Skip to main content

Expression and Regulation of Stress-Responsive Genes in Plants Under Harsh Environmental Conditions

  • Chapter
  • First Online:
Harsh Environment and Plant Resilience

Abstract

Due to the after-effects of human anthropogenic activities and parallel changes in weather, adverse environmental conditions are progressively prevailing across the globe. As a result, there is a disadvantageous influence on all sessile plants and their related characteristics such as growth, development, chance to survive and ultimately reproduce. So, in order to adapt to such an ever-changing and unstable scenario, plants have developed mechanisms of stress avoidance and/or tolerance. One of the important tolerance mechanisms is ‘expression and regulation of stress-responsive genes’. The reason lies in the nature of expressing genes and their regulatory role in the production of important metabolic proteins such as the chaperones as well as other genes related to downstream signal transduction under stressful conditions. This variety of regulation is observed at mainly three levels such as transcriptional, post-transcriptional and post-translational. Regulation at transcription involves the interplay of elements that are cis or trans-regulatory and chromatin modifications and remodelling. Post-transcriptional regulation occurs at different stages related to mRNA maturation (such as processing, trafficking, translation, turnover and stability). Finally, post-translational regulation occurs via different processes such as phosphorylation, dephosphorylation, adenylation, SUMOylation and ubiquitination at the protein level. All these regulations ensure the appropriate pattern of gene expression to ‘switch on’ the adaptive response. As a result, the current book chapter is an attempt to highlight the stress-responsive gene expression and regulation in plants under stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDPKs:

Ca-dependent protein kinases

G-type:

Gap-type

HSE:

Heat shock element

HSPs:

Heat shock proteins

HSR:

Heat shock response

LEA:

Late embryogenesis proteins

MAPK/MPK:

Mitogen-activated protein kinase

P-type:

Perfect-type

S-type:

Step-type

TFs:

Transcription factors

References

  • Abdallah SB, Aung B, Amyot L, Lalin I, Lachâal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38:72

    Article  CAS  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Bhardwaj R, Tuteja T (2012) Plant signaling under abiotic stress environment. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science + Business Media, New York, pp 297–323

    Chapter  Google Scholar 

  • Ahmed W, Xia Y, Li R, Bai G, Siddique KH, Guo P (2020) Non-coding RNAs: functional roles in the regulation of stress response in Brassica crops. Genomics 112:1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begcy K, Dresselhaus T (2018) Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reprod 31:343–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltagi MS, Ismail MA, Mohamed FH (2006) Induced salt tolerance in common bean (Phaseolus vulgaris L.) by gamma irradiation. Pak J Biol Sci 6:1143–1148

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment potential for increasing crop plant productivity, genotypic selection. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RF, Carvalho SD, Duque P (2010) The plant specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol 154:772–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho RF, Szakonyi D, Simpson CG, Barbosa IC, Brown JW, Baena-González E, Duque P (2016) The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. Plant Cell 28:1910–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbonnier F, Roupsard O, Le Maire G, Guillemot J, Casanoves F, Lacointe A, Vaast P, Allinne C, Audebert L, Cambou A, Clément-Vidal A (2017) Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant Cell Environ 40:1592–1608

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata L. ssp. Sesquipedalis verdc.). J Hered 98:655–665

    Article  CAS  PubMed  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Courgeon A, Maisonhaute C, Best-Belpomme M (1984) Heat shock proteins are induced by cadmium in Drosophila cells. Exp Cell Res 153:515–521

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho R, Catalá M, Marques da Silva J, Branquinho C, Barreno E (2012) The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss. Ann Bot 110:1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 15:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl H, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95:688–696

    Article  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, van der Vies SM, Hemmingsen SM (1989) The molecular chaperone concept. Biochem Soc Symp 55:145–153

    CAS  PubMed  Google Scholar 

  • Embiale A, Hussein A, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  • Ergin S, Gülen H, Kesici M, Turhan E, Ipek A, Köksal N (2016) Effects of high temperature stress on enzymatic and nonenzymatic antioxidants and proteins in strawberry plants. Turk J Agric For 40:908–917

    Article  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Fichman Y, Mittler R (2020) Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades. Plant J 102:887–896

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (2012) Intergovernmental panel on climate change 2012 (IPCC 2012). In: Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties – a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW (2008) The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant 1:27–41

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha E, Ikhajiagba B, Bamidele JF, Ogic-odia E (2008) Salinity effects on young healthy seedling of kyllingia peruviana collected from escravos, Delta state. Glob J Environ Res 2:74–88

    Google Scholar 

  • Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Abiotic stress—plant responses and applications in agriculture. InTech, Rijeka, pp 169–205

    Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep 12:77–92

    Article  Google Scholar 

  • Heikkila JJ, Schultz GA, Iatrou K, Gedamu L (1982) Expression of a set of fish genes following heat or metal ion exposure. J Biol Chem 257:12000–12005

    Article  CAS  PubMed  Google Scholar 

  • Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ, Pirkkala L, Sistonen L (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houimli SIM, Denden M, Elhadj SB (2008) Induction of salt tolerance in pepper (B0 or Hbt 10 mmtt1) by 24-epibrassinolide. Eur J Biol Sci 2:83–90

    Google Scholar 

  • Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silva Genet 59:124–136

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2014) Growth, water status and leaf characteristics of Brassica carinata under drought and rehydration conditions. Braz J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Hussain S, Cao X, Zhong C, Zhu L, Khaskheli MA, Fiaz S, Zhang J, Jin Q (2018) Sodium chloride stress during early growth stages altered physiological and growth characteristics of rice. Chil J Agric Res 78:183–197

    Article  Google Scholar 

  • Hussain S, Shaukat M, Ashraf M, Zhu C, Jin Q, Zhang J (2019) Salinity stress in arid and semi-arid climates: effects and management in field crops. In: Climate change and agriculture. Intech Open, Rijeka, pp 1–26

    Chapter  Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  • Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of brassica species at germination and early seedling growth. Electron J Environ Agric Food Chem 4:970–976

    CAS  Google Scholar 

  • Jamil M, Rehman S, Rha ES (2007) Salinity effect on plant growth, ps11 photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak J Bot 39:753–760

    Google Scholar 

  • Jiang QW, Kiyoharu O, Ryozo I (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    Article  CAS  PubMed  Google Scholar 

  • Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT (2008) The RNA polymerase II core promoter—the gateway to transcription. Curr Opin Cell Biol 20:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcriptional factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kaya MD, Okçub G, Ataka M, Çıkılıc Y, Kolsarıcıa Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81:505–518

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Kang H (2006) The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol 47:793–798

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Park SJ, Jang B, Jung CH, Ahn SJ, Goh CH, Cho K, Han O, Kang H (2007) Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Scalf M, Smith LM, Vierstra RD (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25:1523–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Lal SK, Kumar S, Sheri V, Mehta S, Varakumar P, Ram B, Borphukan B, James D, Fartyal D, Reddy MK (2018) Seed priming: an emerging technology to impart abiotic stress tolerance in crop plants. In: Advances in seed priming. Springer, Singapore, pp 41–50

    Google Scholar 

  • Lang P, Zhang CK, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1998) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Applications of chlorophyll fluorescence. Kluwer Academic Publishers, Dordrecht, pp 129–142

    Google Scholar 

  • Liu Q, Ding C, Lang X, Guo G, Chen J, Su X (2019) Small noncoding RNA discovery and profiling with sRNA tools based on high-throughput sequencing. Brief Bioinform. https://doi.org/10.1093/bib/bbz151

  • Manikavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Babu RC (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138

    Article  CAS  Google Scholar 

  • Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol 1:210–213

    Article  Google Scholar 

  • Memon SA, Hou X, Wang LJ (2010) Morphological analysis of salt stress response of pak Choi. Electron J Environ Agric Food Chem 9:248–254

    CAS  Google Scholar 

  • Michel GP, Starka J (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 165:1040–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris PC (2001) MAP kinase signal transduction pathways in plants. New Phytol 151:67–89

    Article  CAS  PubMed  Google Scholar 

  • Natasha K, Haq SI, Ahmad S, Ullah Z, Rahim Z (2019) Effect of sodium chloride, potassium chloride on germination and growth of Foxtail millet (Setaria italica L.). Pure Appl Biol 8:1398–1407

    Article  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Sharma N, Pankaj Sahu P, Prasad M (2016) Chromatin-based epigenetic regulation of plant abiotic stress response. Curr Genomics 17:490–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prahlad V, Morimoto RI (2009) Integrating the stress response: lesson for neurodegenerative diseases from C. elegans. Trends Cell Biol 2:52–61

    Article  CAS  Google Scholar 

  • Qin T, Zhao H, Cui P, Albesher N, Xiong L (2017) A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol 175:1321–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Raul L, Andres O, Armado L, Bernardo M, Enrique T (2003) Response to salinity of three grain legumes for potential cultivation in arid areas (plant nutrition). Soil Sci Plant Nutr 49:329–336

    Article  Google Scholar 

  • Riechmann JL, Heard J, Martin G (2000) Arabidopsis transcription factors: genome wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32:347–358

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanon MC (1986) New insights in plant breeding efforts for improved salt tolerance. Hort Technol 6:96–99

    Article  Google Scholar 

  • Sharma V, Goel P, Kumar S, Singh AK (2019) An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes. Plant Cell Rep 38:221–241

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma MMM, Patra A, Vashisth M, Mehta S, Singh B, Tiwari M, Pandey V (2020) The role of key transcription factors for cold tolerance in plants. In: Transcription factors for abiotic stress tolerance in plants. Academic Press, London, pp 123–152

    Chapter  Google Scholar 

  • Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T (2019) Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol Biochem 135:546–553

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Laxmi A (2015) Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 6:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Irulappan V, Mohan-Raju B, Suganthi A, Senthil-Kumar M (2019) Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Sci Rep 9:1–5

    Article  Google Scholar 

  • Song Y, Chen L, Zhang L, Yu D (2010) Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J Biosci 35:459–471

    Article  CAS  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312

    Google Scholar 

  • Sun X, Wang Y, Sui N (2018) Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 503:397–401

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Toscano S, Romano D, Tribulato A, Patanè C (2017) Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiol Plant 39:184

    Article  CAS  Google Scholar 

  • Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100:1197–1202

    Article  CAS  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wassie M, Zhang W, Zhang Q, Ji K, Chen L (2019) Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy 9:597

    Article  CAS  Google Scholar 

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimalasekera R, Scherer GF (2018) Involvement of mitogen-activated protein kinases in abiotic stress responses in plants. In: Plant metabolites and regulation under environmental stress. Academic Press, London, pp 389–395

    Google Scholar 

  • Wu C (1984) Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature 309:229–234

    Article  CAS  PubMed  Google Scholar 

  • Wu BJ, Kingston RE, Morimoto RI (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci U S A 83:629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Wyrick JJ, Young RA (2002) Deciphering gene expression regulatory network. Curr Opin Genet Dev 12:130–136

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y (2016) Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci 7:1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280:11911–11919

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz H, Kina A (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananassa L.). Afr J Biotechnol 7:3299–3305

    CAS  Google Scholar 

  • Yura T, Tobe T, Ito K, Osawa T (1984) Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proc Natl Acad Sci U S A 81:6803–6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang H, Srivastava AK, Pan Y, Bai J, Fang J, Shi H, Zhu JK (2018a) Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 176:2082–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J (2018b) Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health 15:839

    Article  PubMed Central  Google Scholar 

  • Zhang M, Su J, Zhang Y, Xu J, Zhang S (2018c) Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol 45:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33:1851–1863

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahil et al. (2021). Expression and Regulation of Stress-Responsive Genes in Plants Under Harsh Environmental Conditions. In: Husen, A. (eds) Harsh Environment and Plant Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7_2

Download citation

Publish with us

Policies and ethics