Skip to main content

Abstract

Nanotechnology is a rising area emerged after the amalgamation of the different advanced scientific fields of physics, chemistry and biology, and it has resulted in engineering of nanoparticles (1–100 nm) and their applications. These nanoparticles have an extensive utility in electronic circuits, biochemical sensors, pharmaceuticals, agriculture, cosmetic industry, therapeutic medical science, garment, food industry, etc. The market of nanoparticles is growing substantially, and many different types of nanoparticles and nanoparticle-based products have launched in the recent past. At the same time, unprecedented increases in the usage of nanoparticles have raised concerns over their ultimate release in the ecosystem, posing serious health hazards and environmental impact. The consequences may be more pronounced because of higher surface area against the mass ratio for the nanoparticles than bulk chemistry bestowing them unique physicochemical, electrical, optical and biological properties. Interaction of nanoparticles to the microbes is, therefore, vital to interpret the influence of nanoparticles on the aquatic bodies and soil health. In this regard, it is crucial to know the stability of nanoparticles, and better to understand the interaction and resulting toxicity mechanisms of nanoparticles to the microbes. In the present chapter, we have discussed these aspects with critical insights. Further, antimicrobial and antifungal properties of the nanoparticles are elaborated with a focus on the toxicity mechanism. The impact of nanoparticles could be influenced by the concentration, size, shape, etc. The toxicity mechanisms include inactivation of enzymes because of the interaction of thiol group, oxidative stress leading to surge in reactive oxygen species, restricted nutrient availability due to the aggregation of nanoparticles on the microbial surfaces, ultrastructural membranes, subcellular organelles and DNA damage. Understanding the complex nature of the interaction between the consortium of diverse microorganisms with nanoparticles is thoroughly debated in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abirami R, Kalaiselvi CR, Kungumadevi L, Senthil TS, Kang M (2020) Synthesis and characterization of ZnTiO3 and Ag doped ZnTiO3 perovskite nanoparticles and their enhanced photocatalytic and antibacterial activity. J Solid State Chem 281:121019

    Article  CAS  Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  • Adisa IO, PullaguralaVLR P-V, Dimkpa CO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6:2002

    Article  CAS  Google Scholar 

  • Aliofkhazraei M (2016) Handbook of nanoparticles. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-15338-4

  • Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HD, Osiński M (2020) Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnol 18(1):1–27

    Article  Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Nagendraprasad MN (2017) Nanoagroparticles: emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  Google Scholar 

  • Belal E-S, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 2, sustainable, agriculture reviews, vol 21, Springer, Berlin, pp 311–358. https://doi.org/10.1007/978-3-319-39306-3_10

  • Ben-Moshe T (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  Google Scholar 

  • Bhuyar P, Rahim MH, Sundararaju S, Ramaraj R, Maniam GP, Govindan N (2020) Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Seuf Univ J Appl Sci 9(1):1–5

    Google Scholar 

  • Bottero J-Y (2016) Environmental risks of nanotechnology: a new challenge? In: Lourtioz J-M et al. (eds) Nanosciences and nanotechnology, Springer, Berlin, pp 287–311. https://doi.org/10.1007/978-3-319-19360-1_13

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650. https://doi.org/10.3390/ijms161023630

    Article  CAS  Google Scholar 

  • Chen J, Mao S, Xu F, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soil borne Ralstonia solanacearum. RSC Adv 9:3788–3799. https://doi.org/10.1039/c8ra09186b

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9(12):11737–11749. https://doi.org/10.1021/acsnano.5b03091

    Article  CAS  Google Scholar 

  • Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. J Bionanosci 4:82–86

    Google Scholar 

  • Dasgupta N, Shivendu R, Bhavapriya R, Venkatraman M, Chidambaram R, Avadhani GS, Ashutosh K (2016a) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163. https://doi.org/10.1007/s11356-015-4570-z

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Patra D, Srivastava P, Kumar A, Ramalingam C (2016b) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Int 253:100–111. https://doi.org/10.1016/j.cbi.2016.05.018

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016c) Fabrication of food grade vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. https://doi.org/10.1080/10942912.2015.1042587

  • Delay M, Frimmel FH (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592. https://doi.org/10.1007/s00216-011-5443-z

    Article  CAS  Google Scholar 

  • Deryabin DG, Aleshina ES, Vasilchenko AS, Deryabin TD, Efremova LV, Karimov IF, Korolevskay LB (2013) Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russ 8(5):402–408

    Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 2014(54):1–16. https://doi.org/10.1002/jobm.201400298

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27. https://doi.org/10.1016/j.geoderma.2011.12.018

    Article  CAS  Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Berlin, pp 55–75. https://doi.org/10.1007/978-3-319-14502-4

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (Du) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Google Scholar 

  • El-Shaer A, Abdelfatah M, Mahmoud KR, Momay S, Eraky MR (2020) Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity. J Alloys Compd 817:152799

    Article  CAS  Google Scholar 

  • Emeka EE, Ojiefoh OC, Aleruchi C (2014) Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron 57:1–5

    Article  CAS  Google Scholar 

  • Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium -legume symbiosis. Sci Total Environ 466–467:503–512. https://doi.org/10.1016/j.scitotenv.2013.07.032

    Article  CAS  Google Scholar 

  • Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R (2020) Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 138:103780

    Article  CAS  Google Scholar 

  • Fernández MD, Alonso-Blázquez MN, García-Gómez C, Babin M (2014) Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems. Sci Total Environ 497:688–696. https://doi.org/10.1016/j.scitotenv.2014.07.085

    Article  CAS  Google Scholar 

  • Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A (2020) Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Techniq 83(1):72–80

    Article  CAS  Google Scholar 

  • Ferreira GF, Baltazar LEM, Santos JR, Monteiro AS, Fraga LA, Resende-Stoianoff MA, Santos DA (2013) The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. J Antimicrob Chemother 68:1801–1811

    Article  CAS  Google Scholar 

  • Fu L, Wang Z, Dhankher OP, Xing B (2020) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Bot 71(2):507–519. https://doi.org/10.1093/jxb/erz314

    Article  CAS  Google Scholar 

  • García-Gómez C, Babin M, Obrador A, Álvarez JM, Fernández MD (2015) Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res 22(21):16803–16813. https://doi.org/10.1007/s11356-015-4867-y

    Article  CAS  Google Scholar 

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:2503. https://doi.org/10.1007/s11051-014-2503-2

    Article  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758. https://doi.org/10.1128/AEM.00941-12

    Article  CAS  Google Scholar 

  • Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22:322–328. https://doi.org/10.1016/j.mycmed.2012.09.006

    Article  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copperbased nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752. https://doi.org/10.1039/c3ra42118j

    Article  CAS  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234. https://doi.org/10.1166/jnn.2016.12332

    Article  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Richard Owen MH, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. https://doi.org/10.1007/s10646-008-0199-8

    Article  CAS  Google Scholar 

  • He X, Aker WG, Leszczynski J, Hwang H-M (2014) Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal 22:128–146. https://doi.org/10.1016/j.jfda.2014.01.011

  • Holden PA, Klaessig F, Turco RF, Priester J, Rico CM, Arias HA, Mortimer M, PacpacoK,Gardea-Torresdey JL (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48(18):10541–10551. https://doi.org/10.1021/es502440s

  • Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, Gardea-Torresdey JL (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46:813–822

    Article  CAS  Google Scholar 

  • Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Nanomaterials in agricultural production: benefits and possible threats? In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements, vol 1124, ACS symposium series. American Chemical Society, Washington, DC, pp 73–90. https://doi.org/10.1021/bk-2013-1124.ch001

  • Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Mädler L, Stucky GD, Holden PA (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298

    Article  CAS  Google Scholar 

  • Huang J, Zhan G, Zheng B, Sun D, Lu F, Lin Y, Chen H, Zheng Z, Zheng Y, Li Q (2011) Biogenic silver nanoparticles by Cacumen platycladi extract: synthesis, formation mechanism and antibacterial activity. Ind Eng Chem Res 50:9095–9106

    Article  CAS  Google Scholar 

  • Jacob TR, Peres NT, Martins MP, Lang EA, Sanches PR, Rossi A, Martinez-Ross NM (2015) Heat shock protein 90 (Hsp90) as a molecular target for the development of novel drugs against the dermatophyte Trichophyton rubrum. Front Microbiol 6:1241

    Google Scholar 

  • Jahagirdar AS, Shende S, Gade A, Rai M (2020) Bio-inspired synthesis of copper nanoparticles and its efficacy on seed viability and seedling growth in Mungbean (Vigna radiata L.) Curr Nanosci 16(2):1–7

    Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci 58(2):297–317. https://doi.org/10.1080/10408398.2016.1160363

    Article  CAS  Google Scholar 

  • Johnson CA, Freyer G, Fabisch M, Caraballo MA, Ksel K, Hochella MF (2014) Observations and assessment of iron oxide and green rust nanoparticles in metalpolluted mine drainage within a steep redox gradient. Environ Chem 11(4):377–391

    Google Scholar 

  • Jośko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on the ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99

    Article  Google Scholar 

  • Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232–234:528–537. https://doi.org/10.1016/j.geoderma.2014.06.012

    Article  CAS  Google Scholar 

  • Judy JD, McNear DH Jr, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Rao W, Stegemeier J, Lowry GV, McGrath SP, Durenkamp M, Unrine JM (2015) Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ Sci Technol 49(14):8751–8758. https://doi.org/10.1021/acs.est.5b01208

    Article  CAS  Google Scholar 

  • Karthik K, Nikolova MP, Phuruangrat A, Pushpa S, Revathi V, Subbulakshmi M (2020) Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater Res Innov 24(4):229–234

    Article  CAS  Google Scholar 

  • Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G (2020) Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 11(1):37–44

    Article  Google Scholar 

  • Khan N, Kumar D, Kumar P (2020) Silver nanoparticles embedded guar gum/gelatin nanocomposite: green synthesis, characterization and antibacterial activity. Colloid Interfac Sci 35:100242

    Article  CAS  Google Scholar 

  • Khandel P, Shahi SK (2018) Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem 8:369–391

    Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27(1):49–55. https://doi.org/10.1080/02757540.2010.529074

    Article  CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822

    Article  CAS  Google Scholar 

  • Kumari J, Kumar D, Mathur A, Naseer A, Kumar RR, Chandrasekaran PT, Chaudhuri G, Pulimi M, Raichur AM, Babu S, Chandrasekaran N, Nagarajan R, Mukherjee A (2014) Cytotoxicity of TiO2 nanoparticles towards fresh water sediment microorganisms at low exposure concentrations. Environ Res 135:333–345. https://doi.org/10.1016/j.envres.2014.09.025

    Article  CAS  Google Scholar 

  • Li S, Ma H, Wallis LK, Etterson MA, Riley B, Hoff DJ, Diamond SA (2016) Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci Total Environ 542:324–333. https://doi.org/10.1016/j.scitotenv.2015.09.141

    Article  CAS  Google Scholar 

  • Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, HeX BW, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  Google Scholar 

  • Maddineni SB, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733. https://doi.org/10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Madubuonu N, Aisida SO, Ahmad I, Botha S, Zhao TK, Maaza M, Ezema FI (2020) Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl Phys A 126(1):1–8

    Article  Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–138

    Article  CAS  Google Scholar 

  • Menazea AA, Ahmed MK (2020) Silver and copper oxide nanoparticles-decorated graphene oxide via pulsed laser ablation technique: preparation, characterization, and photoactivated antibacterial activity. Nano-Struct Nano-Objects 22:100464

    Article  CAS  Google Scholar 

  • Mesa-Arango AC, Trevijano-Contador N, Román E, Sánchez-Fresneda R, Casas C, Herrero E, Argüelles JC, Pla J, Cuenca-Estrella M, Zaragoza O (2014) The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother 58:6627–6638

    Article  Google Scholar 

  • Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A, Esmaeili H, Lai CW, Mazraedoost S, Abassi M, Ramavandi B (2020) Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris. Data Brief 28:104929

    Article  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  Google Scholar 

  • Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8:127–140

    Google Scholar 

  • Ngo HX, Garneau-Tsodikova S, Green KD (2016) A complex game of hide and seek: the search for new antifungals. Med Chem Comm 7:1285–1306

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63(4):437–456. https://doi.org/10.1111/j.1365-2389.2012.01475.x

    Article  CAS  Google Scholar 

  • Parvathi VP, Umadevi M, Sasikala R, Parimaladevi R, Ragavendran V, Mayandi J, Sathe GV (2020) Novel silver nanoparticles/activated carbon co-doped titania nanoparticles for enhanced antibacterial activity. Mater Lett 258:126775

    Article  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049. https://doi.org/10.1007/s11356-012-1196-2

    Article  CAS  Google Scholar 

  • Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. https://doi.org/10.1021/es502342r

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713. https://doi.org/10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:E2451–E2456

    Article  CAS  Google Scholar 

  • Rabbani MM, Ahmed I, Park S-J (2016) Application of nanotechnology to remediate contaminated soils. In: Hasegawa H, RahmanMofizur IM, AzizurRahman M (eds) Environmental remediation technologies for metal-contaminated soils. Springer, Berlin, pp 219–229. https://doi.org/10.1007/978-4-431-55759-3_10

  • Rajput V, Minkina T, Ahmed B, Sushkova S, Singh R, Soldatov M, Laratte B, Fedorenko A, Mandzhieva S, Blicharska E, Musarrat J (2020a) Interaction of copper-based nanoparticles to soil, terrestrial, and aquatic systems: critical review of the state of the science and future perspectives, In: Reviews of environmental contamination and toxicology. Springer, Berlin, pp 51–96. https://doi.org/10.1007/398_2019_34

  • Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, Ghazaryan K, Movsesyan H, Barsova N (2020b) ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 42:147–158. https://doi.org/10.1007/s10653-019-00317-3

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018a) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84. https://doi.org/10.1016/j.enmm.2017.12.006

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2018b) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18:2179–2187. https://doi.org/10.1007/s11368-017-1793-2

  • Ranjan S, Nandita D, Arkadyuti RC, Melvin SS, Chidambaram R, Rishi S, Ashutosh K (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):2464. https://doi.org/10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Ranjan S, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K (2016) Microwave irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res 23(12):12287–12302. https://doi.org/10.1007/s11356-016-6440-8

    Article  CAS  Google Scholar 

  • Remedios C, Rosario F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 1–8. https://doi.org/10.1155/2012/751686

  • Rickerby DG (2013) Nanotechnology for more sustainable manufacturing: opportunities and risks. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements. ACS symposium, vol 1124. American Chemical Society, Washington, DC, pp 91–105

    Google Scholar 

  • Rodríguez-Cutiño G, Gaytán-Andrade JJ, García-Cruz A, Ramos-González R, Chávez-González ML, Segura-Ceniceros EP, Martínez-Hernández JL, Govea-Salas M, Ilyina A (2018) Nanobiotechnology approaches for crop protection. In: Kumar V et al (eds) Phytobiont and ecosystem restitution. Springer, Berlin, pp 1–21. https://doi.org/10.1007/978-981-13-1187-1_1

  • Roure F (2016) Societal approach to nanoscience and nanotechnology: when technology reflects and shapes society. In: Lourtioz J-M et al (eds) Nanosciences and nanotechnology. Springer, Berlin, pp 357–404. https://doi.org/10.1007/978-3-319-19360-1_17

  • Roy S, Mukherjee T, Chakraborty S, Kumar das T (2013) Biosynthesis, characterisation and antifungal activity of silver nanoparticles by the fungus Aspergillus foetidus MTCC8876. Digest J Nanomater Biostruct 8:197–205

    Google Scholar 

  • Salamanca-Buentello F, Daar AS (2016) Dust of wonder, dust of doom: a landscape of nanotechnology, nanoethics, and sustainable development. In: Bagheri A et al (eds) Global bioethics: the impact of the UNESCO international bioethics committee, vol 5, Advancing global bioethics. Springer, Berlin, pp 101–123. https://doi.org/10.1007/978-3-319-22650-7_10

  • Sathiyaseelan A, Saravanakumar K, Mariadoss AV, Wang MH (2020) Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.291

    Article  Google Scholar 

  • Saxena P, Harish (2018) Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr Poll Rep 4(2):128–142

    Google Scholar 

  • Saxena P, Sangela V, Harish (2020) Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environ Sci Poll Res 1–11. https://doi.org/10.1007/s11356-020-08441-9

  • Schaumann GE, Baumann T, Lang F, Metreveli G, Vogel H-J (2015b) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1. https://doi.org/10.1016/j.scitotenv.2015.06.006

  • Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J (2015a) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19. https://doi.org/10.1016/j.scitotenv.2014.10.035

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2:554–568

    Google Scholar 

  • Scorzoni and de Paula e Silva, ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM, , 2017.Scorzoni L, de Paula e Silva, ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:36

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. https://doi.org/10.2147/NSA.S39406

    Article  Google Scholar 

  • Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer, Berlin, pp 409–434. https://doi.org/10.1007/978-3-319-15461-9_15

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chem Soc Rev 44(23):8410–8423. https://doi.org/10.1039/c5cs00236b

    Article  CAS  Google Scholar 

  • Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31(6):865–873

    Google Scholar 

  • Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22. https://doi.org/10.1016/j.soilbio.2015.08.019

    Article  CAS  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723. https://doi.org/10.1007/s11356-015-4171-x

    Article  CAS  Google Scholar 

  • Singh G, Joyce EM, Beddow J, Mason TJ (2020) Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J Microbiol Biotechnol Food Sci 9(4):106–120

    Google Scholar 

  • Sirbu T, Maslobrod SN, Yu AM, Borodina VG, Borsch NA, Ageeva LS (2016) Influence of dispersed solutions of copper, silver, bismuth and zinc oxide nanoparticles on growth and catalase activity of Penicillium funiculosum. In: Sontea V, Tiginyanu I (eds) 3rd international conference on nanotechnologies and biomedical engineering, IFMBE proceedings 55, Springer, Berlin, pp 271–274. https://doi.org/10.1007/978-981-287-736-9_66

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13. https://doi.org/10.1186/1476-069X-11-S1-S13

    Article  Google Scholar 

  • Song J, Zhai P, Zhang Y, Zhang C, Sang H, Han G, Keller NP, Lu L (2016) The Aspergillus fumigatus damage resistance protein family coordinately regulates ergosterol biosynthesis and azole susceptibility. MBio 7:e01919-15

    Google Scholar 

  • Suppan S (2013) Nanomaterials in soil: our future food chain? The institute for agriculture and trade policy. Published by IATP (www.iatp.org)

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbialtoxicity. Nanoscale 5:463–474

    Google Scholar 

  • Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int 64:976–981. https://doi.org/10.1016/j.foodres.2014.03.022

    Article  Google Scholar 

  • Tatsumi Y, Nagashima M, Shibanushi T, Iwata A, Kangawa Y, Inui F, Jo Siu WJ, Pillai R, Nishiyama Y (2013) Mechanism of action of efinaconazole, a novel triazole antifungal agent. Antimicrob Agents Chemother 57:2405–2409

    Article  CAS  Google Scholar 

  • Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Berlin, pp 37–54. https://doi.org/10.1007/978-3-319-14502-3

  • Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:27. https://doi.org/10.4172/2325-9655.1000101

  • Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zero valent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut 173:38–46

    Article  CAS  Google Scholar 

  • Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219. https://doi.org/10.1016/j.copbio.2015.03.005

    Article  CAS  Google Scholar 

  • Van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570

    Article  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435

    Article  CAS  Google Scholar 

  • Vincent M, Duval RE, Hartemann P, Engels-Deutsch M (2018) Contact killing and antimicrobial properties of copper. J Appl Microbiol 124(5):1032–1046

    Article  CAS  Google Scholar 

  • Wang P, Keller AA (2009) Natural and engineered nano and colloidal transport: role of zeta potential in prediction of particle deposition. Langmuir 25:6856–6862

    Article  CAS  Google Scholar 

  • Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28(1):101–112. https://doi.org/10.1007/s10534-014-9806-8

    Article  CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33. https://doi.org/10.1016/j.soilbio.2015.03.011

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 230. Springer, Berlin, pp 83–110. https://doi.org/10.1007/978-3-319-04411-8_4

  • Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on nontarget microorganisms. Inter Schol Res Net ISRN Ecol 130289:1–8

    Google Scholar 

  • Yang Y, Colman BP, Bernhardt ES, Hochella MF (2015) Importance of a nanoscience approach in the understanding of major aqueous contamination scenarios: case study from a recent coal ash spill. Env Sci Technol 49(6):3375–3382. https://doi.org/10.1021/es505662q

    Article  CAS  Google Scholar 

  • Załęska-Radziwiłł M, Doskocz N (2015) DNA changes in Pseudomonas putida induced by aluminum oxide nanoparticles using RAPD analysis. Desalin Water Treat 57(3):1573–1581. https://doi.org/10.1080/19443994.2014.996015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support to the Russian Foundation for Basic Research, project no. 19-05-50097 and the Ministry of Science and Higher Education of the Russian Federation, project no. 0852-2020-0029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu D. Rajput .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shende, S.S. et al. (2021). Interaction of Nanoparticles with Microbes. In: Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M. (eds) Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66956-0_12

Download citation

Publish with us

Policies and ethics