Skip to main content

Recycling Polyethylene Terephthalate Waste to Magnetic Carbon/Iron Nanoadsorbent for Application in Adsorption of Diclofenac Using Statistical Experimental Design

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

A novel magnetic nanoadsorbent comprising carbon/iron composite was prepared from polyethylene terephthalate waste. The magnetic nanoadsorbent was characterized and applied in the adsorption of diclofenac from water. Batch adsorption experiments were conducted according to a three-factor three-level Box–Behnken design including temperature (°C), pH and adsorbent dose (g L-1) as the process parameters. A polynomial regression model was used to predict and optimize the parameters for maximum adsorption capacity (mg g-1) of the nanoadsorbent using response surface modeling. The magnetic nanoadsorbent exhibited a surface area of 288.88 m2 g-1 and a saturation magnetization of 35.4 emu g-1. Transmission electron microscopy of the nanoadsorbent depicted particle size range within 10–40 nm. The maximum adsorption capacity of the nanoadsorbent for diclofenac was 15.31 mg g-1 under optimized conditions of 42.65 ºC, 5.74 pH and 1.04 g L-1 dose. High regression coefficient values (R2 = 0.987) in the design experiments suggested considerable goodness of fit for the response surface model. Statistical analysis showed adsorption of diclofenac by the nanoadsorbent was significantly influenced by solution pH. FTIR analysis of the diclofenac loaded nanoadsorbent confirmed the adsorption of diclofenac by the emergence of new diagnostic peaks. The diclofenac loaded nanoadsorbent could be desorbed up to 69.88% by NaOH stripping, suggesting its reuse potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANOVA:

Analysis of variance

BBD:

Box–Behnken design

DE:

Desorption efficiency

EDX:

Energy dispersive X-ray

FTIR:

Fourier transform infrared

PC:

Per cent contribution

PET:

Polyethylene terephthalate

pHzpc:

Point of zero charge

RSM:

Response surface modeling

RMSEP:

Root mean square error of prediction

RSEP:

Relative standard error of prediction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

VSM:

Vibrating sample magnetometer

XRD:

X-ray diffraction

References

  1. Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159

    Article  CAS  Google Scholar 

  2. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele R (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68(2):141–150

    Article  CAS  Google Scholar 

  3. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler H-R, and Schwaiger J (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol 68(2):151–166

    Google Scholar 

  4. Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162

    Article  CAS  Google Scholar 

  5. Zhang J, Chen S, Yang R, Yan Y (2010) Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel 89(10):2939–2944

    Article  CAS  Google Scholar 

  6. Taggart MA, Senacha KR, Green RE, Cuthbert R, Jhala YV, Meharg AA, Mateo R, Pain DJ (2009) Analysis of nine NSAIDs in ungulate tissues available to critically endangered vultures in India. Environ Sci Technol 43(12):4561–4566

    Article  CAS  Google Scholar 

  7. Krishnaswamy K, Kumar BD (2005) Drug consumption pattern in urban and rural areas of India and their health implications. Citeseer

    Google Scholar 

  8. Shanmugam G, Sampath S, Selvaraj KK, Larsson DGJ, Ramaswamy BR (2013) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21(2):921–931

    Article  CAS  Google Scholar 

  9. Singh KP, Rai P, Singh AK, Verma P, Gupta S (2014) Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environ Monit Assess 186(10):6663–6682

    Article  CAS  Google Scholar 

  10. Ziylan A, Ince NH (2011) The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J Hazard Mater 187(1–3):24–36

    Article  CAS  Google Scholar 

  11. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  12. Zhang Y, Geißen S-U, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    Article  CAS  Google Scholar 

  13. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38(19):4075–4084

    Article  CAS  Google Scholar 

  14. Mailler R, Gasperi J, Coquet Y, Buleté A, Vulliet E, Deshayes S, Zedek S, Mirande-Bret C, Eudes V, Bressy A, Caupos E, Moilleron R, Chebbo G, Rocher V (2016) Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Sci Total Environ 542:983–996

    Article  CAS  Google Scholar 

  15. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin. Water Treat 84:205–214

    Article  CAS  Google Scholar 

  16. Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Olalere OA (2017) Kinetic, isotherm and equilibrium study of adsorption capacity of hydrogen sulfide-wastewater system using modified eggshells. IIUM Eng J 18(1):13–25

    Article  Google Scholar 

  17. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol-Mater Sci Ed 32(2):305–320

    Google Scholar 

  18. Antunes M, Esteves VI, Guégan R, Crespo JS, Fernandes AN, Giovanela M (2012) Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem Eng J 192:114–121

    Article  CAS  Google Scholar 

  19. Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317

    Article  CAS  Google Scholar 

  20. Bagheri A, Abu-Danso E, Iqbal J, Bhatnagar A (2019) Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Environ Sci Pollut Res 27(7):7318–7327

    Article  CAS  Google Scholar 

  21. Li Y, Taggart MA, McKenzie C, Zhang Z, Lu Y, Pap S, Gibb S (2019) Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations. J Clean Prod 227:88–97

    Article  CAS  Google Scholar 

  22. Abo El Naga AO, El Saied M, Shaban SA, El Kady FY (2019) Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J Mol Liq 285:9–19

    Article  CAS  Google Scholar 

  23. Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, Galán J, García J (2014) Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J 240:443–453

    Article  CAS  Google Scholar 

  24. Suriyanon N, Punyapalakul P, Ngamcharussrivichai C (2013) Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chem Eng J 214:208–218

    Article  CAS  Google Scholar 

  25. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malay J Anal Sci 21(2):334–345

    Article  Google Scholar 

  26. Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Thanusha TK, Olalere OA (2016) Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon. Aust J Basic Appl Sci 10(17):136–147

    CAS  Google Scholar 

  27. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Optimization of activated carbon synthesis using response surface methodology to enhance H2S removal from refinery wastewater. J Chem Eng Indus Biotech 1(1):1–17

    Google Scholar 

  28. Murugan S, Gu S (2015) Research and development activities in pyrolysis–contributions from Indian scientific community–a review. Renew Sustain Energy Rev 46:282–295

    Article  Google Scholar 

  29. de Mello D, Pezzin SH, Amico SC (2009) The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polym Testing 28(7):702–708

    Article  CAS  Google Scholar 

  30. Possatto FE, Barletta M, Costa MF, Ivar do Sul JA, and Dantas DV (2011) Plastic debris ingestion by marine catfish: an unexpected fisheries impact. Marine Pollut Bull 62(5):1098–1102

    Google Scholar 

  31. Parra JB, Ania CO, Arenillas A, Rubiera F, Pis JJ, Palacios JM (2006) Structural changes in polyethylene terephthalate (PET) waste materials caused by pyrolysis and CO2 activation. Adsorpt Sci Technol 24(5):439–450

    Article  CAS  Google Scholar 

  32. Rai P, Singh KP (2018) Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: characterization and application. J Environ Manage 207:249–261

    Article  CAS  Google Scholar 

  33. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  34. Abdel Ghafar HH, Ali GAM, Fouad OA, Makhlouf SA (2013) Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalin Water Treat 53(11):2980–2989

    Article  CAS  Google Scholar 

  35. Franz M, Arafat HA, Pinto NG (2000) Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38(13):1807–1819

    Article  CAS  Google Scholar 

  36. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353

    Article  CAS  Google Scholar 

  37. Kayan B, Gözmen B (2012) Degradation of Acid Red 274 using H2O2 in subcritical water: application of response surface methodology. J Hazard Mater 201–202:100–106

    Article  CAS  Google Scholar 

  38. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597(2):179–186

    Article  CAS  Google Scholar 

  39. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, Taitai A (2017) Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arab J Chem 10:S3292–S3302

    Article  CAS  Google Scholar 

  40. Habeeb OA, Kanthasamy R, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. J Teknologi 79(7)

    Google Scholar 

  41. Singh KP, Singh AK, Singh UV, Verma P (2011) Optimizing removal of ibuprofen from water by magnetic nanocomposite using box-Behnken design. Environ Sci Pollut Res 19(3):724–738

    Article  CAS  Google Scholar 

  42. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A (2015) Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J Saudi Chem Soc 19(6):603–615

    Article  Google Scholar 

  43. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (2008) Reporting physisorption data for gas/solid systems. In: Handbook of heterogeneous catalysis, Wiley

    Google Scholar 

  44. Lian F, Xing B, Zhu L (2011) Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J Colloid Interface Sci 360(2):725–730

    Article  CAS  Google Scholar 

  45. Bratek W, Świątkowski A, Pakuła M, Biniak S, Bystrzejewski M, Szmigielski R (2013) Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J Anal Appl Pyrol 100:192–198

    Article  CAS  Google Scholar 

  46. Asuha S, Zhao S, Wu HY, Song L, and Tegus O (2009) One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe-urea complex and their properties. Chem Inform 40(24)

    Google Scholar 

  47. Cansado IPP, Gonçalves FAMM, Nabais JMV, Ribeiro Carrott MML, Carrott PJM (2009) PEEK: an excellent precursor for activated carbon production for high temperature application. Fuel Process Technol 90(2):232–236

    Article  CAS  Google Scholar 

  48. Ji Z, Shen X, Song Y, Zhu G (2011) In situ synthesis of graphene/cobalt nanocomposites and their magnetic properties. Mater Sci Eng B 176(9):711–715

    Article  CAS  Google Scholar 

  49. Da’na E, Sayari A (2011) Optimization of copper removal efficiency by adsorption on amine-modified SBA-15: experimental design methodology. Chem Eng J 167(1):91–98

    Google Scholar 

  50. Zhang H, Du Z, Ji Y, Mei M (2013) Simultaneous trace determination of acidic non-steroidal anti-inflammatory drugs in purified water, tap water, juice, soda and energy drink by hollow fiber-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. Talanta 109:177–184

    Article  CAS  Google Scholar 

  51. Sahoo C, Gupta AK (2012) Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J Hazard Mater 215–216:302–310

    Article  CAS  Google Scholar 

  52. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295

    Google Scholar 

  53. Lee SP, Ali GAM, Algarni H, Chong KF (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180

    Article  CAS  Google Scholar 

  54. Sadegh H, Gama ZA, Nadagoud MN (2017) Adsorption of ammonium ions onto multi-walled carbon nanotubes. Studia Univ Babes-Bolyai Chemia 62(2):233-245

    Google Scholar 

  55. Gupta VK, Agarwal S, Sadegh H, Ali GAM, Bharti AK, Hamdy AS (2017) Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 237:466–472

    Article  CAS  Google Scholar 

  56. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57(385471):1100–1107

    Google Scholar 

  57. Sadegh H, Ali GAM, Nia HJ, Mahmoodi Z (2019) Nanomaterial surface modifications for enhancement of the pollutant adsorption from wastewater, In: Nanotechnology Applications in Environmental Engineering. IGI Global, pp. 28. https://doi.org/10.4018/978-1-5225-5745-6.ch007

  58. Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E 106:150–155

    Article  CAS  Google Scholar 

  59. Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7(1):1–14

    Article  CAS  Google Scholar 

  60. Sadegh H, Ali GAM, Agarwal S, Gupta VK (2019) Surface Modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. Int J Environ Res 13(3):523–531

    Article  CAS  Google Scholar 

  61. Hamidreza S, Gomaa AMA (2019) Potential applications of nanomaterials in wastewater treatment: nanoadsorbents performance. In: Athar H, Sirajuddin A (eds) Advanced treatment techniques for industrial wastewater. IGI Global, Hershey, PA, USA, pp 51–61

    Google Scholar 

  62. Maazinejad B, Mohammadnia O, Ali GAM, Makhlouf ASH, Nadagouda MN, Sillanpää M, Asiri AM, Agarwal S, Gupta VK, Sadegh H (2020) Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq 298:112001

    Article  CAS  Google Scholar 

  63. Hiew BYZ, Lee LY, Lai KC, Gan S, Thangalazhy-Gopakumar S, Pan G-T, Yang TC-K (2019) Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ Res 168:241–253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express thankfulness to the Director, CSIR-Indian Institute of Toxicology Research, Lucknow (India) for his kind support in this work. The research was a part of Ph.D. work supported by UGC (India)-Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premanjali Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, P., Singh, K.P. (2021). Recycling Polyethylene Terephthalate Waste to Magnetic Carbon/Iron Nanoadsorbent for Application in Adsorption of Diclofenac Using Statistical Experimental Design. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_26

Download citation

Publish with us

Policies and ethics