Skip to main content

Role of Microorganisms in Managing Soil Fertility and Plant Nutrition in Sustainable Agriculture

  • Chapter
  • First Online:
Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management

Abstract

Soil fertility is soil’s inherent ability to provide adequate amounts of the essential plant nutrients and adequate proportions for plant growth. There is an enormous possibility of improving soil fertility through microorganisms, as microorganisms have regulators and catalysts that help in the recycling of nutrient in the soil and convert it into accessible inorganic forms increasing the fertility of the soil and improving soil health and function which decrease input costs for agriculture and grow crop profitability. Certain gatherings of soil organisms build the measure of supplements in the soil, for example, nitrogen-fixing microorganisms that convert nitrogen gas present in the air into solvent nitrogenous mixes and help plant its development and advancement and mycorrhizal parasites increment the accessibility of mineral supplements like phosphorus to plants. Such sort of soil advantageous organisms colonize the plant roots, improve the ripeness distinction of the soil, and eventually help in plant development and advancement and are named as biofertilizers which are constantly increasing high consideration regarding their utilization as productive microbial inoculants in the field of horticulture. Another gathering of soil microorganism that has been known to create mixes including nutrients and plant development hormones that help in keeping up plant wellbeing and advancing yield efficiency is called phytostimulators. The plants and microorganisms rely upon soil for their nourishment prompting a change in soil attributes through organic litter deposition and different metabolic processes. Phosphorus (P) is a fundamental supplement in plant advancement and development, and its inadequacy is one of the main considerations restricting harvest yields around the world. Although soils, for the most part, have a lot of all-out P, just a little proportion is promptly accessible for take-up of plants since 75–90% of included P is accelerated by metal–cation (calcium, iron, and aluminum) edifices and rapidly gets fixed in soils. Hence, ranchers have included a lot of these synthetic composts to the developed land to accomplish the ideal outcome consistently. Low-use proficiency of the P composts and their ceaseless long-time use have prompted natural contamination. The utilization of synthetic P composts can’t be excluded as of now without strongly lessening food creation. Regardless, it is understood that the compound use of phosphate-solubilizing microorganisms (PSMs) and substance P excrements can lessen the negative impacts of maltreatment of these manures and improve phosphorus use efficiency in a capable and normally sensible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Ghany MT, Alawlaqi MM (2018) Molecular identification of thermo-halotolerant Aspergillus terreus and its correlation in sustainable agriculture. Bioresources 13:8012–8023

    Article  Google Scholar 

  • Adhya TK, Kumar N, Reddy G, Podile RA, Bee H, Samantaray B (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Special section: sustainable phosphorus management. Curr Sci 108(7):1280–1287

    Google Scholar 

  • Ahemad M, Khan MS (2012) Effects of pesticides on plant growth-promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71

    Google Scholar 

  • Alves CJ, Figueiredo SM, Azevedo SS, Clementino IJ, Keid LB, Vasconcellos SA, Batista CSA, Rocha VCM, Higino SS (2010) Detection of Brucella ovis in ovine from Paraib State, in the Northeast region of Brazil. Braz J Microbiol 41:65–367

    Article  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70:794–801

    Article  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere. Soil Bioinfolet 10(1B):248–257

    Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24. https://doi.org/10.1007/s00572-014-0585-4

    Article  Google Scholar 

  • Bach EM, Baer SG, Meyer CK, Six J (2010) Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem 42:2182–2191

    Article  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-Gangetic Plain of India. Geomicrobiol J 34(5):2017. https://doi.org/10.1080/01490451.2016.1219431

    Article  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-Gangetic Plain of India. Geomicrobiol J. https://doi.org/10.1080/01490451.2016.1219431

  • Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  Google Scholar 

  • Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150–158

    Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  Google Scholar 

  • Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genet Eng Biotechnol 15:169–178

    Article  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  Google Scholar 

  • Benizri E, Piutti S, Verger S, Pages L, Vercambre G, Poessel JL, Michelot P (2005) Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol Biochem 37:1738–1746

    Article  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manag 8:149–150

    Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, Jonge R, Burgman WP, Pieterse CM (2018) The disease-induced assemblage of a plant beneficial bacterial consortium. ISME J 12:1496

    Article  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci U S A 90:6091–6094

    Article  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International, Berlin, pp 473–502

    Chapter  Google Scholar 

  • Bhatia CR (2008) Role of microbial diversity for soil, health and plant nutrition. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 53–74

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promotig rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1250

    Article  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  Google Scholar 

  • Britzke D, Da Silva LS, Moterle DF, Rheinheimer DDS, Bortoluzzi EC (2012) A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. J Soil Sediment 12:185–197

    Article  Google Scholar 

  • Buscardo E, Geml J, Schmidt SK, Silva AL, Ramos RT, Barbosa SM, Andrade SS, Dalla Costa R, Souza AP, Freitas H, Cunha HB (2018) Of mammals and bacteria in a rainforest: temporal dynamics of soil bacteria in response to simulated N pulse from mammalian urine. Funct Ecol 32:773–784

    Article  Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P, Shirkot CK (2017) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol 48:294–304

    Article  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780

    Article  Google Scholar 

  • Chung JH, Song GC, Ryu CM (2016) Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687

    Article  Google Scholar 

  • Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:368. https://doi.org/10.3389/fmicb.2014.00368

    Article  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918

    Article  Google Scholar 

  • Cornejo P, Seguel A, Aguilera P, Meier S, Larsen J, Borie F (2017) Arbuscular mycorrhizal fungi improve tolerance of agricultural plants to cope abiotic stress conditions. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agroecological perspectives. Springer, Singapore, pp 55–80

    Google Scholar 

  • Dalton DA, Kramer S (2006) Nitrogen-fixing bacteria in non-legumes. Springer, Dordrecht, pp 105–113

    Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 1163(9):1–18

    Google Scholar 

  • Davinic M, Fultz LM, Acosta-Martinez V, Calderon FJ, Cox SB, Dowd SE, Allen VG, Zak JC, Moore-Kucera J (2012) Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol Biochem 46:63–72

    Article  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province, Vietnam. Am J Life Sci 1(3):88–92

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  Google Scholar 

  • Dolatabad HK, Javan-Nikkhah M, Shier WT (2017) Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 16:777–790

    Article  Google Scholar 

  • East R (2013) Soil science comes to life. Nature 501:S18

    Article  Google Scholar 

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma zone, Southwest Ethiopia. Int J Microbiol 2016:1–11

    Article  Google Scholar 

  • Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C (2014) Soil fungal resources in annual cropping systems and their potential for management. Biomed Res Int 2014:531824. https://doi.org/10.1155/2014/531824

    Article  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth-promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112

    Article  Google Scholar 

  • Etesami H (2020) Enhanced phosphorus fertilizer use efficiency with microorganisms. In: Meena RS (ed) Nutrient dynamics for sustainable crop production. https://doi.org/10.1007/978-981-13-8660-2_8

    Chapter  Google Scholar 

  • Fernández-Bidondo L, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872

    Article  Google Scholar 

  • Friberg S (2001) Distribution and diversity of arbuscular mycorrhizal fungi in traditiona agriculture on the Niger inland delta, Mali, West Africa. CBM’s Skriftserie 3:53–80

    Google Scholar 

  • Gao L, Kong F, Feng C, Wang J, Gao J, Shen G, Zhang C (2016) Isolation, characterization, and growth promotion of phosphatesolubilizing bacteria associated with Nicotiana tabacum (tobacco). Pol J Environ Stud 25:993–1003

    Article  Google Scholar 

  • Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol 8:1966. https://doi.org/10.3389/fmicb.2017.01966

    Article  Google Scholar 

  • Ghonaim MM, Mohamed HI, Omran AA (2020) Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68(1). https://doi.org/10.1007/s10722-020-00981-w

  • Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric Ecosyst Environ 258:59–70

    Article  Google Scholar 

  • Gizaw B, Tsegay Z, Tefera G, Aynalem E, Wassie M, et al. (2017) Phosphate Solubilizing Fungi Isolated and Characterized from Teff Rhizosphere Soil Collected from North Showa and Gojam, Ethiopia. J Fertil Pestic 8: 180. https://doi.org/10.4172/2471-2728.1000180

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  Google Scholar 

  • Gogoi N, Baruah KK, Meena RS (2018) Grain legumes: impact on soil health and agroecosystem. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_16

    Chapter  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth-promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  Google Scholar 

  • Hamdali H, Moursalou K, Tchangbedji G, Ouhdouch Y, Hafidi M (2012) Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr J Biotechnol 11:312–320

    Google Scholar 

  • Hassen AI, Bopape FL, Sanger LK (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 23–36

    Chapter  Google Scholar 

  • Hassink J (1994) Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils. Soil Biol Biochem 26:1573–1581

    Article  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil 226:275–285

    Article  Google Scholar 

  • Hindumathi A, Reddy BN (2012) Synergistic effect of arbuscular mycorrhizal fungi and Rhizobium on the growth and charcoal rot of soybean [Glycine max (L.) Merr.]. World J Sci Technol 2:63–70

    Google Scholar 

  • Hindumathi A, Reddy BN, Sabitha Rani A, Reddy AN (2016) Associative effect of arbuscular mycorrhizal fungi and Rhizobium on plant growth and biological control of charcoal rot in green gram [Vigna radiata L. (Wilczek)]. In: Bhima B, Anjana Devi T (eds) Microbial biotechnology: technological challenges and developmental trends. Apple Academic Press, Milton, pp 155–170

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilisation and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  Google Scholar 

  • Kanes OS, Weckert MW, Kadam TA, Bhosale HJ (2015) Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the neem rhizosphere. Ann Microbiol 65:85–93

    Article  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soil: diversity and screening of antifungal compound, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR et al (eds) Soil science: agricultural and environmental prospective. Springer International, Cham, pp 317–332

    Chapter  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochem 33:389–397

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:e0152478. https://doi.org/10.1371/journal.pone.0152478

    Article  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J Plant Growth Regul 36(3). https://doi.org/10.1007/s00344-016-9663-5

  • Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth-promoting rhizobacteria: mechanism and current perspective. J Fertil Pest 6:1–9

    Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil 374:523–537

    Article  Google Scholar 

  • Leifheit EF, Verbruggen E, Rillig MC (2015) Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem 81:323–328

    Article  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    Article  Google Scholar 

  • Majeed A, Muhammad Z, Islam S, Ullah Z, Ullah R (2017) Cyanobacterial application as biofertilizers in rice fields: role in growth promotion and crop productivity. PSM Microbiol 2:47–50

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    Article  Google Scholar 

  • McFarland J, Ruess R, Keilland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+. Ecosystems 13:177–193

    Article  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015b) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017a) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meliani A, Bensoltane A, Mederbel K (2012) Microbial diversity and abundance in soil: related to plant and soil type. Am J Plant Nutr Fertil Technol 2:10–18

    Article  Google Scholar 

  • Miyasaka SC, Habte M (2001) Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Commun Soil Sci Plant Anal 32:1101–1147

    Article  Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth-promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2):263–272

    Article  Google Scholar 

  • Mohamed HME, Shaieb FMA, El-Komy HMA (2017) Solubilization of inorganic phosphates by isolated Azospirillum lipoferum (H3) as free or alginate immobilized inoculation. ContROL 1:1–7

    Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresen Environ Bull 27(10):7054–7065

    Google Scholar 

  • Mohamed HI, Ashry NA, Ghonaim MM (2019) Physiological analysis for heat shock-induced biochemical (responsive) compounds and molecular characterizations of ESTs expressed for heat tolerance in some Egyptian maize hybrids. Gesunde Pflanzen 71:213–222

    Article  Google Scholar 

  • Muller A, Schader C, Scialabba NEH, Brüggemann J, Isensee A, Erb KH, Niggli U (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8:1290

    Article  Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Article  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorous availability: a review. Ann Bot 112:391–408

    Article  Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841. https://doi.org/10.1371/journal.pone.0090841

    Article  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth-promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Panhwar QA, Radziah O, Rahman AZ, Sariah M, Razi IM, Naher UA (2011) Contribution of phosphate-solubilizing bacteria in phosphorus bioavailability and growth enhancement of aerobic rice. Span J Agric Res 9:810–820

    Article  Google Scholar 

  • Pany S, Mishra S, Gupta N (2018) Evaluation of native rhizospheric and phosphate solubilizing microbes for growth and development of Pongamia pinnata under nursery condition. Adv Biores 9:92–101

    Google Scholar 

  • Parani K, Saha BK (2012) Prospects of using phosphate-solubilizing Pseudomonas as biofertilizer. EJBS 4:40–44

    Google Scholar 

  • Patel S, Panchal B, Karmakar N, Rajkumar JS (2015) Solubilization of rock phosphate by two Rhizopus species isolated from coastal areas of south Gujar at and its effect on chickpea. Ecol Environ Conserv 21:229–237

    Google Scholar 

  • Paul D, Sinha SN (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci 15:130–136

    Article  Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    Article  Google Scholar 

  • Pichardo ST, Su Y, Han FX (2012) The potential effects of arbuscular mycorrhizae (AM) on the uptake of heavy metals by plants from contaminated soils. J Bioremed Biodegr 3:e124. https://doi.org/10.4172/2155-6199.1000e124

    Article  Google Scholar 

  • Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22:770–778

    Article  Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIB Tech J Microbiol 1:8–14

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoschus esculentus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7:3940

    Article  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:2504

    Article  Google Scholar 

  • Rao DLN (2014) Recent advances in biological nitrogen fixation in agricultural systems. Proc Ind Natl Sci Acad 80(2):359–378

    Article  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. https://doi.org/10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  Google Scholar 

  • Rfaki A, Nassiri L, Ibijbijen J (2015) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of faba bean (Vicia faba L.) in Meknes region, Morocco. Br Microbiol Res J 6:247–254

    Article  Google Scholar 

  • Ribeiro CM, Cardoso EJBN (2012) Isolation, selection and characterization of root-associated growth-promoting bacteria in Brazil pine (Araucaria angustifolia). Microbiol Res 167:69–78

    Article  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566

    Article  Google Scholar 

  • Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP (2016) A perspective on inter-kingdom signaling in plant-beneficial microbe interactions. Plant Mol Biol 90:537–548

    Article  Google Scholar 

  • Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23:2897

    Article  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Gupta VK, Bharali R, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21:118–124

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth-promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions-review. Folia Microbiol 56(1):1–9

    Article  Google Scholar 

  • Schmidt R, Cordovez V, De Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:2329. https://doi.org/10.1038/ismej.2015.42

    Article  Google Scholar 

  • Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10:3983–3996

    Article  Google Scholar 

  • Shaharokhi S, Bonjar S, Saadoun GHI (2005) Biological control of potato isolates of Rhizoctonia solani by Streptomyces olivaceus strain 115. Australas Biotechnol 4:132–138

    Google Scholar 

  • Shameer S, Prasad T (2018) Plant growth-promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul:1–13

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol App Sci 3(9):622–629

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth-promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  Google Scholar 

  • Shukla RM, Vyas RV (2014) Phosphate solubilizing efficiency of mycopesticides. IJAEB 7:705–710

    Article  Google Scholar 

  • Shukla M, Patel RH, Verma R, Deewan P, Dotaniya ML (2013) Effect of bio-organics and chemical fertilizers on growth and yield of chickpea (Cicer arietinum L.) under middle Gujarat conditions. Vegetos 26(1):183–187

    Article  Google Scholar 

  • Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant 38:110. https://doi.org/10.1007/s11738-016-2123-9

    Article  Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160:1267–1276

    Article  Google Scholar 

  • Singh JS, Singh DP (2012) Reforestation: a potential approach to mitigate the excess CH4 build- up. Ecol Manage Restor 13(3):245–248

    Article  Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP, Singh RP (2010) Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agric Ecosyst Environ 139:74–79

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS (2015) Plant-microbe interactions: a viable tool for agricultural sustainability. Appl Soil Ecol 92:45–46

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  Google Scholar 

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685

    Article  Google Scholar 

  • Sridevi M, Mallaiah KV (2009) Phosphate solubilizatin by Rhizobium sXG/dv’vstrains. Indian J Microbiol 49:98–102

    Article  Google Scholar 

  • Stokstad E (2016) The nitrogen fix. Science 353:1225–1227

    Article  Google Scholar 

  • Styriakova I, Styriak I, Hradil D, Bezdicka P (2003) The release of iron-bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceram Silic 47(1):20–26

    Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  Google Scholar 

  • Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front. Microbiol 6:740. https://doi.org/10.3389/fmicb.2015.00740

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth-promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P (2017a) Microbial dynamics as influenced by bio-organics and mineral fertilizer in alluvium soil of Varanasi. India Int J Curr Microbiol App Sci 6(2):1516–1524

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017b) Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic Plain through the application of bio-organics and mineral fertilizer. Int J Curr Microbiol App Sci 6(3):301–309

    Google Scholar 

  • Vitorino LC, Silva FG, Soares MA, Souchie EL, Costa AC (2012) Solubilization of calcium and iron phosphate and in vitro production of indoleacetic acid by endophytic isolates of Hyptis marrubioides Epling (Lamiaceae). Int Res J Biotechnol 3:47–54

    Google Scholar 

  • Wahid F, Sharif M, Steinkellner S, Khan MA, Marwat K, Khan S (2016) Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak J Bot 48:739–747

    Google Scholar 

  • Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M (2015) Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot 66:4061–4073

    Article  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geophys J Roy Astron Soc 19:343–367

    Google Scholar 

  • Wu QS, Zou YN (2017) Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In: Wu Q-S (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 25–41

    Chapter  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xueming Z, Zhenping H, Yu Z, Huanshi Z, Pei Q (2014) Arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing fungus (PSF) on tolerance of beach plum (Prunus maritima) under salt stress. Aust J Crop Sci 8:945–950

    Google Scholar 

  • Yadav V, KumarM DDK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to host plant. J Biol Chem 285:26532–26544

    Article  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. https://doi.org/10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Ye S, Yanga Y, Xin G, Wang Y, Ruan L, Ye G (2015) Studies of the Italian ryegrass–rice rotation system in southern China: arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium multiflorum L. rhizosphere. Appl Soil Ecol 90:26–34

    Article  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agro Soil Sci 77:7569

    Google Scholar 

  • Zorb C, Senbayram M, Peiter E (2014) Potassium in agriculture–status and perspectives. J Plant Physiol 171:656–669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, H.I. et al. (2021). Role of Microorganisms in Managing Soil Fertility and Plant Nutrition in Sustainable Agriculture. In: Mohamed, H.I., El-Beltagi, H.ED.S., Abd-Elsalam, K.A. (eds) Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, Cham. https://doi.org/10.1007/978-3-030-66587-6_4

Download citation

Publish with us

Policies and ethics