Skip to main content

Mitochondria: The Retina’s Achilles’ Heel in AMD

  • Chapter
  • First Online:
Book cover Age-related Macular Degeneration

Abstract

Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related macular degeneration (AMD) involves mitochondrial dysfunction and consequent altered retinal metabolism. This chapter provides a brief overview of mitochondrial structure and function, summarizes evidence for mitochondrial defects in AMD, and highlights the potential ramifications of these defects on retinal health and function. Discussion of mitochondrial haplogroups and their association with AMD brings to light how mitochondrial genetics can influence disease outcome. As one of the most metabolically active tissues in the human body, there is strong evidence that disruption in key metabolic pathways contributes to AMD pathology. The section on retinal metabolism reviews cell-specific metabolic differences and how the metabolic interdependence of each retinal cell type creates a unique ecosystem that is disrupted in the diseased retina. The final discussion includes strategies for therapeutic interventions that target key mitochondrial pathways as a treatment for AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger G, Gray MW, Lang BF (2003 Dec 1) Mitochondrial genomes: anything goes. Trends Genet 19(12):709–716

    Article  CAS  PubMed  Google Scholar 

  2. Gray MW, Burger G, Lang BF (1999 Mar 5) Mitochondrial evolution. Science 283(5407):1476–1481

    Article  CAS  PubMed  Google Scholar 

  3. Wallace DC (2005 Dec 15) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toft-Kehler AK, Skytt DM, Svare A, Lefevere E, Van Hove I, Moons L, Waagepetersen HS, Kolko M (2017 Sep 30) Mitochondrial function in Müller cells-does it matter? Mitochondrion 36:43–51

    Article  CAS  PubMed  Google Scholar 

  5. Carelli V, La Morgia C, Ross-Cisneros FN, Sadun AA (2017 Jul 26) Optic neuropathies: the tip of the neurodegeneration iceberg. Hum Mol Genet 26(R2):R139–R150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Gabrieli CB (2006 Jul 1) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27(7):983–993

    Article  CAS  PubMed  Google Scholar 

  7. Viiri J, Amadio M, Marchesi N, Hyttinen JM, Kivinen N, Sironen R, Rilla K, Akhtar S, Provenzani A, D'Agostino VG, Govoni S (2013 Jul 29) Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One 8(7):e69563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Golestaneh N, Chu Y, Xiao YY, Stoleru GL, Theos AC (2017 Jan) Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis 8(1):e2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yates Iii JR, Gilchrist A, Howell KE, Bergeron JJ (2005 Sep) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6(9):702

    Article  CAS  Google Scholar 

  10. Schlame M, Ren M (2009 Oct 31) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta (BBA) Biomembr 1788(10):2080–2083

    Article  CAS  Google Scholar 

  11. Nordgaard CL, Karunadharma PP, Feng X, Olsen TW, Ferrington DA (2008 Jul 1) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49(7):2848–2855

    Article  PubMed  Google Scholar 

  12. Schrier SA, Falk MJ (2011 Sep) Mitochondrial disorders and the eye. Curr Opin Ophthalmol 22(5):325

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA (2006 Mar 1) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47(3):815–822

    Article  PubMed  Google Scholar 

  14. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013 Mar 15) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339(6125):1328–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrington DA, Ebeling MC, Kapphahn RJ et al (2017) Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration. Redox Biol 13:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivannikov MV, Macleod GT (2013 Jun 4) Mitochondrial free Ca2+ levels and their effects on energy metabolism in Drosophila motor nerve terminals. Biophys J 104(11):2353–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG (2002 Nov 12) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci 99(23):14682–14687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG (2003 Aug 15) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278(43):42027

    Article  CAS  PubMed  Google Scholar 

  19. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008 Feb) Oxidative damage–induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2007 Aug 1) Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest Ophthalmol Vis Sci 48(8):3469–3479

    Article  PubMed  Google Scholar 

  21. Cagin U, Duncan OF, Gatt AP, Dionne MS, Sweeney ST, Bateman JM (2015 Nov 3) Mitochondrial retrograde signaling regulates neuronal function. Proc Natl Acad Sci 112(44):E6000–E6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hunt RJ, Bateman JM (2018 Mar) Mitochondrial retrograde signaling in the nervous system. FEBS Lett 592(5):663–678

    Article  CAS  PubMed  Google Scholar 

  23. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Cáceres-del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD (2014a Feb 28) Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions. Hum Mol Genet 23(13):3537–3551

    Article  PubMed  CAS  Google Scholar 

  24. Nashine S, Cohen P, Chwa M, Lu S, Nesburn AB, Kuppermann BD, Kenney MC (2017 Jul) Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. Cell Death Dis 8(7):e2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicholls TJ, Minczuk M (2014 Aug 1) In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 56:175–181

    Article  CAS  PubMed  Google Scholar 

  26. McFarland R, Turnbull DM (2009 Feb) Batteries not included: diagnosis and management of mitochondrial disease. J Intern Med 265(2):210–228

    Article  CAS  PubMed  Google Scholar 

  27. Wallace DC (1992 Jul) Diseases of the mitochondrial DNA. Annu Rev Biochem 61(1):1175–1212

    Article  CAS  PubMed  Google Scholar 

  28. Wallace DC (1994 Jun 1) Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomembr 26(3):241–250

    Article  CAS  PubMed  Google Scholar 

  29. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM (2006 Sep 1) Mitochondrial DNA–deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79(3):469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chinnery PF, Zwijnenburg PJ, Walker M, Howell N, Taylor RW, Lightowlers RN, Bindoff L, Turnbull DM (1999 Aug 27) Nonrandom tissue distribution of mutant mtDNA. Am J Med Genet 85(5):498–501

    Article  CAS  PubMed  Google Scholar 

  31. Durham SE, Samuels DC, Cree LM, Chinnery PF (2007 Jul 1) Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A→G. Am J Hum Genet 81(1):189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, MacGregor GR, Wallace DC (2008 Feb 15) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319(5865):958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shoubridge EA, Karpati G, Hastings KE (1990 Jul 13) Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell 62(1):43–49

    Article  CAS  PubMed  Google Scholar 

  34. Chinnery PF (2010) Mitochondrial disorders overview. In: RA BTP, Dolan CR (eds) GeneReviews (Internet). National Library of Medicine, National Institutes of Health, Seattle, WA

    Google Scholar 

  35. Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011 Mar 1) Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30(2):81–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Canter JA, Olson LM, Spencer K, Schnetz-Boutaud N, Anderson B, Hauser MA, Schmidt S, Postel EA, Agarwal A, Pericak-Vance MA, Sternberg P Jr (2008 May 7) Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS One 3(5):e2091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jones MM, Manwaring N, Wang JJ, Rochtchina E, Mitchell P, Sue CM (2007 Sep 1) Mitochondrial DNA haplogroups and age-related maculopathy. Arch Ophthalmol 125(9):1235–1240

    Article  PubMed  Google Scholar 

  38. Kenney MC, Hertzog D, Chak G, Atilano SR, Khatibi N, Soe K, Nobe A, Yang E, Chwa M, Zhu F, Memarzadeh M (2013 Dec) Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: a case control study. BMC Med Genet 14(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mueller EE, Schaier E, Brunner SM, Eder W, Mayr JA, Egger SF, Nischler C, Oberkofler H, Reitsamer HA, Patsch W, Sperl W (2012a Feb 13) Mitochondrial haplogroups and control region polymorphisms in age-related macular degeneration: a case-control study. PLoS One 7(2):e30874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. SanGiovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE, Reed GF, Henning AK, Sivakumaran TA, Xu X, DeWan A, Agrón E (2009 May 12) Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration. PLoS One 4(5):e5508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Udar N, Atilano SR, Memarzadeh M, Boyer DS, Chwa M, Lu S, Maguen B, Langberg J, Coskun P, Wallace DC, Nesburn AB (2009 Jun 1) Mitochondrial DNA haplogroups associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50(6):2966–2974

    Article  PubMed  Google Scholar 

  42. Bellizzi D, Taverna D, D’Aquila P, De Blasi S, De Benedictis G (2009 May 1) Mitochondrial DNA variability modulates mRNA and intra-mitochondrial protein levels of HSP60 and HSP75: experimental evidence from cybrid lines. Cell Stress Chaperones 14(3):265–271

    Article  CAS  PubMed  Google Scholar 

  43. Chen A, Raule N, Chomyn A, Attardi G (2012 Oct 29) Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS One 7(10):e46473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, del Carpio JC, Nesburn AB, Boyer DS, Kuppermann BD (2014b Feb 1) Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim Biophys Acta (BBA) Mol Basis Dis 1842(2):208–219

    Google Scholar 

  45. Pacheu-Grau D, Gómez-Durán A, Iglesias E, Lopez-Gallardo E, Montoya J, Ruiz-Pesini E (2012 Dec 7) Mitochondrial antibiograms in personalized medicine. Hum Mol Genet 22(6):1132–1139

    Article  PubMed  CAS  Google Scholar 

  46. Lin TK, Lin HY, Chen SD, Chuang YC, Chuang JH, Wang PW, Huang ST, Tiao MM, Chen JB, Liou CW (2012 Dec) The creation of cybrids harboring mitochondrial haplogroups in the Taiwanese population of ethnic Chinese background: an extensive in vitro tool for the study of mitochondrial genomic variations. Oxidative Med Cell Longev 6. https://doi.org/10.1155/2012/824275

  47. Malik D, Hsu T, Falatoonzadeh P, Cáceres-del-Carpio J, Tarek M, Chwa M, Atilano SR, Ramirez C, Nesburn AB, Boyer DS, Kuppermann BD (2014 Jun 11) Human retinal transmitochondrial cybrids with J or H mtDNA haplogroups respond differently to ultraviolet radiation: implications for retinal diseases. PLoS One 9(6):e99003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mueller EE, Brunner SM, Mayr JA, Stanger O, Sperl W, Kofler B (2012b Dec 26) Functional differences between mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells. PLoS One 7(12):e52367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI (2003 Jan 7) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci 100(1):171–176

    Article  CAS  PubMed  Google Scholar 

  50. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004 Jan 9) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303(5655):223–226

    Article  CAS  PubMed  Google Scholar 

  51. Ballinger SW Beyond retrograde and anterograde signalling: mitochondrial–nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem Soc Trans. https://doi.org/10.1042/BST20120227

  52. Abu-Amero KK, Cabrera VM, Larruga JM, Osman EA, González AM, Al-Obeidan SA (2011a) Eurasian and sub-Saharan African mitochondrial DNA haplogroup influences pseudoexfoliation glaucoma development in Saudi patients. Mol Vis 17:543

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Abu-Amero KK, González AM, Osman EA, Larruga JM, Cabrera VM, Al-Obeidan SA (2011b) Mitochondrial DNA lineages of African origin confer susceptibility to primary open-angle glaucoma in Saudi patients. Mol Vis 17:1468

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Achilli A, Olivieri A, Pala M, Kashani BH, Carossa V, Perego UA, Gandini F, Santoro A, Battaglia V, Grugni V, Lancioni H (2011 Jun 9) Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS One 6(6):e21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Estopinal CB, Chocron IM, Parks MB, Wade EA, Roberson RM, Burgess LG, Brantley MA, Samuels DC (2014 Sep 1) Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 55(9):5589–5595

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kofler B, Mueller EE, Eder W, Stanger O, Maier R, Weger M, Haas A, Winker R, Schmut O, Paulweber B, Iglseder B (2009 Dec) Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study. BMC Med Genet 10(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wolf C, Gramer E, Müller-Myhsok B, Pasutto F, Wissinger B, Weisschuh N (2010 Dec) Mitochondrial haplogroup U is associated with a reduced risk to develop exfoliation glaucoma in the German population. BMC Genet 11(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bravo-Nuevo A, Williams N, Geller S, Stone J (2003) Mitochondrial deletions in normal and degenerating rat retina. Adv Exp Med Biol 533:241–248

    Article  CAS  PubMed  Google Scholar 

  59. Wang AL, Lukas TJ, Yuan M, Neufeld AH (2010 Nov 1) Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol Aging 31(11):2002–2010

    Article  CAS  PubMed  Google Scholar 

  60. Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA (2010 Nov 1) Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 51(11):5470–5479

    Article  PubMed  PubMed Central  Google Scholar 

  61. Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, Oehmichen M (2008 Jul 1) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 43(7):645–652

    Article  CAS  PubMed  Google Scholar 

  62. Kenney MC, Atilano SR, Boyer D, Chwa M, Chak G, Chinichian S, Coskun P, Wallace DC, Nesburn AB, Udar NS (2010 Aug 1) Characterization of retinal and blood mitochondrial DNA from age-related macular degeneration patients. Invest Ophthalmol Vis Sci 51(8):4289–4297

    Article  PubMed  Google Scholar 

  63. Liang FQ, Godley BF (2003 Apr 1) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403

    Article  CAS  PubMed  Google Scholar 

  64. Nag TC, Wadhwa S, Chaudhury S (2006 Dec 11) The occurrence of cone inclusions in the ageing human retina and their possible effect upon vision: an electron microscope study. Brain Res Bull 71(1-3):224–232

    Article  PubMed  Google Scholar 

  65. Terluk MR, Kapphahn RJ, Soukup LM, Gong H, Gallardo C, Montezuma SR, Ferrington DA (2015 May 6) Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci 35(18):7304–7311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin H, Xu H, Liang FQ, Liang H, Gupta P, Havey AN, Boulton ME, Godley BF (2011 May 1) Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 52(6):3521–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nashine S, Chwa M, Kazemian M, Thaker K, Lu S, Nesburn A, Kuppermann BD, Kenney MC (2016 Aug 3) Differential expression of complement markers in normal and AMD transmitochondrial cybrids. PLoS One 11(8):e0159828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Cobb LJ, Lee C, Xiao J, Yen K, Wong RG, Nakamura HK, Mehta HH, Gao Q, Ashur C, Huffman DM, Wan J (2016 Apr) Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY) 8(4):796

    Article  CAS  Google Scholar 

  69. Fisher CR, Ferrington DA (2018 Mar 20) Perspective on AMD pathobiology: a bioenergetic crisis in the RPE. Invest Ophthalmol Vis Sci 59(4):AMD41–AMD47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krebs HA (1927) On the metabolism of the retina. Biochem Z 189:57–59

    CAS  Google Scholar 

  71. Warburg O (1924) Über den Stoffwechsel der Carzinomzelle. Naturwissenschaften 12:1131. https://doi.org/10.1007/BF01504608

    Article  CAS  Google Scholar 

  72. Chinchore Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL (2017 Jun 9) Glycolytic reliance promotes anabolism in photoreceptors. Elife 6:e25946

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cohen LH, Noell WK (1960 May) Glucose catabolism of rabbit retina before and after development of visual function. J Neurochem 5(3):253–276

    Article  CAS  PubMed  Google Scholar 

  74. Du J, Rountree A, Cleghorn WM, Contreras L, Lindsay KJ, Sadilek M, Gu H, Djukovic D, Raftery D, Satrústegui J, Kanow M (2016a Feb 26) Phototransduction influences metabolic flux and nucleotide metabolism in mouse retina. J Biol Chem 291(9):4698–4710

    Article  CAS  PubMed  Google Scholar 

  75. Narayan DS, Chidlow G, Wood JP, Casson RJ (2017 Sep) Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin Exp Ophthalmol 45(7):730–741

    Article  PubMed  Google Scholar 

  76. Wang L, Törnquist P, Bill A (1997 Apr) Glucose metabolism in pig outer retina in light and darkness. Acta Physiol Scand 160(1):75–81

    Article  CAS  PubMed  Google Scholar 

  77. Winkler BS (1981 Jun 1) Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 77(6):667–692

    Article  CAS  PubMed  Google Scholar 

  78. Schuster S, Boley D, Möller P, Stark H, Kaleta C (2015 Dec 1) Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production. Biochem Soc Trans 43(6):1187–1194

    Article  CAS  PubMed  Google Scholar 

  79. Lowry OH, Roberts NR, Schulz DW, Clow JE, Clark JR (1961 Oct 1) Quantitative histochemistry of retina II. Enzymes of glucose metabolism. J Biol Chem 236(10):2813–2820

    Article  CAS  PubMed  Google Scholar 

  80. Petit L, Ma S, Cipi J, Cheng SY, Zieger M, Hay N, Punzo C (2018 May 29) Aerobic glycolysis is essential for normal rod function and controls secondary cone death in retinitis pigmentosa. Cell Rep 23(9):2629–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rajala A, Gupta VK, Anderson RE, Rajala RV (2013 Nov 30) Light activation of the insulin receptor regulates mitochondrial hexokinase. A possible mechanism of retinal neuroprotection. Mitochondrion 13(6):566–576

    Article  CAS  PubMed  Google Scholar 

  82. Casson RJ, Wood JP, Han G, Kittipassorn T, Peet DJ, Chidlow G (2016 Jan 1) M-type pyruvate kinase isoforms and lactate dehydrogenase A in the mammalian retina: metabolic implications. Invest Ophthalmol Vis Sci 57(1):66–80

    Article  CAS  PubMed  Google Scholar 

  83. Lindsay KJ, Du J, Sloat SR, Contreras L, Linton JD, Turner SJ, Sadilek M, Satrústegui J, Hurley JB (2014 Oct 28) Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc Natl Acad Sci 111(43):15579–15584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rajala RV, Rajala A, Kooker C, Wang Y, Anderson RE (2016 Nov 24) The Warburg effect mediator pyruvate kinase M2 expression and regulation in the retina. Sci Rep 6:37727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rueda EM, Johnson JE Jr, Giddabasappa A, Swaroop A, Brooks MJ, Sigel I, Chaney SY, Fox DA (2016) The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases. Mol Vis 22:847

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kanow MA, Giarmarco MM, Jankowski CS, Tsantilas K, Engel AL, Du J, Linton JD, Farnsworth CC, Sloat SR, Rountree A, Sweet IR (2017 Sep 13) Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. Elife 6:e28899

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang W, Lee SJ, Scott PA, Lu X, Emery D, Liu Y, Ezashi T, Roberts MR, Ross JW, Kaplan HJ, Dean DC (2016 Apr 12) Two-step reactivation of dormant cones in retinitis pigmentosa. Cell Rep 15(2):372–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Du J, Cleghorn W, Contreras L, Linton JD, Chan GC, Chertov AO, Saheki T, Govindaraju V, Sadilek M, Satrústegui J, Hurley JB (2013 Oct) Cytosolic reducing power preserves glutamate in retina. Proc Natl Acad Sci 9:201311193

    Google Scholar 

  89. Adijanto J, Du J, Moffat C, Seifert EL, Hurley JB, Philp NJ (2014 Jul 25) The retinal pigment epithelium utilizes fatty acids for ketogenesis implications for metabolic coupling with the outer retina. J Biol Chem 289(30):20570–20582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reyes-Reveles J, Dhingra A, Alexander D, Bragin A, Philp NJ, Boesze-Battaglia K (2017 Mar 16) Phagocytosis dependent ketogenesis in retinal pigment epithelium. J Biol Chem 292:8038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wangsa-Wirawan ND, Linsenmeier RA (2003 Apr 1) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557

    Article  PubMed  Google Scholar 

  92. Yu DY, Cringle SJ (2001 Mar 1) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208

    Article  CAS  PubMed  Google Scholar 

  93. Hoang QV, Linsenmeier RA, Chung CK, Curcio CA (2002 Jul) Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci 19(4):395–407

    Article  CAS  PubMed  Google Scholar 

  94. Stone J, van Driel D, Valter K, Rees S, Provis J (2008 Jan 16) The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature. Brain Res 1189:58–69

    Article  CAS  PubMed  Google Scholar 

  95. De Schaepdrijver L, Simoens P, Lauwers H, De Geest JP (1989 Jul 1) Retinal vascular patterns in domestic animals. Res Vet Sci 47(1):34–42

    Article  PubMed  Google Scholar 

  96. Linton JD, Holzhausen LC, Babai N, Song H, Miyagishima KJ, Stearns GW, Lindsay K, Wei J, Chertov AO, Peters TA, Caffe R (2010 May 11) Flow of energy in the outer retina in darkness and in light. Proc Natl Acad Sci 107(19):8599–8604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giarmarco MM, Cleghorn WM, Sloat SR, Hurley JB, Brockerhoff SE (2017 Jan) Mitochondria maintain distinct Ca2+ pools in cone photoreceptors. J Neurosci 23:2689–2616

    Google Scholar 

  98. Denton RM, McCormack JG (1990 Mar) Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol 52(1):451–466

    Article  CAS  PubMed  Google Scholar 

  99. Kooragayala K, Gotoh N, Cogliati T, Nellissery J, Kaden TR, French S, Balaban R, Li W, Covian R, Swaroop A (2015 Dec 1) Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria. Invest Ophthalmol Vis Sci 56(13):8428–8436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pearsall EA, Cheng R, Zhou K, Takahashi Y, Matlock HG, Vadvalkar SS, Shin Y, Fredrick TW, Gantner ML, Meng S, Fu Z (2017 Dec) PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biol 15(1):113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Perkins GA, Ellisman MH, Fox DA (2004 Sep 30) The structure–function correlates of mammalian rod and cone photoreceptor mitochondria: observations and unanswered questions. Mitochondrion 4(5):695–703

    Article  CAS  PubMed  Google Scholar 

  102. Litts KM, Zhang Y, Freund KB, Curcio CA (2018 Mar 1) Optical coherence tomography and histology of age-related macular degeneration support mitochondria as reflectivity sources. Retina 38(3):445–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu Y, Ola MS, Berkich DA, Gardner TW, Barber AJ, Palmieri F, Hutson SM, LaNoue KF (2007 Apr) Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. J Neurochem 101(1):120–131

    Article  CAS  PubMed  Google Scholar 

  104. Kuwabara T, Cogan DG (1961) Retinal glycogen. Trans Am Ophthalmol Soc 59:106

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Goldman SS (1990 Feb 1) Evidence that the gluconeogenic pathway is confined to an enriched Müller cell fraction derived from the amphibian retina. Exp Eye Res 50(2):213–218

    Article  CAS  PubMed  Google Scholar 

  106. Strauss O (2005 Jul) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  CAS  PubMed  Google Scholar 

  107. Gospe SM, Baker SA, Arshavsky VY (2010 Jan 1) Facilitative glucose transporter Glut1 is actively excluded from rod outer segments. J Cell Sci 123:3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rajala A, Wang Y, Brush RS, Tsantilas K, Jankowski CS, Lindsay KJ, Linton JD, Hurley JB, Anderson RE, Rajala RV (2018 Feb 14) Pyruvate kinase M2 regulates photoreceptor structure, function, and viability. Cell Death Dis 9(2):240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E (2005 Nov 8) Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. Proc Natl Acad Sci 102(45):16245–16250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wright CB, Redmond TM, Nickerson JM (2015 Jan 1) A history of the classical visual cycle. In: Progress in molecular biology and translational science, vol 134. Academic Press, New York, pp 433–448

    Google Scholar 

  111. Chao JR, Knight K, Engel AL, Jankowski C, Wang Y, Manson MA, Gu H, Djukovic D, Raftery D, Hurley JB, Du J (2017 Aug 4) Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side. J Biol Chem 292(31):12895–12905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Du J, Yanagida A, Knight K, Engel AL, Vo AH, Jankowski C, Sadilek M, Manson MA, Ramakrishnan A, Hurley JB, Chao JR (2016b Dec 20) Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proc Natl Acad Sci 113(51):14710–14715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. deS Senanayake P, Calabro A, Hu JG, Bonilha VL, Darr A, Bok D, Hollyfield JG (2006 Aug 1) Glucose utilization by the retinal pigment epithelium: evidence for rapid uptake and storage in glycogen, followed by glycogen utilization. Exp Eye Res 83(2):235–246

    Article  CAS  PubMed  Google Scholar 

  114. Curcio CA, Owsley C, Jackson GR (2000 Jul 1) Spare the rods, save the cones in aging and age-related maculopathy. Invest Ophthalmol Vis Sci 41(8):2015–2018

    CAS  PubMed  Google Scholar 

  115. Ingram NT, Sampath AP, Fain GL (2016 Oct 1) Why are rods more sensitive than cones? J Physiol 594(19):5415–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Punzo C, Kornacker K, Cepko CL (2009 Jan) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44

    Article  CAS  PubMed  Google Scholar 

  117. Aït-Ali N, Fridlich R, Millet-Puel G, Clérin E, Delalande F, Jaillard C, Blond F, Perrocheau L, Reichman S, Byrne LC, Olivier-Bandini A (2015 May 7) Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161(4):817–832

    Article  PubMed  CAS  Google Scholar 

  118. Léveillard T, Sahel JA (2017 Oct 1) Metabolic and redox signaling in the retina. Cell Mol Life Sci 74(20):3649–3665

    Article  PubMed  CAS  Google Scholar 

  119. Zhao C, Yasumura D, Li X, Matthes M, Lloyd M, Nielsen G, Ahern K, Snyder M, Bok D, Dunaief JL, LaVail MM (2011 Jan 4) mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 121(1):369–383

    Article  CAS  PubMed  Google Scholar 

  120. Kurihara T, Westenskow PD, Gantner ML, Usui Y, Schultz A, Bravo S, Aguilar E, Wittgrove C, Friedlander MS, Paris LP, Chew E (2016 Mar 15) Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. Elife 5:e14319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zhang L, Du J, Justus S, Hsu CW, Bonet-Ponce L, Wu WH, Tsai YT, Wu WP, Jia Y, Duong JK, Mahajan VB (2016 Dec 1) Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration. J Clin Invest 126(12):4659–4673

    Article  PubMed  PubMed Central  Google Scholar 

  122. Curcio CA, Medeiros NE, Millican CL (1996 Jun 1) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249

    CAS  PubMed  Google Scholar 

  123. Curcio CA, Millican CL, Allen KA, Kalina RE (1993 Nov 1) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34(12):3278–3296

    CAS  PubMed  Google Scholar 

  124. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990 Feb 22) Human photoreceptor topography. J Comp Neurol 292(4):497–523

    Article  CAS  PubMed  Google Scholar 

  125. Packer O, Hendrickson AE, Curcio CA (1989 Oct 1) Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J Comp Neurol 288(1):165–183

    Article  CAS  PubMed  Google Scholar 

  126. Daiger SP, Sullivan LS, Bowne SJ, Rossiter BJ RetNet: Retinal Information Network, 1996. Data services and software for identifying genes and mutations causing retinal degeneration. http://www.sph.uth.tmc.edu/RetNet/ [updated Dec 08 2014]

  127. Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF (2014 Aug 5) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22(8):1161–1172

    Article  CAS  PubMed  Google Scholar 

  128. Samuel MA, Voinescu PE, Lilley BN, De Cabo R, Foretz M, Viollet B, Pawlyk B, Sandberg MA, Vavvas DG, Sanes JR (2014 Sep) LKB1 and AMPK regulate synaptic remodeling in old age. Nat Neurosci 17(9):1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xu L, Kong L, Wang J, Ash JD (2018 Oct 9) Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium. PNAS 115:10475–10480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Venkatesh A, Ma S, Le YZ, Hall MN, Rüegg MA, Punzo C (2015 Apr 1) Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest 125(4):1446–1458. https://doi.org/10.1172/JCI79766

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ma S, Venkatesh A, Langellotto F, Le YZ, Hall MN, Rüegg MA, Punzo C (2015 Jun 1) Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival. Exp Eye Res 135:1–3. https://doi.org/10.1016/j.exer.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qu J, Kaufman Y, Washington I (2009 Apr 1) Coenzyme Q10 in the human retina. Invest Ophthalmol Vis Sci 50(4):1814–1818. https://doi.org/10.1167/iovs.08-2656

    Article  PubMed  Google Scholar 

  133. Feher J, Kovacs B, Kovacs I, Schveoller M, Papale A, Gabrieli CB (2005) Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10. 219(3):154–166

    Google Scholar 

  134. Ildefonso CJ, Jaime H, Brown EE, Iwata RL, Ahmed CM, Massengill MT, Biswal MR, Boye SE, Hauswirth WW, Ash JD, Li Q (2016 Feb 1) Targeting the Nrf2 signaling pathway in the retina with a gene-delivered secretable and cell-penetrating peptide. Invest Ophthalmol Vis Sci 57(2):372–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liang KJ, Woodard KT, Weaver MA, Gaylor JP, Weiss ER, Samulski RJ (2017 Mar 1) AAV-Nrf2 promotes protection and recovery in animal models of oxidative stress. Mol Ther 25(3):765–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jäger S, Handschin C, Pierre JS, Spiegelman BM (2007 Jul 17) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci 104(29):12017–12022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  137. Iacovelli J, Rowe GC, Khadka A, Diaz-Aguilar D, Spencer C, Arany Z, Saint-Geniez M (2016 Mar 1) PGC-1α induces human RPE oxidative metabolism and antioxidant capacity. Invest Ophthalmol Vis Sci 57(3):1038–1051. https://doi.org/10.1167/iovs.15-17758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang M, Chu Y, Mowery J, Konkel B, Galli S, Theos AC, Golestaneh N (2018 Jan 1) PGC-1α repression and high fat diet induce age-related macular degeneration-like phenotypes in mice. Dis Models Mech. https://doi.org/10.1242/dmm.032698

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health / National Eye Institute (R01 EY026012 and R01 EY028554 to DAF; R01EY0127363 to MCK, R01 EY06641 and R01 EY017863 to JBH, R01EY016459-11 and R01EY031720 to JDA), the Elaine and Robert Larson Endowed Vision Research Chair, an anonymous benefactor for AMD research, the Lindsay Family Foundation (to DAF); the Discovery Eye Foundation, Polly and Michael Smith, Iris and B. Gerald Cantor Foundation (to MCK), and an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology, University of Florida and to the Gavin Herbert Eye Institution, University of California.

The authors wish to acknowledge the insightful discussions at the meetings of the “Ryan’s Initiative for Macular Research” as the basis for the collaborative writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah A. Ferrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrington, D.A., Kenney, M.C., Atilano, S.R., Hurley, J.B., Brown, E.E., Ash, J.D. (2021). Mitochondria: The Retina’s Achilles’ Heel in AMD. In: Chew, E.Y., Swaroop, A. (eds) Age-related Macular Degeneration. Advances in Experimental Medicine and Biology, vol 1256. Springer, Cham. https://doi.org/10.1007/978-3-030-66014-7_10

Download citation

Publish with us

Policies and ethics