Skip to main content

Heteroatoms Doped Porous Carbon Nanostructures Recovered from Agriculture Waste for Energy Conversion and Storage

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

Biomass-derived porous carbons (BPCs) represents one of the most diverse classes of materials with exceptional properties such as high specific surface area, wide availability, biodegradability, low cost, and tunable porous features. A broad range of new carbon materials for suitable applications including water purification, catalyst supports and electrodes for electrochemical capacitors, sensing, and fuel cells have been developed. This not only increased the economic benefits and sustainability of chemical industry but also minimized the environmental impacts. The wide application of various energy technologies for specific purposes is mainly reliant on the design of electrode materials, particularly carbon electrodes. In this chapter, recent developments and breakthroughs of BPCs are presented. Characteristics controlling mechanisms behind their performance, especially pore structure and surface functionality, are discussed, which will direct the rational design of BPCs for practical use. In addition, the progress on application of these materials as electrodes for electrochemical devices such as fuel cells, CO2 capture, water splitting, and lithium-ion batteries, is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPCs:

Biomass-derived porous carbons

CV:

Cyclic voltammetry

DFT:

Density functional theory

ESCs:

Electrochemical supercapacitors

HER:

Hydrogen evolution reaction

HTC:

Hydrothermal carbonization

LiBs:

lithium-ion batteries

LSV:

Linear sweep voltammetry

OER:

Oxygen evolution reaction

ORR:

Oxygen reduction reaction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  1. Deng J, Li M, Wang Y (2016) Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854

    Article  CAS  Google Scholar 

  2. De S, Balu AM, van der Waal JC, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7:1608–1629

    Article  CAS  Google Scholar 

  3. Barhoum A, Shalan AE, El-Hout SI, Ali GAM, Abdelbasir SM, Abu Serea ES, Ibrahim AH, Pal K (2019) A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications, Handbook of nanofibers. Springer International Publishing, New York City, USA, pp 1–40

    Google Scholar 

  4. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y (2020) Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater Chem A 8:5773–5811

    Article  CAS  Google Scholar 

  5. Varma RS (2019) Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustainable Chem Eng 7:6458–6470

    Article  CAS  Google Scholar 

  6. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75

    Article  Google Scholar 

  7. Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. waste and biomass valorization. Waste Biomass Valorization 1:121–134

    Article  CAS  Google Scholar 

  8. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46:14034–14044

    Article  CAS  Google Scholar 

  9. Titirici MM, White RJ, Brun N, Budarin VL, Su D, Monte FD, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  CAS  Google Scholar 

  10. Liu WJ, Jiang H, Yu HQ (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12:1751–1779

    Article  CAS  Google Scholar 

  11. Wang J, Nie P, Ding B, Hao X, Dong S, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5:2411–2428

    Article  CAS  Google Scholar 

  12. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D 47:495307–495313

    Article  CAS  Google Scholar 

  13. Eftekhari A, Jafarkhani P, Moztarzadeh F (2006) Synthesis of carbon nanotubes from solid carbon sources by direct microwave irradiation. Carbon 44:1343–1345

    Article  CAS  Google Scholar 

  14. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418

    Article  CAS  Google Scholar 

  15. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Article  CAS  Google Scholar 

  16. Falco C, Caballero FP, Babonneau F, Gervais C, Laurent G, Titirici MM, Baccile N (2011) Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 27:14460–14471

    Article  CAS  Google Scholar 

  17. Khalafallah D, Quan X, Ouyang C, Zhi M, Hong Z (2021) Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors. Renew Energ 170:60–71

    Google Scholar 

  18. Zhao Y (2015) Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl Mater Interfaces 7:1132–1139

    Article  CAS  Google Scholar 

  19. Zhang D, Zheng L, Ma Y, Lei L, Li Q, Li Y, Luo H, Feng H, Hao Y (2014) Synthesis of nitrogen and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Interfaces 6:2657–2665

    Article  CAS  Google Scholar 

  20. Hao E, Liu W, Liu S, Zhang Y, Wang H, Chen S, Cheng F, Zhao S, Yang H (2017) Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage device. J Mater Chem A 5:2204–2214

    Article  CAS  Google Scholar 

  21. Lahaye J, Nanse G, Bagreev A, Strelko V (1999) Porous structure and surface chemistry of nitrogen containing carbons from polymers. Carbon 37:585–590

    Article  CAS  Google Scholar 

  22. Wang DW, Li F, Yin LC, Lu X, Chen ZG, Gentle IR, Lu GQM, Cheng HM (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18:5345–5351

    Article  CAS  Google Scholar 

  23. Hassen D, Shenashen MA, El-Safty AR, Elmarakbi A, El-Safty SA (2018) Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts. Sci Rep 8:3740

    Article  CAS  Google Scholar 

  24. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323–7327

    Article  CAS  Google Scholar 

  25. Han C, Wang S, Wang J, Li M, Deng J, Li H, Wang Y (2014) Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 7:1809–1819

    Article  CAS  Google Scholar 

  26. Liu Q, Duan Y, Zhao Q, Pan F, Zhang B, Zhang J (2014) Direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance. Langmuir 30:8238–8245

    Article  CAS  Google Scholar 

  27. Chaudhari NK, Song MY, Yu JS (2014) Heteroatom-doped highly porous carbon from human urine. Sci. Rep. 4:5221

    Article  CAS  Google Scholar 

  28. Gao S, Li X, Li L, Wei X (2017) A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33:334–342

    Article  CAS  Google Scholar 

  29. Zhu L, Shen F, Smith RL, Yan L, Li L, Qi X (2017) Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chem Eng J 316:770–777

    Article  CAS  Google Scholar 

  30. Hou J, Jiang K, Tahir M, Wu X, Idrees F, Shen M, Cao C (2017) Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J Power Sources 371:148–155

    Article  CAS  Google Scholar 

  31. Hou J, Jiang K, Wei R, Tahir M, Wu X, Shen M, Wang X, Cao C (2017) Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl Mater Interfaces 9:30626–30634

    Article  CAS  Google Scholar 

  32. Peng C, Yan X, Wang R, Lang J, Ou Y, Xue Q (2013) Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta 87:401–408

    Article  CAS  Google Scholar 

  33. Cao J, Zhu C, Aoki Y, Habazaki AH (2018) Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustainable Chem. Eng. 6:7292–7303

    Article  CAS  Google Scholar 

  34. Huang J, Liang Y, Hu H, Liu S, Cai Y, Dong H, Zheng M, Xiao Y, Liu Y (2017) Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. A 5:24775–24781

    Article  CAS  Google Scholar 

  35. Boyjoo Y, Cheng Y, Zhong H, Tian H, Pan J, Pareek VK (2017) From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon 116:490–499

    Article  CAS  Google Scholar 

  36. Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26:111–119

    Article  CAS  Google Scholar 

  37. Zhou Y, Ren J, Xia L, Wu H, Xie F, Zheng Q, Xu C, Lin D (2017) Nitrogen-doped hierarchical porous carbon framework derived from waste pig nails for high-performance supercapacitors. ChemElectroChem. 4:3181–3187

    Article  CAS  Google Scholar 

  38. Fan P, Ren J, Pang K, Cheng Y, Wu X, Zhang Z, Ren J, Huang W, Song R (2018) Cellulose-solvent-assisted, one-step pyrolysis to fabricate heteroatoms-doped porous carbons for electrode materials of supercapacitors. ACS Sustainable Chem. Eng. 6:7715–7724

    Article  CAS  Google Scholar 

  39. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) Cao impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  40. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  CAS  Google Scholar 

  41. Ranaweera CK, Kahol PK, Ghimire M, Mishra SR, Gupta RK (2017) Orange-peel-derived carbon: designing sustainable and high-performance supercapacitor electrodes. J. Carbon Res. 3:25

    Article  CAS  Google Scholar 

  42. Long C, Chen X, Jiang L, Zhi L, Fan Z (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy. 12:141–151

    Article  CAS  Google Scholar 

  43. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564

    Article  CAS  Google Scholar 

  44. Yuan G, Li H, Hu H, Xie Y, Xiao Y, Dong H, Liang Y, Liu Y, Zheng M (2019) Microstructure engineering towards porous carbon materials derived from one biowaste precursor for multiple energy storage applications. Electrochim Acta 326:134974

    Article  CAS  Google Scholar 

  45. Zhu J, Liu S, Liu Y, Meng T, Ma L, Zhang H, Kuang M, Jiang J (2018) Graphitic, porous, and multiheteroatom codoped carbon microtubes made from hair waste: a superb and sustained anode substitute for li-ion batteries. ACS Sustain. Chem. Eng. 6:13662–13669

    Article  CAS  Google Scholar 

  46. Zhang D, Wang G, Xu L, Lian J, Bao J, Zhao Y, Qiu J, Li H (2018) Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries. Appl Surf Sci 451:298–305

    Article  CAS  Google Scholar 

  47. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Gurumurthy H (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conv Bioref. https://doi.org/10.1007/s13399-019-00520-3

  48. Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S (2015) Fish scale derived nitrogen doped hierarchical porous carbon—a high rate performing anode for lithium ion cell. Electrochimca Acta 182:1–10

    Article  CAS  Google Scholar 

  49. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674

    Article  CAS  Google Scholar 

  50. Wu F, Huang R, Mu D, Wu B (2016) Chen Y (2016) Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochim Acta 187:508–516

    Article  CAS  Google Scholar 

  51. Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J. Energy Chem. 25:734–739

    Article  Google Scholar 

  52. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao DY (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23:2322–2328

    Article  CAS  Google Scholar 

  53. Guo DC, Mi J, Hao GP, Dong W, Xiong G, Li WC, Lu AH (2013) Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ Sci 6:652–659

    Article  CAS  Google Scholar 

  54. Vinu A, Terrones M, Golberg D, Hishita S, Ariga K, Mori T (2005) Synthesis of mesoporous bn and bcn exhibiting large surface areas via templating methods. Chem Mater 17:5887–5890

    Article  CAS  Google Scholar 

  55. Linares N, Serrano E, Rico M, Balu AM, Losada E, Luque R, Garc.a-Mart.nez J (2011) Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun 47:9024–9035

    Article  CAS  Google Scholar 

  56. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  57. Zhang LL, Li HH, Shi YH, Fan CY, Wu XL, Wang HF, Sun HZ, Zhang JP (2016) A novel layered sedimentary rocks structure of the oxygen-enriched carbon for ultrahigh-rate-performance supercapacitors. ACS Appl Mater Interfaces 8:4233–4241

    Article  CAS  Google Scholar 

  58. Ye JS, Liu X, Cui HF, Zhang WD, Sheu FS, Lim TM (2005) Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun 7:249–255

    Article  CAS  Google Scholar 

  59. Lota G, Tyczkowski J, Kapica R, Lota K, Frackowiak E (2010) Carbon materials modified by plasma treatment as electrodes for supercapacitors. J Power Sources 195:7535–7539

    Article  CAS  Google Scholar 

  60. Lyu L, Seong KD, Ko D, Choi J, Lee C, Hwang T, Cho Y, Jin X, Zhang W, Pang H, Piao Y (2019) Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater. Chem. Front. 3:2543–2570

    Article  CAS  Google Scholar 

  61. Wang J, Shen L, Nie P, Yun X, Xu Y, Dou H, Zhang X (2015) N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. J. Mater. Chem. A 3:2853–2860

    Article  CAS  Google Scholar 

  62. Jia L, Kang L, Xiang G, Yao B, Huo K, Cheng Y, Cheng X, Chen D, Bo W, Sun W, Ding D, Liu M, Huang L (2015) Oxygen-and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl Mater Interfaces 7:24622–24628

    Article  CAS  Google Scholar 

  63. Fuertes AB, Sevilla M (2015) Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes. Chemsuschem 8:1049–1057

    Article  CAS  Google Scholar 

  64. Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25:1993–1998

    Article  CAS  Google Scholar 

  65. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: Waste to wealth approach, ACS Sustain. Chem Eng 5:2247–2253

    Google Scholar 

  66. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  CAS  Google Scholar 

  67. Hirose T, Fujino T, Fan TX, Endo H, Okabe T, Yoshimura M (2002) Effect of carbonization temperature on the structural changes of woodceramics impregnated with liquefied wood. Carbon 40:761–765

    Article  CAS  Google Scholar 

  68. Salvador F, Sanchez-Montero MJ, Izquierdo C (2007) C/H2O reaction under supercritical conditions and their repercussions in the preparation of activated carbon. J Phys Chem C 111:14011–14020

    Article  CAS  Google Scholar 

  69. Wang Q, Li H, Chen LQ (2001) Huang XJ (2001) Monodispersed hard carbon spherules with uniform nanopores. Carbon 39:2211–2214

    Article  CAS  Google Scholar 

  70. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  CAS  Google Scholar 

  71. Rabenau A (1985) The Role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24:1026–1040

    Article  Google Scholar 

  72. Haenel MW (1992) Recent progress in coal structure research. Fuel 71:1211–1223

    Article  CAS  Google Scholar 

  73. Titirici M-M, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822

    Google Scholar 

  74. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sust. Energ. Rev. 57:1126–1140

    Article  CAS  Google Scholar 

  75. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using cao-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol Mater Sci Ed 32:305–320

    Google Scholar 

  76. Du S, Valla JA, Bollas GM (2013) Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds. Green Chem 15:3214–3229

    Article  CAS  Google Scholar 

  77. Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuel, Bioprod Biorefin. 2:393–414

    Article  CAS  Google Scholar 

  78. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: A State-of-the-art review. Prog Energ Combust. 62:33–86

    Article  Google Scholar 

  79. Wang Z, Yu J, Zhang X, Li N, Liu B, Li Y, Wang Y, Wang W, Li Y, Zhang L, Dissanayake S, Suib SL, Sun L (2016) Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS Appl Mater Interfaces 8:1434

    Article  CAS  Google Scholar 

  80. Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B (2019) Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2:172–192

    Article  CAS  Google Scholar 

  81. Manyà JJ (2012) Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954

    Article  CAS  Google Scholar 

  82. Wang Z, Shen D, Wu C, Gu S (2018) State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem 20:5031–5057

    Article  CAS  Google Scholar 

  83. Ru H, Bai N, Xiang K, Zhou W, Chen H, Zhao XS (2016) Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 194:10–16

    Article  CAS  Google Scholar 

  84. Smith AJ, MacDonald MJ, Ellis LD, Obrovac MN, Dahn JR (2012) A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. Carbon 50:3717–3723

    Article  CAS  Google Scholar 

  85. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  86. Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Zeng GM, Cheng M, Gong XM, Wan J, Luo H (2018) Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour Technol 261:265–271

    Article  CAS  Google Scholar 

  87. Zhou L, Liu Y, Liu S, Yin Y, Zeng G, Tan X, Hu X, Hu X, Jiang L, Ding Y, Liu S, Huang X (2016) Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour Technol 218:351–359

    Article  CAS  Google Scholar 

  88. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    Article  CAS  Google Scholar 

  89. Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T (2018) Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon 128:147–163

    Article  CAS  Google Scholar 

  90. Yu J, Tang L, Pang Y, Zeng G, Feng H, Zou J, Wang J, Feng C, Zhu X, Ouyang X, Tan J (2020) Hierarchical porous biochar from shrimp shell for persulfate activation: A two-electron transfer path and key impact factors. Appl Catal B 260:118160

    Article  CAS  Google Scholar 

  91. Jung A, Han S, Kim T, Cho WJ, Lee KH (2013) Synthesis of high carbon content microspheres using 2-step microwave carbonization, and the influence of nitrogen doping on catalytic activity. Carbon 60:307–316

    Article  CAS  Google Scholar 

  92. Knox JH, Kaur B, Millward GR, Chromatogr J (1986) Structure and performance of porous graphitic carbon in liquid chromatography. J Chromatogr A 352:3–25

    Article  CAS  Google Scholar 

  93. Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 50:10991–10995

    Article  CAS  Google Scholar 

  94. Estevez L, Dua R, Bhandari N, Ramanujapuram A, Wang P, Giannelis EP (2013) A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ Sci 6:1785–1790

    Article  CAS  Google Scholar 

  95. Kubo S, White RJ, Yoshizawa N, Antonietti M, Titirici MM (2011) Ordered Carbohydrate-Derived Porous Carbons. Chem Mater 23:4882–4885

    Article  CAS  Google Scholar 

  96. Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30:900–910

    Article  CAS  Google Scholar 

  97. Wang S, Han C, Wang J, Deng J, Zhu M, Yao J, Li H, Wang Y (2014) Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem Mater 26:6872–6877

    Article  CAS  Google Scholar 

  98. Huang CH, Doong RA (2012) Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly. Microporous Mesoporous Mater 147:47–52

    Article  CAS  Google Scholar 

  99. Zhang P, Gong Y, Lv Y, Guo Y, Wang Y, Wang C, Li H (2012) Ionic liquids with metal chelate anions. Chem Commun 48:2334–2336

    Article  CAS  Google Scholar 

  100. Lee JS, Mayes RT, Luo H, Dai S (2010) Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 48:3364–3368

    Article  CAS  Google Scholar 

  101. Xie ZL, White RJ, Weber J, Taubert A, Titirici MM (2011) Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. J Mater Chem 21:7434–7442

    Article  CAS  Google Scholar 

  102. Zhang P, Gong Y, Wei Z, Wang J, Zhang Z, Li H, Dai S, Wang Y (2014) Updating biomass into functional carbon material in ionothermal manner. ACS Appl Mater Interfaces 6:12515–12522

    Article  CAS  Google Scholar 

  103. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140

    Article  CAS  Google Scholar 

  104. Zhu H, Yin J, Wang X, Wang H, Yang X (2013) Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv Funct Mater 23:1305–1312

    Article  CAS  Google Scholar 

  105. Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen BC, Holt CMB (2012) Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2:431–437

    Article  CAS  Google Scholar 

  106. Chen C, Yu D, Zhao G, Du B, Tang W, Sun L, Sun Y, Besenbacher F, Yu M (2016) Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27:377–389

    Article  CAS  Google Scholar 

  107. Zhou M, Gomez J, Li B, Jiang YB, Deng S (2017) Oil tea shell derived porous carbon with an extremely large specific surface area and modification with MnO2 for high-performance supercapacitor electrodes. Appl. Mater. Today 7:47–54

    Article  Google Scholar 

  108. Ba H, Wang W, Pronkin S, Romero T, Baaziz W, Nguyen-Dinh L, Chu W, Ersen O, Pham-Huu C (2018) Biosourced foam-like activated carbon materials as high-performance supercapacitors. Adv. Sustain. Syst. 2:1700123

    Article  CAS  Google Scholar 

  109. Subramani K, Sudhan N, Karnan M, Sathish M (2017) Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemistrySelect 2:11384–11392

    Article  CAS  Google Scholar 

  110. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    Article  CAS  Google Scholar 

  111. Dai C, Wan J, Geng W, Song S, Ma F, Shao J (2017) KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes. J Solid State Electrochem 21:2929–2938

    Article  CAS  Google Scholar 

  112. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors. Adv. Energy Mater. 6:1600802

    Article  CAS  Google Scholar 

  113. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175

    Article  CAS  Google Scholar 

  114. Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 6:160111

    Article  Google Scholar 

  115. Yan J, Wang Q, Wei T, Fan Z (2014) Supercapacitors: recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4:1300816

    Article  CAS  Google Scholar 

  116. Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120:2079–2086

    Article  CAS  Google Scholar 

  117. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  118. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022

    Article  CAS  Google Scholar 

  119. Lozano-Castello D, Calo JM, Cazorla-Amoros D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques and the effects of hydrogen. Carbon 45:2529–2536

    Article  CAS  Google Scholar 

  120. Sahu V, Shekhar S, Sharma RK, Singh G (2015) Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. ACS Appl Mater Interfaces 7:3110–3116

    Article  CAS  Google Scholar 

  121. Hayashi JI, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878

    Article  CAS  Google Scholar 

  122. Sun L, Fu Y, Tian C, Yang Y, Wang L, Yin J, Ma J, Wang R, Fu H (2014) Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized from Nitrogen-Containing Chitosan for Supercapacitors. Chemsuschem 7:1637–1646

    Article  CAS  Google Scholar 

  123. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  124. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1:6462–6470

    Article  CAS  Google Scholar 

  125. Mozammel HM, Masahiro O, Bhattacharya SC (2002) Activated charcoal from coconut shell using ZnCl2 activation. Biomass Bioenergy 22:397–400

    Article  Google Scholar 

  126. Guangzhen Z, Yanjiang L, Guang Z, Junyou S, Ting L, Likun P (2019) Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors. ACS Sustainable Chem. Eng. 7:12052–12060

    Google Scholar 

  127. Patel MA, Luo F, Khoshi MR, Rabie E, Zhang Q, Flach CR, Mendelsohn R, Garfunkel E, Szostak M, He H (2016) P–doped porous carbon as metal free catalysts for selective aerobic oxidation with an unexpected mechanism. ACS Nano 10:2305–2315

    Article  CAS  Google Scholar 

  128. Sevilla M, Fuertes AB (2016) A green approach to high-performance supercapacitor electrodes: the chemical activation of hydrochar with potassium bicarbonate. Chemsuschem 9:880–1888

    Article  CAS  Google Scholar 

  129. Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383

    Article  CAS  Google Scholar 

  130. Yang K, Peng J, Xia H, Zhang L, Srinivasakannan C, Guo S (2010) Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J. Taiwan Inst. Chem. E. 41:367–372

    Article  CAS  Google Scholar 

  131. Bommier C, Xu R, Wang W, Wang X, Wen D, Lu J, Ji X (2015) Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy 13:709–717

    Article  CAS  Google Scholar 

  132. Raymundo-Pinero E, Cadek M, Beguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Funct Mater 19:1032–1039

    Article  CAS  Google Scholar 

  133. Panchakarla LS, Subrahmanyam KS, Saha SK, Achutharao G, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730

    CAS  Google Scholar 

  134. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K (2012) three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24:5130–5135

    Article  CAS  Google Scholar 

  135. Xu G, Ding B, Pan J, Han J, Nie P, Zhu Y, Sheng Q, Dou H (2015) Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J. Mater. Chem. A 3:23268–23273

    Article  CAS  Google Scholar 

  136. Huang C, Sun T, Hulicova-Jurcakova D (2013) Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. Chemsuschem 6:2330–2339

    Article  CAS  Google Scholar 

  137. El-Sawy AM, Mosa IM, Su D, Guild CJ, Khalid S, Joesten R, Rusling JF, Suib SL (2016) Controlling the active sites of sulfur-doped carbon nanotube–graphene nanolobes for highly efficient oxygen evolution and reduction catalysis. Adv. Energy Mater. 6:1501966

    Article  CAS  Google Scholar 

  138. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M (2018) One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555

    Article  CAS  Google Scholar 

  139. Deng Y, Ji Y, Wu H, Chen F (2019) Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials. Chem Commun 55:1486–1489

    Article  CAS  Google Scholar 

  140. Scott V, Gilfillan S, Markusson N, Chalmers H, Haszeldine RS (2013) Last chance for carbon capture and storage. Nat Clim Chang. 3:105–111

    Article  CAS  Google Scholar 

  141. Haszeldine RS (2009) Carbon sequestration. Science 325:1644–1645

    Article  CAS  Google Scholar 

  142. Wang T, Lackner KS, Wright A (2011) Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air. Environ Sci Technol 45:6670–6675

    Article  CAS  Google Scholar 

  143. Parshetti GK, Chowdhury S, Balasubramanian R (2015) Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 148:246–254

    Article  CAS  Google Scholar 

  144. Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771

    Article  CAS  Google Scholar 

  145. Chen J, Yang J, Hu G, Hu X, Li Z, Shen S, Radosz M, Fan M (2016) Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain. Chem. Eng. 4:1439–1445

    Article  CAS  Google Scholar 

  146. Singh G, Kim IY, Lakhi KS, Joseph S, Srivastava P, Naidu R, Vinu A (2017) Heteroatom functionalized activated porous biocarbons and their excellent performance for CO2 capture at high pressure. J Mater Chem 5:21196–21204

    Article  CAS  Google Scholar 

  147. Zhu B, Shang C, Guo Z (2016) Naturally nitrogen and calcium-doped nanoporous carbon from pine cone with superior CO2 capture capacities. ACS Sustain. Chem. Eng. 4:1050–1057

    Article  CAS  Google Scholar 

  148. Zhu B, Qiu K, Shang C, Guo Z (2015) Naturally derived porous carbon with selective metal-and/or nitrogen-doping for efficient CO2 capture and oxygen reduction. J. Mater. Chem. A 3:5212–5222

    Article  CAS  Google Scholar 

  149. European academies science advisory council (2016) priorities for critical materials for a circular economy. German National Academy of Sciences Leopoldina, Halle

    Google Scholar 

  150. Khalafallah D, Alothman OY, Fouad H, Khalil KA (2018) Nitrogen and carbon functionalized cobalt phosphide as efficient non-precious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment. Electroanal Chem 809:96–104

    Article  CAS  Google Scholar 

  151. Khalafallah D, Akhtar N, Alothman OY, Fouad H, Khalil KA (2017) Self-assembled dopamine nanolayers wrapped carbon nanotubes as carbon-carbon bi-functional nanocatalyst for highly efficient oxygen reduction reaction and antiviral drug monitoring. Solid State Sci 71:51–60

    Article  CAS  Google Scholar 

  152. Wang N, Li T, Song Y, Liu J, Wang F (2018) Metal-free nitrogen-doped porous carbons derived from pomelo peel treated by hypersaline environments for oxygen reduction reaction. Carbon 130:692–700

    Article  CAS  Google Scholar 

  153. Gao S, Wei X, Liu H, Geng K, Wang H, Moehwald H, Shchukin D (2015) Transformation of worst weed into N-, S-, and P-tridoped carbon nanorings as metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 3:23376–23384

    Article  CAS  Google Scholar 

  154. Li M, Xiong Y, Liu X, Han C, Zhang Y, Bo X, Guo L (2015) Iron and nitrogen co-doped carbon nanotube@hollow carbon fibers derived from plant biomass as efficient catalysts for the oxygen reduction reaction. J. Mater. Chem. A 3:9658–9667

    Article  CAS  Google Scholar 

  155. Liu Y, Ruan J, Sang S, Zhou Z, Wu Q (2016) Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim Acta 215:388–397

    Article  CAS  Google Scholar 

  156. Wu D, Zhu C, Shi Y, Jing H, Hu J, Song X, Si D, Liang S, Hao C (2019) Biomass-derived multilayer-graphene-encapsulated cobalt nanoparticles as efficient electrocatalyst for versatile renewable energy applications. ACS Sustainable Chem. Eng. 7:1137–1145

    Article  CAS  Google Scholar 

  157. Liu l, Zeng G, Chen J, Bi L, Dai L, Wen Z (2018) N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49:393–402

    Article  CAS  Google Scholar 

  158. He D, Zhao W, Li P, Liu Z, Wu H, Liu L, Han K, Liu L, Wan Q, Butt FK, Qu X (2019) Bifunctional biomass-derived 3D nitrogen-doped porous carbon for oxygen reduction reaction and solid-state supercapacitor. Appl Surf Sci 465:303–312

    Article  CAS  Google Scholar 

  159. Chatterjee K, Ashokkumar M, Gullapalli H, Gong Y, Vajtai R, Thanikaivelan P, Ajayan PM (2018) Nitrogen-rich carbon nano-onions for oxygen reduction reaction. Carbon 130:645–651

    Article  CAS  Google Scholar 

  160. Wang G, Deng Y, Yu J, Zheng L, Du L, Song H, Liao S (2017) From chlorella to nestlike framework constructed with doped carbon nanotubes: a biomass-derived, high-performance, bifunctional oxygen reduction/evolution catalyst. ACS Appl Mater Interfaces 9:32168–32178

    Article  CAS  Google Scholar 

  161. Gao S, Geng K, Liu H, Wei X, Zhang M, Wang P, Wang J (2015) Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ Sci 8:221–229

    Article  CAS  Google Scholar 

  162. Wei Q, Yang X, Zhang G, Wang D, Zuin L, Banham D, Yang L, Ye S, Wang Y, Mohamedi M, Sun S (2018) An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Appl. Catal. B: Environ. 237:85–93

    Article  CAS  Google Scholar 

  163. Zhao Y, Li X, Jia X, Gao S (2019) Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58:384–391

    Article  CAS  Google Scholar 

  164. Kalyani P, Anitha A, Darchen A (2013) Activated carbon from grass – A green alternative catalyst support for water electrolysis. Int J Hydrogen Energy 38:10364–10372

    Article  CAS  Google Scholar 

  165. Zhang C, Antonietti M, Fellinger TP (2014) Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv Funct Mater 24:7655–7665

    Article  CAS  Google Scholar 

  166. Larcher D, Tarascon JM (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7:19–29

    Article  CAS  Google Scholar 

  167. Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118:11433–11456

    Article  CAS  Google Scholar 

  168. Li M, Lu J, Chen Z, Amine K (2018) 30 Years of lithium-ion batteries. Adv Mater 30:1800561

    Article  CAS  Google Scholar 

  169. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  170. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  171. Wang JG, Jin D, Liu H, Zhang C, Zhou R, Shen C, Xie K, Wei B (2016) All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy 22:24–532

    Article  Google Scholar 

  172. Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092

    Article  CAS  Google Scholar 

  173. Zang J, Ye J, Qian H, Lin Y, Zhang X, Zheng M, Dong Q (2018) Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries. Electrochim Acta 260:783–788

    Article  CAS  Google Scholar 

  174. Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7:157–180

    Article  Google Scholar 

  175. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  176. Zhou X, Chen F, Bai T, Long B, Liao Q, Ren Y, Yang J (2016) Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem 18:2078–2088

    Article  CAS  Google Scholar 

  177. Wang L, Schnepp Z, Titirici MM (2013) Rice husk-derived carbon anodes for lithium ion batteries. Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A 1:5269–5273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diab Khalafallah , Mingjia Zhi or Zhanglian Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalafallah, D., Zhi, M., Hong, Z. (2021). Heteroatoms Doped Porous Carbon Nanostructures Recovered from Agriculture Waste for Energy Conversion and Storage. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_17

Download citation

Publish with us

Policies and ethics