Skip to main content

Fundamentals of N2 Fixation

  • Chapter
  • First Online:

Abstract

Decades of N2 fixation research have uncovered many details of the intricacies and complexity of Biological N2 Fixation (BNF), from the evolutionary path of the enzyme to the diversity of microorganisms, the biochemistry of the reaction, and the underlying genetics. The enzyme and its reaction are complex and require substantial energy and reductant, while being extremely sensitive to O2. The enzyme is comprised of two multi-subunit proteins with metal cofactors. There are Mo, V and Fe forms of nitrogenase, encoded by related but divergent genes. Nonetheless, diverse microorganisms of varied physiologies are capable of BNF, and have evolved multiple solutions to obtaining sufficient energy and protecting from O2. Diazotrophs include strict anaerobes, microaerophiles, and cyanobacteria, which are photosynthetic and evolve O2. There are multiple genes involved in N2 fixation, beyond the nifHD(G)K genes that encode nitrogenase that provide multiple functions including protein assembly, cofactor synthesis and metal transport. Many diazotrophs on land provide fixed N to multicellular plants and animals through symbiotic interactions, and there are specific genes involved in maintaining symbiosis and facilitating N2 fixation. The nitrogenase genes are highly regulated in order to conserve energy when N is available or when O2 is present, through complex regulatory cascades that effect cellular changes, protein modifications and transcriptional regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Artz, J. H., Zadvornyy, O. A., Mulder, D. W., King, P. W., & Peters, J. W. (2017). Structural characterization of poised states in the oxygen sensitive hydrogenases and nitrogenases. Methods in Enzymology, 595, 213–259. https://doi.org/10.1016/bs.mie.2017.07.005. PMID – 28882202.

    Article  Google Scholar 

  • Aurora, R., & Pakrasi, H. (2008). Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6156.

    Article  Google Scholar 

  • Bar-Shmuel, N., Behar, A., & Segoli, M. (2019). What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Journal of Insect Science. https://doi.org/10.1111/1744-7917.12697. PMID – 31207108.

  • Benavides, M., Bednarz, V. N., & Ferrier-Pagès, C. (2017). Diazotrophs: Overlooked key players within the coral symbiosis and tropical reef ecosystems? Frontiers in Marine Science, 4(10). https://doi.org/10.3389/fmars.2017.00010.

  • Benton, P. M. C., Sen, S., & Peters, J. W. (2002). Chapter 2 – Nitrogenase structure. In G. J. Leigh (Ed.), Nitrogen fixation at the millennium (pp. 35–71). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Bergman, B., Gallon, J. R., Rai, A. N., & Stal, L. J. (1997). N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiology Reviews, 19, 139–185.

    Article  CAS  Google Scholar 

  • Berman-Frank, I., Lundgren, P., & Falkowski, P. (2003). Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology, 154(3), 157–164.

    Article  CAS  Google Scholar 

  • Berry, A. M., Harriott, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., et al. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA, 90(13), 6091–6094. https://doi.org/10.1073/pnas.90.13.6091.

  • Bishop, P. E., & Premakumar, R. (1992). Alternative nitrogen fixation systems. In G. Stacey, R. Burris, & H. Evans (Eds.), Biological nitrogen fixation (pp. 736–762). New York: Routledge, Chapman and Hall.

    Google Scholar 

  • Boyd, E., & Peters, J. (2013). New insights into the evolutionary history of biological nitrogen fixation. Frontiers in Microbiology, 4, 201.

    Article  Google Scholar 

  • Boyd, E., Anbar, A., Miller, S., Hamilton, T., Lavin, M., et al. (2011). A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology, 9(3), 221–232.

    Article  CAS  Google Scholar 

  • Burén, S., Jiménez-Vicente, E., Echavarri-Erasun, C., & Rubio, L. M. (2020). Biosynthesis of nitrogenase cofactors. Chemical Reviews, 120(12), 4921–4968. https://doi.org/10.1021/acs.chemrev.9b00489. PMID – 31975585.

    Article  CAS  Google Scholar 

  • Carpenter, E. J., & Culliney, J. L. (1975). Nitrogen fixation in marine shipworms. Science, 187(4176), 551–552.

    Article  CAS  Google Scholar 

  • Cohen, G. N. (2014). The biological fixation of nitrogen. In G. N. Cohen (Ed.), Microbial Biochemistry (pp. 275–281). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cornejo-Castillo, F. M., & Zehr, J. P. (2019). Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean. Proc Natl Acad Sci USA, 116(37), 18269–18271. https://doi.org/10.1073/pnas.1908165116.

  • De Bruijn, F. J. (2015). Biological nitrogen fixation. In Principles of plant-microbe interactions (pp. 215–224). Cham: Springer.

    Chapter  Google Scholar 

  • de Moura, G. G. D., Remigi, P., Masson-Boivin, C., & Capela, D. (2020). Experimental evolution of legume symbionts: What have we learnt? Genes (Basel), 11(3), 339. https://doi.org/10.3390/genes11030339. PMID – 32210028.

    Article  CAS  Google Scholar 

  • Distel, D., DeLong, E., & Waterbury, J. (1991). Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Applied and Environmental Microbiology, 57(8), 2376–2382.

    Article  CAS  Google Scholar 

  • Dixon, R. (2004). Historical perspective-development of nif genetics and regulation in Klebsiella pneumoniae. In W. Klipp, B. Masepohl, J. R. Gallon, & W. E. Newton (Eds.), Genetics and regulation of nitrogen fixation in free-living Bacteria (Vol. 2, pp. 1–25). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dixon, R., & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8), 621–631.

    Article  CAS  Google Scholar 

  • Eady, R. R., Kennedy, C., Smith, B. E., Thorneley, R. N., Yates, G., et al. (1975). Nitrogenase in Azotobacter chroococcum and Klebsiella pneumoniae. Biochemical Society Transactions, 3(4), 488–492. https://doi.org/10.1042/bst0030488.

    Article  CAS  Google Scholar 

  • Ekman, M., Picossi, S., Campbell, E. L., Meeks, J. C., & Flores, E. (2013). A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis. Plant Physiology, 161(4), 1984–1992. https://doi.org/10.1104/pp.112.213116.

  • Elmerich, C. (2007). Historical perspective: From bacterization to endophytes. In Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations (pp. 1–20). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Encarnación, S. (2005). The dawn of functional genomics in nitrogen fixation research. In R. Palacios & W. E. Newton (Eds.), Genomes and genomics of nitrogen-fixing microorganisms (pp. 136–160). Dordrecht: Springer.

    Google Scholar 

  • Esteves-Ferreira, A. A., Inaba, M., Fort, A., Araujo, W. L., & Sulpice, R. (2018). Nitrogen metabolism in cyanobacteria: Metabolic and molecular control, growth consequences and biotechnological applications. Critical Reviews in Microbiology, 44(5), 541–560. https://doi.org/10.1080/1040841X.2018.1446902.

    Article  CAS  Google Scholar 

  • Fani, R., Gallo, R., & Lio, P. (2000). Molecular evolution of nitrogen fixation: The evolutionary history of the nifD, nifK, nifE, and nifN genes. Journal of Molecular Evolution, 51(1), 1–11.

    Article  CAS  Google Scholar 

  • Fay, P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews, 56, 340–373.

    Article  CAS  Google Scholar 

  • Fischer, H. M. (1994). Genetic regulation of nitrogen fixation in rhizobia. Microbiological Reviews, 58(3), 352–386. https://doi.org/10.1128/mmbr.58.3.352-386.1994.

    Article  CAS  Google Scholar 

  • Fisher, K., & Newton, W. E. (2002). Chapter 1 – Nitrogen fixation – A general overview. In G. J. Leigh (Ed.), Nitrogen fixation at the millennium (pp. 1–34). Amsterdam: Elsevier Science.

    Google Scholar 

  • Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., et al. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 15(24), 13849–13893.

    Article  CAS  Google Scholar 

  • Gallon, J. R. (1981). The oxygen sensitivity of nitrogenase: A problem for biochemists and microorganisms. Trends in Biochemical Sciences, 6, 19–23.

    Article  CAS  Google Scholar 

  • Gallon, J. R. (1992). Reconciling the incompatible: N2 fixation and O2. Tansley Review No. 44. The New Phytologist, 122, 571–609.

    Article  CAS  Google Scholar 

  • Gallon, J. R., & Stal, L. J. (1992). N2 fixation in non-heterocystous cyanobacteria: An overview. In E. J. Carpenter, D. G. Capone, & J. G. Rueter (Eds.), Marine pelagic cyanobacteria: Trichodesmium and other Diazotrophs (pp. 115–139). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., et al. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889.

    Article  CAS  Google Scholar 

  • Garcia, A. K., McShea, H., Kolaczkowski, B., & Kacar, B. (2020). Reconstructing the evolutionary history of nitrogenases: Evidence for ancestral molybdenum-cofactor utilization. Geobiology. https://doi.org/10.1111/gbi.12381.

  • He, P., Cai, X., Chen, K., & Fu, X. (2020). Identification of small RNAs involved in nitrogen fixation in Anabaena sp. PCC 7120 based on RNA-seq under steady state conditions. Annals of Microbiology, 70(1), 4. https://doi.org/10.1186/s13213-020-01557-w.

    Article  Google Scholar 

  • Herrero, A., Muro-Pastor, A. M., & Flores, E. (2001). Nitrogen control in cyanobacteria. Journal of Bacteriology, 183(2), 411–425. https://doi.org/10.1128/jb.183.2.411-425.2001.

    Article  CAS  Google Scholar 

  • Herrero, A., Flores, E., & Imperial, J. (2019). Nitrogen assimilation in bacteria. In Encyclopedia of Microbiology (4th ed., pp. 280–300). Amsterdam: Elsevier.

    Google Scholar 

  • Hill, S. (1988). How is nitrogenase regulated by oxygen? FEMS Microbiology Reviews, 54, 111–130.

    Article  CAS  Google Scholar 

  • Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R., & Seefeldt, L. C. (2014). Mechanism of nitrogen fixation by nitrogenase: The next stage. Chemical Reviews, 114(8), 4041–4062.

    Article  CAS  Google Scholar 

  • Horak, R. E. A., & Montoya, J. P. (2014). Growth, nitrogen fixation, respiration, and anitrogen budget for cultures of a cosmopolitan diazotrophic endosymbiont (Teredinibacter turnerae) of shipworms. Journal of the Marine Biological Association of the United Kingdom, 94(3), 177–185. https://doi.org/10.1017/S0025315413001483.

    Article  CAS  Google Scholar 

  • Howard, J. B., & Rees, D. C. (1996). Structural basis of biological nitrogen fixation. Chemical Reviews, 96, 2965–2982.

    Article  CAS  Google Scholar 

  • Huisman, R., & Geurts, R. (2020). A roadmap toward engineered nitrogen-fixing nodule symbiosis. Plant Communications, 1(1), 100019. https://doi.org/10.1016/j.xplc.2019.100019.

    Article  Google Scholar 

  • Igai, K., Itakura, M., Nishijima, S., Tsurumaru, H., Suda, W., et al. (2016). Nitrogen fixation and nifH diversity in human gut microbiota. Scientific Reports, 6(1), 31942. https://doi.org/10.1038/srep31942. PMID – 27554344.

    Article  CAS  Google Scholar 

  • Ionescu, D., Voss, B., Oren, A., Hess, W. R., & Muro-Pastor, A. M. (2010). Heterocyst-specific transcription of NsiR1, a non-coding RNA encoded in a tandem array of direct repeats in cyanobacteria. Journal of Molecular Biology, 398(2), 177–188. https://doi.org/10.1016/j.jmb.2010.03.010.

    Article  CAS  Google Scholar 

  • Jiménez-Vicente, E., Hernandez, J. A., Echavarri-Erasun, C., & Rubio, L. M. (2015). Biosynthesis of the iron-molybdenum cofactor of nitrogenase. In F. J. de Bruijn (Ed.), Biological nitrogen fixation (Vol. 1, pp. 87–100). Hoboken: Wiley.

    Google Scholar 

  • Kennedy, C., & Bishop, P. (2004). Genetics of nitrogen fixation and related aspects of metabolism in species of Azotobacter: History and current status. In Genetics and regulation of nitrogen fixation in free-living bacteria (pp. 27–52). Dordrecht: Springer.

    Google Scholar 

  • Klipp, W., Masepohl, B., Gallon, J. R., & Newton, W. E. (2004). Genetics and regulation of nitrogen fixation in free-living Bacteria (Vol. 2). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Knox, J. (1904). The fixation of atmospheric nitrogen. New York: D. Van Nostrand.

    Google Scholar 

  • Leigh, G. J. (2002). Nitrogen fixation at the millennium. Amsterdam: Elsevier.

    Google Scholar 

  • Leigh, J. A., & Dodsworth, J. A. (2007). Nitrogen regulation in bacteria and archaea. Annual Review of Microbiology, 61, 349–377. https://doi.org/10.1146/annurev.micro.61.080706.093409.

    Article  CAS  Google Scholar 

  • Lindstrom, K., Aserse, A. A., & Mousavi, S. A. (2015). Evolution and taxonomy of nitrogen-fixing organisms with emphasis on rhizobia. In F. J. de Bruijn (Ed.), Biological nitrogen fixation (Vol. 1, pp. 21–38). Hoboken: Wiley.

    Chapter  Google Scholar 

  • Marchal, K., & Vanderleyden, J. (2000). The “oxygen paradox” of dinitrogen-fixing bacteria. Biology and Fertility of Soils, 30(5–6), 363–373.

    Article  CAS  Google Scholar 

  • Masepohl, B. (2017). Regulation of nitrogen fixation in photosynthetic purple nonsulfur bacteria. In P. C. Hallenbeack (Ed.), Modern topics in the phototrophic prokaryotes (Vol. 100, pp. 1–25). Cham: Springer.

    Google Scholar 

  • Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends in Microbiology, 17(10), 458–466. https://doi.org/10.1016/j.tim.2009.07.004.

    Article  CAS  Google Scholar 

  • McRose, D. L., Zhang, X., Kraepiel, A. M., & Morel, F. M. (2017). Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Frontiers in Microbiology, 8, 267.

    Article  Google Scholar 

  • Muñoz-Marín, M. D. C., Shilova, I. N., Shi, T., Farnelid, H., Cabello, A. M., et al. (2019). The transcriptional cycle is suited to daytime n2 fixation in the unicellular cyanobacterium “Candidatus atelocyanobacterium thalassa”(ucyn-a). mBio, 10(1), e02495–e02418.

    Google Scholar 

  • Mus, F., Alleman, A. B., Pence, N., Seefeldt, L. C., & Peters, J. W. (2018). Exploring the alternatives of biological nitrogen fixation. Metallomics, 10(4), 523–538.

    Article  CAS  Google Scholar 

  • Newton, W. E. (2015). Recent advances in understanding nitrogenases and how they work. In Biological nitrogen fixation (pp. 5–20). Somerset: Wiley.

    Chapter  Google Scholar 

  • Noel, K. D. (2009). Rhizobia. In Bacteria: Article Titles: R (3rd ed., Vol. Encyclopedia of Microbiology, pp. 261–277). San Diego: Academic.

    Google Scholar 

  • Nordlund, S., & Ludden, P. W. (2004). Post-translational regulation of nitrogenase in photosynthetic bacteria. In W. Klipp, B. Masepohl, J. R. Gallon, & W. E. Newton (Eds.), Genetics and regulation of nitrogen fixation in free-living Bacteria (Vol. 2). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Palacios, R., & Newton, W. E. (2005). Genomes and genomics of nitrogen-fixing organisms (R. Palacios & W. Newton Eds.). Dordrecht: Springer.

    Google Scholar 

  • Pate, J. S., & Layzell, D. B. (1990). Energetics and biological costs of nitrogen assimilation. In B. J. Miflin & P. J. Lea (Eds.), Intermediary Nitrogen Metabolism (Vol. 16, pp. 1–42). Saint Louis: Elsevier Academic Press.

    Google Scholar 

  • Postgate, J. R. (1998). The fundamentals of nitrogen fixation (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rai, A. N. (2003). Cyanobacteria in symbiosis (pp. 97–115). Dordrecht: Springer. https://doi.org/10.1007/0-306-48005-0_6.

    Book  Google Scholar 

  • Raymond, J., Siefert, J. L., Staples, C. R., & Blankenship, R. E. (2004). The natural history of nitrogen fixation. Molecular Biology and Evolution, 21, 541–554.

    Article  CAS  Google Scholar 

  • Robson, R. L., & Postgate, J. R. (1980). Oxygen and hydrogen in biological nitrogen fixation. Annual Review of Microbiology, 34(1), 183–207. https://doi.org/10.1146/annurev.mi.34.100180.001151 PMID – 6776883.

  • Roy, S., Liu, W., Nandety, R. S., Crook, A. D., Mysore, K. S., et al. (2019). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell, 32(1), 15–41. https://doi.org/10.1105/tpc.19.00279 PMID – 31649123.

  • Rutledge, H. L., & Tezcan, F. A. (2020). Electron transfer in nitrogenase. Chemical Reviews https://doi.org/10.1021/acs.chemrev.9b00663 PMID – 31999100.

  • Santos, P. C. D., Fang, Z., Mason, S. W., Setubal, J. C., & Dixon, R. (2012). Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics, 13, 162. https://doi.org/10.1186/1471-2164-13-162.

    Article  CAS  Google Scholar 

  • Seefeldt, L. C., Hoffman, B. M., Peters, J. W., Raugei, S., Beratan, D. N., et al. (2018). Energy transduction in nitrogenase. Accounts of Chemical Research, 51(9), 2179–2186. https://doi.org/10.1021/acs.accounts.8b00112.

    Article  CAS  Google Scholar 

  • Seefeldt, L. C., Yang, Z.-Y., Lukoyanov, D. A., Harris, D. F., Dean, D. R., et al. (2020). Reduction of substrates by nitrogenases. Chemical Reviews, 120, 5082–5106.

    Article  CAS  Google Scholar 

  • Shi, T., Ilikchyan, I. N., Rabouille, S., & Zehr, J. P. (2010). Genome-wide analysis of diel gene expression in the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH 8501. The ISME Journal, 4(5), 621–632. https://doi.org/10.1038/ismej.2009.148.

    Article  CAS  Google Scholar 

  • Siegbahn, P. E. M. (2019). The mechanism for nitrogenase including all steps. Physical Chemistry Chemical Physics, 21(28), 15747–15759. https://doi.org/10.1039/c9cp02073j. PMID – 31276128.

    Article  CAS  Google Scholar 

  • Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., et al. (2011). Evidence for interstitial carbon in nitrogenase femo cofactor. Science, 334(6058), 940–940. https://doi.org/10.1126/science.1214025. PMID – 22096190.

    Article  CAS  Google Scholar 

  • Staal, M., Meyersman, F. J. R., & Stal, L. J. (2003). Temperature excludes N2-fixing cyanobacteria in the tropical oceans. Nature, 425, 504–507.

    Article  CAS  Google Scholar 

  • Stewart, W. D. P., Haystead, A., & Pearson, H. W. (1969). Nitrogenase activity in heterocysts of blue–green algae. Nature, 224(5216), 226–228. https://doi.org/10.1038/224226a0. PMID – 4981122.

    Article  CAS  Google Scholar 

  • Thiel, T. (2019). Organization and regulation of cyanobacterial nif gene clusters: Implications for nitrogenase expression in plant cells. FEMS Microbiology Letters, 366(7). https://doi.org/10.1093/femsle/fnz077.

  • Thorneley, R. N., & Ashby, G. A. (1989). Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochemical Journal, 261(1), 181.

    Article  CAS  Google Scholar 

  • Thorneley, R., & Lowe, D. (1985). Kinetics and mechanism of the nitrogenase enzyme system. Molybdenum Enzymes, 7, 89–116.

    Google Scholar 

  • Tsoy, O. V., Ravcheev, D. A., Čuklina, J., & Gelfand, M. S. (2016). Nitrogen fixation and molecular oxygen: Comparative genomic reconstruction of transcription regulation in alphaproteobacteria. Frontiers in Microbiology, 7, 1343. https://doi.org/10.3389/fmicb.2016.01343. PMID – 27617010.

    Article  Google Scholar 

  • Zehr, J., & Paerl, H. (2008). Molecular ecological aspects of nitrogen fixation in the marine environment. In D. L. Kirchman (Ed.), Microbial Ecology of the Oceans (2nd ed., pp. 481–523). Chichester: Wiley.

    Chapter  Google Scholar 

  • Zehr, J. P., Jenkins, B. D., Short, S. M., & Steward, G. F. (2003). Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environmental Microbiology, 5, 539–554.

    Article  CAS  Google Scholar 

  • Zhang, X., McRose, D. L., Darnajoux, R., Bellenger, J., Morel, F. M., et al. (2016). Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry, 127(2–3), 189–198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zehr, J.P., Capone, D.G. (2021). Fundamentals of N2 Fixation. In: Marine Nitrogen Fixation. Springer, Cham. https://doi.org/10.1007/978-3-030-67746-6_2

Download citation

Publish with us

Policies and ethics