp Nanosci 4:331–339

    Article  CAS  Google Scholar 

  83. Zhu HW, Jiang B, Xu CL, Wu DH (2003) J Phys Chem B 107:6514–6518

    Article  CAS  Google Scholar 

  84. Yao M, Liu B, Zou Y, Wang L, Li D, Cui T, Zou G, Sundqvist B (2005) Carbon 43:2894–2901

    Article  CAS  Google Scholar 

  85. Poudel YR, Li W (2018) Mater Today Phys 7:7–34

    Article  Google Scholar 

  86. Hua R, Furukawa T, Wang X, Nagatsu M (2017) Appl Surf Sci 416:731–741

    Article  CAS  Google Scholar 

  87. Ang KH, Alexandrou I, Mathur ND, Amaratunga GAJ, Haq S (2004) Nanotechnology 15:520–524

    Article  CAS  Google Scholar 

  88. Fang X, Cheng X, Zhang Y, Zhang LG, Keidar M (2018) J Coll Interf Sci 509:414–421

    Article  CAS  Google Scholar 

  89. Shinde KP, Ranot M, Choi CJ, Kim HS, Chung KC (2017) AIP Adv 7:075013(1–7)

    Google Scholar 

  90. Sun X (2003) J Dispersion Sci Technol 24:557–567

    Article  CAS  Google Scholar 

  91. Chiu CC, Lo JC, Teng MH (2012) Diam Relat Mater 24:179–183

    Article  CAS  Google Scholar 

  92. Seeger T, Kohler-Redlich P, Rühle M (2000) Adv Mater 12:279–282

    Article  CAS  Google Scholar 

  93. Zhu YQ, Kroto HW, Walton DRM, Lange H, Huczko A (2002) Chem Phys Lett 365:457–463

    Article  CAS  Google Scholar 

  94. Li Y, Xie S, Wei B, Lian G, Zhou W, Tang D, Zou X, Liu Z, Wang G (2001) Solid State Commun 119:51–53

    Article  CAS  Google Scholar 

  95. Grove DE, Gupta U, Castleman AW Jr (2010) Langmuir 26:16517–16521

    Article  CAS  PubMed  Google Scholar 

  96. Kobayashi M, Liu SM, Sato S, Yao H, Kimura K (2006) Jap J Appl Phys 45:6146–6152

    Article  CAS  Google Scholar 

  97. Saito G, Sakaguchi N (2015) Nanotechnology 26:235602(1–8)

    Google Scholar 

  98. Lung JK, Huang JC, Tien DC, Liao CY, Tseng KH, Tsung TT, Kao WS, Tsai TH, Jwo CS, Lin HM, Stobinski L (2007) J Alloy Compd 434–435:655–658

    Article  CAS  Google Scholar 

  99. Tien DC, Chen LC, Thai NV, Ashraf S (2010) J Nanomat 634757(1–9)

    Google Scholar 

  100. Hattori Y, Nomura S, Mukasa S, Toyota H, Inoue T, Usui T (2013) J Alloy Compd 578:148–152

    Article  CAS  Google Scholar 

  101. Ashkarran AA (2010) Curr Appl Phys 10:1442–1447

    Article  Google Scholar 

  102. Hieda J, Saito N, Takai O (2008) Surf Coat Technol 202:5343–5346

    Article  CAS  Google Scholar 

  103. Hattoria Y, Mukasa S, Toyota H, Inoue T, Nomura S (2011) Mat Chem Phys 131:425–430

    Article  CAS  Google Scholar 

  104. Sato S, Mori K, Ariyada O, Atsushi H, Yonezawa T (2011) Surf Coat Technol 206:955–958

    Article  CAS  Google Scholar 

  105. Lei JP, Dong XL, Zhu XG, Lei MK, Huang H, Zhang XF, Lu B, Park WJ, Chung HS (2007) Intermetallics 15:1589–1594

    Article  CAS  Google Scholar 

  106. Yang ZQ, You CY, He LL (2006) J Alloy Compd 423:128–131

    Article  CAS  Google Scholar 

  107. Choi YC, Kim WS, Park YS, Lee SM, Bae DJ, Lee YH, Park GS, Choi WB, Lee NS, Kim JM (2000) Adv Mater 12:746–750

    Article  CAS  Google Scholar 

  108. Delaportas D, Svarnas P, Alexandrou I (2010) J Electrochem Soc 157:K138–K143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Péter .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Péter, L. (2021). Nanostructures Obtained with Plasma Discharge Processes. In: Electrochemical Methods of Nanostructure Preparation. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-69117-2_14

Download citation

Publish with us

Policies and ethics