Skip to main content

Gene and Genome Editing with CRISPR/Cas Systems for Fruit and Vegetable Improvement

  • Chapter
  • First Online:
RNA-Based Technologies for Functional Genomics in Plants

Abstract

Ever since the advent of agriculture, breeding new varieties has relied upon crosses between individuals from a single species, and since the early twentieth century with relatives or via mutagenesis. Two major problems have been found time and again. First, combining genomes to improve a character often times causes decreases in other traits as a result of genetic linkage. The second is that natural variation does not always comprise all the possibilities a genome may have in terms of allelic combinations suitable for further improving a set of characters. In the last twenty years a number of technologies have been developed allowing the perturbation of a single gene. Development of genome editing technologies includes zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Palindromic Repeats (CRISPR). Here we review current methodologies regarding to the use of gRNA targeted gene and genome editing strategies by various CRISPR/Cas9 systems in agriculture. The molecular mechanism of DNA modification by CRISPR/Cas relies on guide RNA molecules comprising 20–25 DNA bases homologous to the target locus. This has opened the possibility of tackling single loci or multiple paralogs in a gene family. Importantly, complex genomes with polyploid structures such as wheat or camelina have been successfully engineered with single guides. This opens a new window of opportunities to engineer gene families, pathways and complex genomes that was unfeasible before the advent of CRISPR/Cas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson M, Turesson H, Nicolia A, Fält A-S, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  • Barrell PJ, Meiyalaghan S, Jacobs JME, Conner AJ (2013) Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J 11:907–920

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Fleurier S, Troadec C et al (2014) Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS ONE 9:e97963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braatz J, Harloff H-J, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system1. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruce Wallace R, Schold M, Johnson MJ, Dembek P, Itakura K (1981) Oligonucleotide directed mutagenesis of the human β-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res 9:3647–3656

    Article  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955380/ [Accessed May 15, 2019]

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7: 44304

    Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    Article  CAS  PubMed  Google Scholar 

  • East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R, Doudna JA (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias R, Till BJ, Mba C, Al-Safadi B (2009) Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes 2:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131344/ [Accessed May 9, 2019]

  • Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita T, Fujii H (2013) Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun 439:132–136

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González M, Xu M, Esteras C et al (2011) Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes 4:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R et al (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236:48–54

    Article  CAS  PubMed  Google Scholar 

  • Gürlebeck D, Thieme F, Bonas U (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol 163:233–255

    Article  PubMed  CAS  Google Scholar 

  • Hallauer AR (2007) History, contribution, and future of quantitative genetics in plant breeding: lessons from maize. Crop Sci 47 S-4–S-19

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Montagu MV, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: What can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, Zhang N, Patel D, Martin GB (2017) Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol 174:2023–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056666/ [Accessed May 8, 2019]

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94:349–360

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Orbović V, Wang N CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol J 0. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/pbi.13109 [Accessed May 10, 2019]

  • Jia H, Wang N. (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977896/ [Accessed May 16, 2019]

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung JK, Voytas DF, Cathomen T (2010) Reply to “Successful genome editing with modularly assembled zinc finger nucleases”. Nat Methods 7:91–92

    Article  CAS  PubMed Central  Google Scholar 

  • Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in Barley. Front Plant Sci 8:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur, Navneet, Alok, A., Shivani, null, Kaur, Navjot, Pandey, P., Awasthi, P. and Tiwari, S. (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct. Integr. Genomics 18:89–99

    Google Scholar 

  • Kim YG, Chandrasegaran S (1994) Chimeric restriction endonuclease. PNAS 91:883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei C, Li S-Y, Liu J-K, Zheng X, Zhao G-P, Wang J (2017) The CCTL (Cpf1-assisted cutting and Taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res 45:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  PubMed  CAS  Google Scholar 

  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X, Wang Y (2017) The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170:714–726.e10

    Article  CAS  PubMed  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102:2232–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman Md, Wibowo A, Fang X, Zhu J-K (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front Plant Sci 7. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5170842/ [Accessed May 16, 2019]

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matveeva TV, Otten L (2019) Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Mol Biol 101:415–437

    Article  CAS  PubMed  Google Scholar 

  • Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38:861–872

    Article  CAS  PubMed  Google Scholar 

  • Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2019) DNA-free genome editing: past, present and future. Front Plant Sci 9. Available at https://www.frontiersin.org/articles/10.3389/fpls.2018.01957/full [Accessed May 2, 2019]

  • Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958078/ [Accessed May 13, 2019]

  • Morineau, C, Bellec, Y, Tellier, F, Gissot, L, Kelemen, Z, Nogué, F, Faure, J.-D (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid camelina sativa. Plant Biotechnol J 15: 729–739.

    Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501–1501

    Article  CAS  PubMed  Google Scholar 

  • Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436839/ [Accessed May 16, 2019]

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838866/ [Accessed May 14, 2019]

  • Reiss B (2003) Homologous recombination and gene targeting in plant cells. Int Rev Cytol 228:85–139

    Article  CAS  PubMed  Google Scholar 

  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006071/ [Accessed May 16, 2019]

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.e8

    Article  PubMed  CAS  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model1[W][OPEN]. Plant Physiol 166:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanagala R, Moola AK, Bollipo Diana RK (2017) A review on advanced methods in plant gene targeting. J Genetic Eng Biotechnol 15:317–321

    Article  Google Scholar 

  • Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270407/ [Accessed November 14, 2019]

  • Sivanandhan G, Selvaraj N, Lim YP, Ganapathi A (2016) Targeted genome editing using site-specific nucleases, ZFNs, TALENs, and the CRISPR/Cas9 system Takashi Yamamoto (ed.). Ann Bot 118:vii–viii

    Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol 32:47–53

    Article  CAS  PubMed  Google Scholar 

  • Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 84:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Sugio A, Yang B, Zhu T, White FF (2007) Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci U S A 104:10720–10725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts DC, Jinek M (2019) Mechanistic Insights into the cis- and trans-Acting DNase activities of Cas12a. Mol Cell 73:589–600.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a Thaumatin-like protein but not the one previously reported1. Plant Physiol 170:26–32

    Article  CAS  PubMed  Google Scholar 

  • Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428692/ [Accessed May 14, 2019]

  • Upadhyay SK, Kumar J, Alok A, and Tuli, R. (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238

    Google Scholar 

  • Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK (1997) Structure of the multimodular endonuclease FokI bound to DNA. Nature 388:97–100

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu X, Ren C, Zhong G-Y, Yang L, Li S, Liang Z (2016) Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biol 16:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weeks DP (2017) Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus. In: Progress in molecular biology and translational science. Elsevier, pp. 65–80. Available at https://linkinghub.elsevier.com/retrieve/pii/S1877117317300686 [Accessed July 2, 2019]

  • White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolter F, Puchta H (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 94:767–775

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chen L-L, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SS-E-A, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550–553

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang Z, Gao J et al (2018) Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Reports 23:3340–3351.e5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was developed under project BFU-2017 88300-C2-1-R and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Egea-Cortines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arbatli, S., Weiss, J., Egea-Cortines, M. (2021). Gene and Genome Editing with CRISPR/Cas Systems for Fruit and Vegetable Improvement. In: Tang, G., Teotia, S., Tang, X., Singh, D. (eds) RNA-Based Technologies for Functional Genomics in Plants. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_11

Download citation

Publish with us

Policies and ethics