Skip to main content

Acid-Base and Electrolyte Disorders in Neurocritical Care

  • Chapter
  • First Online:
Neurocritical Care for Neurosurgeons

Abstract

Electrolyte and acid-base disorders are very common in daily clinical practice. Although these abnormalities can be ascertained from routine laboratory findings, only specific clinical correlates may attest their significance. Acute electrolyte and acid-base disturbances may affect the peripheral nervous system causing areflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system causing epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness/paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolysis when rapidly correcting hyponatremia and cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhoney DH, Parker D. Considerations in fluids and electrolytes after traumatic brain injury. Nutr Clin Pract. 2006;21(5):462–78. https://doi.org/10.1177/0115426506021005462.

    Article  PubMed  Google Scholar 

  2. Stelfox HT, Ahmed SB, Khandwala F, Zygun D, Shahpori R, Laupland K. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care. 2008;12(6) https://doi.org/10.1186/cc7162.

  3. Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2012;43(6):1711–37. https://doi.org/10.1161/STR.0b013e3182587839.

    Article  PubMed  Google Scholar 

  4. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  PubMed  Google Scholar 

  5. Clifton GL, Miller ER, Choi SC, Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30(4):739–45. https://doi.org/10.1097/00003246-200204000-00003.

    Article  PubMed  Google Scholar 

  6. Morse ML, Milstein JM, Haas JE, Taylor E. Effect of hydration on experimentally induced cerebral edema. Crit Care Med. 1985;13(7):563–5. https://doi.org/10.1097/00003246-198507000-00011.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Neal J, Lin L, et al. Mannitol in critical care and surgery over 50+ years: a systematic review of randomized controlled trials and complications with meta-analysis. J Neurosurg Anesthesiol. 2019;31(3):273–84. https://doi.org/10.1097/ANA.0000000000000520.

    Article  PubMed  Google Scholar 

  8. Farrokh S, Cho SM, Suarez JI. Fluids and hyperosmolar agents in neurocritical care: an update. Curr Opin Crit Care. 2019;25(2):105–9. https://doi.org/10.1097/MCC.0000000000000585.

    Article  PubMed  Google Scholar 

  9. Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care. 2012;16(5) https://doi.org/10.1186/cc11812.

  10. Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–39. https://doi.org/10.1056/NEJMoa1711584.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chesnut RM, Chesnut RM, Marshall LF, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216. https://doi.org/10.1097/00005373-199302000-00006.

    Article  CAS  PubMed  Google Scholar 

  12. Ogden AT, Mayer SA, Connolly ES. Hyperosmolar agents in neurosurgical practice: the evolving role of hypertonic saline. Neurosurgery. 2005;57(2):207–15. https://doi.org/10.1227/01.NEU.0000166533.79031.D8.

    Article  PubMed  Google Scholar 

  13. Knapp JM. Hyperosmolar therapy in the treatment of severe head injury in children: mannitol and hypertonic saline. AACN Clin Issues. 2005;16(2):199–211. https://doi.org/10.1097/00044067-200504000-00011.

    Article  PubMed  Google Scholar 

  14. Myburgh J, Cooper DJ, Finfer S, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84. https://doi.org/10.1056/NEJMoa067514.

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2019;42(2):499–509. https://doi.org/10.1007/s10143-018-0991-8.

    Article  PubMed  Google Scholar 

  16. Jost SC, Diringer MN, Zazulia AR, et al. Effect of normal saline bolus on cerebral blood flow in regions with low baseline flow in patients with vasospasm following subarachnoid hemorrhage. J Neurosurg. 2005;103(1):25–30. https://doi.org/10.3171/jns.2005.103.1.0025.

    Article  PubMed  Google Scholar 

  17. Woo CH, Rao VA, Sheridan W, Flint AC. Performance characteristics of a sliding-scale hypertonic saline infusion protocol for the treatment of acute neurologic hyponatremia. Neurocrit Care. 2009;11(2):228–34. https://doi.org/10.1007/s12028-009-9238-4.

    Article  CAS  PubMed  Google Scholar 

  18. Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21(2):163–72. https://doi.org/10.1016/j.jcrc.2005.10.002.

    Article  PubMed  Google Scholar 

  19. Adrogué HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–9. https://doi.org/10.1056/NEJM200005183422006.

    Article  PubMed  Google Scholar 

  20. Adrogué HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9. https://doi.org/10.1056/NEJM200005253422107.

    Article  PubMed  Google Scholar 

  21. Spatenkova V, Bradac O, Skrabalek P. The impact of a standardized sodium protocol on incidence and outcome of dysnatremias in neurocritical care. J Neurol Surg A Cent Eur Neurosurg. 2014;76(4):279–90. https://doi.org/10.1055/s-0034-1393927.

    Article  PubMed  Google Scholar 

  22. Waite MD, Fuhrman SA, Badawi O, Zuckerman IH, Franey CS. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28(4):405–12. https://doi.org/10.1016/j.jcrc.2012.11.013.

    Article  PubMed  Google Scholar 

  23. Arieff AI, Llach F, Massry SG, Kerian A. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore). 1976;55(2):121–9. https://doi.org/10.1097/00005792-197603000-00002.

    Article  CAS  Google Scholar 

  24. Albanese A, Hindmarsh P, Stanhope R. Management of hyponatraemia in patients with acute cerebral insults. Arch Dis Child. 2001;85(3):246–51. https://doi.org/10.1136/adc.85.3.246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery. 2009;65(5):925–35. https://doi.org/10.1227/01.NEU.0000358954.62182.B3.

    Article  PubMed  Google Scholar 

  26. Dong KK, Kwon WJ. Hyponatremia in patients with neurologic disorders. Electrolyte Blood Press. 2009;7(2):51–7. https://doi.org/10.5049/EBP.2009.7.2.51.

    Article  CAS  Google Scholar 

  27. Harrigan MR. Cerebral salt wasting syndrome: a review. Neurosurgery. 1996;38(1):152–60. https://doi.org/10.1097/00006123-199601000-00035.

    Article  CAS  PubMed  Google Scholar 

  28. Spatenkova V, Bradac O, Skrabalek P. Outcome and frequency of sodium disturbances in neurocritically ill patients. Acta Neurol Belg. 2013;113(2):139–45. https://doi.org/10.1007/s13760-012-0137-7.

    Article  PubMed  Google Scholar 

  29. Mrozek S, Rousset D, Geeraerts T. Pharmacotherapy of sodium disorders in neurocritical care. Curr Opin Crit Care. 2019;25(2):132–7. https://doi.org/10.1097/MCC.0000000000000589.

    Article  PubMed  Google Scholar 

  30. Chang CH, Liao JJ, Chuang CH, Te Lee C. Recurrent hyponatremia after traumatic brain injury. Am J Med Sci. 2008;335(5):390–3. https://doi.org/10.1097/MAJ.0b013e318149e6f1.

    Article  PubMed  Google Scholar 

  31. Odeh M, Oliven A. Coma and seizures due to severe hyponatremia and water intoxication in an adult with intranasal desmopressin therapy for nocturnal enuresis. J Clin Pharmacol. 2001;41(5):582–4. https://doi.org/10.1177/00912700122010320.

    Article  CAS  PubMed  Google Scholar 

  32. Cole CD, Gottfried ON, Liu JK, Couldwell WT. Hyponatremia in the neurosurgical patient: diagnosis and management. Neurosurg Focus. 2004;16(4) https://doi.org/10.3171/foc.2004.16.4.10.

  33. Buckley MS, Leblanc JM, Cawley MJ. Electrolyte disturbances associated with commonly prescribed medications in the intensive care unit. Crit Care Med. 2010;38(6 Suppl) https://doi.org/10.1097/CCM.0b013e3181dda0be.

  34. Tudor RM, Thompson CJ. Posterior pituitary dysfunction following traumatic brain injury: review. Pituitary. 2019;22(3):296–304. https://doi.org/10.1007/s11102-018-0917-z.

    Article  CAS  PubMed  Google Scholar 

  35. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3) https://doi.org/10.1186/cc6916.

  36. Tan SKR, Kolmodin L, Sekhon MS, et al. Effet d’une perfusion saline hypertonique continue et de l’hypernatrémie sur la mortalité de patients souffrant d’un traumatisme cérébral grave: une étude de cohorte rétrospective. Can J Anesth. 2016;63(6):664–73. https://doi.org/10.1007/s12630-016-0633-y.

    Article  PubMed  Google Scholar 

  37. McMahon GM, Mendu ML, Gibbons FK, Christopher KB. Association between hyperkalemia at critical care initiation and mortality. Intensive Care Med. 2012;38(11):1834–42. https://doi.org/10.1007/s00134-012-2636-7.

    Article  CAS  PubMed  Google Scholar 

  38. Gennari FJ. Disorders of potassium homeostasis: hypokalemia and hyperkalemia. Crit Care Clin. 2002;18(2):273–88. https://doi.org/10.1016/S0749-0704(01)00009-4.

    Article  CAS  PubMed  Google Scholar 

  39. Fluid and electrolyte disorders in neurosurgical intensive care. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/?term=Andrews+BT.+Fluid+and+electrolyte+disorders+in+neurosurgical+intensive+care.+Neurosurg+Clin+N+Am.+1994%3B5%3A707–723. Accessed 9 May 2020.

  40. Polderman KH, Van Zanten ARH, Girbes ARJ. The importance of magnesium in critically ill patients: a role in mitigating neurological injury and in the prevention of vasospasms [6]. Intensive Care Med. 2003;29(7):1202–3. https://doi.org/10.1007/s00134-003-1787-y.

    Article  PubMed  Google Scholar 

  41. Huang K, Hu Y, Wu Y, et al. Hyperchloremia is associated with poorer outcome in critically ill stroke patients. Front Neurol. 2018;9(Jul) https://doi.org/10.3389/fneur.2018.00485.

  42. Clausen T, Khaldi A, Zauner A, et al. Cerebral acid-base homeostasis after severe traumatic brain injury. J Neurosurg. 2005;103(4):597–607. https://doi.org/10.3171/jns.2005.103.4.0597.

    Article  PubMed  Google Scholar 

  43. Adrogué HJ, Madias NE. Secondary responses to altered acid-base status: the rules of engagement. J Am Soc Nephrol. 2010;21(6):920–3. https://doi.org/10.1681/ASN.2009121211.

    Article  CAS  PubMed  Google Scholar 

  44. Davis DP. Early ventilation in traumatic brain injury. Resuscitation. 2008;76(3):333–40. https://doi.org/10.1016/j.resuscitation.2007.08.004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamashita, R.H.G., Yamaki, V.N., Rabelo, N.N., Welling, L.C., Figueiredo, E.G. (2021). Acid-Base and Electrolyte Disorders in Neurocritical Care. In: Figueiredo, E.G., Welling, L.C., Rabelo, N.N. (eds) Neurocritical Care for Neurosurgeons. Springer, Cham. https://doi.org/10.1007/978-3-030-66572-2_21

Download citation

Publish with us

Policies and ethics