Skip to main content

Advanced Functional Polymers for Biomedical Applications: Drug, Sensor, Diagnosis, and Prognosis

  • Chapter
  • First Online:
Nanotechnology Applications in Health and Environmental Sciences

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Since the last decade, the use of functional polymers for diagnosis, prognosis, and treatment in medicine is developing rapidly. The functional polymers are synthesized in different geometrical shapes and dimensions for various purposes. Therefore, the polymers are designed in the use of drugs and gene delivery systems, sensor applications, diagnosis, and prognosis of various diseases. This chapter presents an overview of functional polymer classification and discusses the basic properties and potential applications in the biomedical area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavi M, Rai M (2019) Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol:1–8

    Google Scholar 

  • Andaç M, Galaev IY, Yavuz H, Denizli A (2015) Molecularly imprinted cryogels for human serum albumin depletion. In: Zachariou M (ed) Affinity chromatography: methods and protocols, Methods in molecular biology series, vol 1286. Springer, Berlin, pp 233–237

    Chapter  Google Scholar 

  • Andaç M, Galaev IY, Denizli A (2016) Molecularly imprinted cryogels for protein purification. In: Biomaterials from nature for advanced devices and therapies. Wiley, Hoboken, NJ, pp 403–428

    Google Scholar 

  • Aşır S, Uzun L, Türkmen D, Say R, Denizli A (2005) Ion-selective imprinted superporous monolith for cadmium removal from human plasma. Sep Sci Technol 40(15):3167–3185

    Article  CAS  Google Scholar 

  • Avcıbaşı U, Ateş B, Ünak P, Gümüşer FG, Gülcemal S, Ol KK et al (2019) A novel radiolabeled graft polymer: investigation of the radiopharmaceutical potential using Albino Wistar rats. Appl Radiat Isot 154:108872

    Article  PubMed  CAS  Google Scholar 

  • Baek S, Singh RK, Khanal D, Patel KD, Lee EJ, Leong KW et al (2015) Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 7(34):14191–14216

    Article  CAS  PubMed  Google Scholar 

  • Becker G, Wurm FR (2018) Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 47:7739–7782

    Article  CAS  PubMed  Google Scholar 

  • Behera BK, Prasad R, Behera S (2020) Bioprinting. In: Competitive Strategies in Life Sciences, Springer pp. 137–156

    Google Scholar 

  • BelBruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119:94–119

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick S, Rother S, Zimmermann H, Lee PS, Moeller S, Schnabelrauch M, Koul V, Jordan R, Hintze V, Scharnweber D (2017) Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application–the role of chondroitin sulfate and sulfated hyaluronan. Mater Sci Eng C 79:15–22

    Article  CAS  Google Scholar 

  • Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ (2018) Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. J Biomed Mater Res A 106(6):1753–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Sirkar KK, Jin C, Singh D, Pfeffer R (2017) Membrane-based technologies in the pharmaceutical industry and continuous production of polymer-coated crystals/particles. Curr Pharm Des 23(2):242–249. https://doi.org/10.2174/1381612822666161025145229

    Article  CAS  PubMed  Google Scholar 

  • Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A (2017) Biointerfaces PNIPAM grafted surfaces through ATRP and RAFT polymerization: chemistry and bioadhesion. Colloids Surf B Biointerfaces 151:143–155

    Article  CAS  PubMed  Google Scholar 

  • Çorman ME, Öztürk N, Bereli N, Akgöl S, Denizli A (2010) Preparation of nanoparticles which contains histidine for immobilization of Trametes versicolor laccase. J Mol Catal B Enzym 63(1–2):102–107

    Article  CAS  Google Scholar 

  • Delplace V, Nicolas J (2015) Degradable vinyl polymers for biomedical applications. Nat Chem 7(10):771

    Article  CAS  PubMed  Google Scholar 

  • Denizli A, Yavuz H, Arıca Y (2000) Monosize and non-porous p (HEMA-co-MMA) microparticles designed as dye-and metal-chelate affinity sorbents. Colloids Surf A Physicochem Eng Asp 174(3):307–317

    Article  CAS  Google Scholar 

  • Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27(3):498–526. https://doi.org/10.1002/adma.201402975

    Article  CAS  PubMed  Google Scholar 

  • Donskyi I, Drüke M, Silberreis K, Lauster D, Ludwig K, Kühne C et al (2018) Interactions of fullerene-polyglycerol sulfates at viral and cellular interfaces. Small 14(17):1800189

    Article  CAS  Google Scholar 

  • Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation. J Chromatogr A 1357:24–35

    Article  PubMed  CAS  Google Scholar 

  • Garcia I, Zafeiropoulos NE, Janke A, Tercjak A, Eceiza A, Stamm M, Mondragon I (2007) Functionalization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization. J Polym Sci Part A Polym Chem 45:925–932

    Article  CAS  Google Scholar 

  • Giulbudagian M, Hönzke S, Bergueiro J, Işık D, Schumacher F, Saeidpour S et al (2018) Enhanced topical delivery of dexamethasone by β-cyclodextrin decorated thermoresponsive nanogels. Nanoscale 10(1):469–479

    Article  CAS  Google Scholar 

  • Gun’ko VM, Savina IN, Mikhalovsky SV (2013) Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interf Sci 187:1–46

    Article  CAS  Google Scholar 

  • Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT (2005) Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 26(16):3197–3206

    Article  CAS  PubMed  Google Scholar 

  • Hosseinkhani H, Abedini F, Ou KL, Domb AJ (2015) Polymers in gene therapy technology. Polym Adv Technol 26(2):198–211

    Article  CAS  Google Scholar 

  • Ibrahim ID, Sadiku ER, Jamiru T, Hamam A, Kupolati WK (2017) Applications of polymers in the biomedical field. Curr Trends Biomed Eng Biosci 4(5):CTBEB.MS.ID.5555650

    Google Scholar 

  • Joseph J, Deshmukh K, Tung T, Chidambaram K, Pasha SK (2019) 3D printing technology of polymer composites and hydrogels for artificial skin tissue implementations. In: Polymer nanocomposites in biomedical engineering. Springer, Cham, pp 205–233

    Chapter  Google Scholar 

  • Kamyshny A, Magdassi S (2000) Fluorescence immunoassay based on fluorescer microparticles. Colloid Surf B Biointerf 18(1):13

    Article  CAS  Google Scholar 

  • Kang KS, Lee SI, Hong JM, Lee JW, Cho HY, Son JH, Paek SH, Cho DW (2014) Hybrid scaffold composed of hydrogel/3D-framework and its application as a dopamine delivery system. J Control Release 175:10–16

    Article  CAS  PubMed  Google Scholar 

  • Kantamneni H, Zevon M, Donzanti MJ, Zhao X, Sheng Y, Barkund SR et al (2017) Surveillance nanotechnology for multi-organ cancer metastases. Nat Biomed Eng 1(12):993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karp JM, Shoichet MS, Davies JE (2003) Bone formation on two-dimensional poly (DL-lactide-co-glycolide)(PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 64(2):388–396

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann M (1997) Unstable proteins: how to subject them to chromatographic separations for purification procedures. J Chromatogr B Biomed Sci Appl 699(1–2):347–369

    Article  CAS  PubMed  Google Scholar 

  • Kwizera EA, Chaffin E, Wang Y, Huang X (2017) Synthesis and properties of magnetic-optical core–shell nanoparticles. RSC Adv 7(28):17137–17153

    Article  CAS  PubMed  Google Scholar 

  • Latorre A, Couleaud P, Aires A, Cortajarena AL, Somoza Á (2014) Multifunctionalization of magnetic nanoparticles for controlled drug release: a general approach. Eur J Med Chem 82:355–362

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Kim KH, Yoon H, Kim H (2018) Chemical design of functional polymer structures for biosensors: from nanoscale to macroscale. Polymers (Basel) 10(5):551

    Article  CAS  Google Scholar 

  • Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  PubMed  Google Scholar 

  • Lim WQ, Phua SZF, Xu HV, Sreejith S, Zhao Y (2016) Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale 8(25):12510–12519

    Article  CAS  PubMed  Google Scholar 

  • Lu HH, Kofron MD, El-Amin SF, Attawia MA, Laurencin CT (2003) In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer–bone morphogenetic protein matrices. Biochem Biophys Res Commun 305(4):882–889

    Article  CAS  PubMed  Google Scholar 

  • Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K (2016) From precision polymers to complex materials and systems. Nat Rev Mater 1(5):16024

    Article  CAS  Google Scholar 

  • Macchione MA, Biglione C, Strumia M (2018) Design, synthesis and architectures of hybrid nanomaterials for therapy and diagnosis applications. Polymers (Basel) 10(5):527

    Article  CAS  Google Scholar 

  • Masini JC, Svec F (2017) Porous monoliths for on-line sample prepa- ration: a review. Anal Chim Acta 964:24–44

    Article  CAS  PubMed  Google Scholar 

  • Maya F, Paull B (2019) Recent strategies to enhance the performance of polymer monoliths for analytical separations. J Sep Sci 42(8). https://doi.org/10.1002/jssc.201801126

  • Mazur J, Roy K, Kanwar JR (2018) Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 13(1):105–137

    Article  CAS  PubMed  Google Scholar 

  • Momper R, Steinbrecher J, Dorn M, Rörich I, Bretschneider S, Tonigold M et al (2018) Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles. J Colloid Interface Sci 518:11–20

    Article  CAS  PubMed  Google Scholar 

  • Mustafa NS, Omer MAA, Garlnabi MEM, Ismail HA (2016) Reviewing of general polymer types, properties and application in medical field. Int J Sci Res (IJSR) 5(8):212e221

    Google Scholar 

  • Newland B, Newland H, Werner C, Rosser A, Wang W (2015) Prospects for polymer therapeutics in Parkinson’s disease and other neurodegenerative disorders. Prog Polym Sci 44:79–112

    Article  CAS  Google Scholar 

  • Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:081–089

    Article  CAS  Google Scholar 

  • Ol Kusat K, Kanbak G, Ilhan Oğlakçı A, Burukoglu D, Yücel F (2016) The investigation of the prenatal and postnatal alcohol exposure-induced neurodegeneration in rat brain: protection by betaine and/or omega-3. Childs Nerv Syst 32(3):467–474

    Article  Google Scholar 

  • Panzarini E, Inguscio V, Tenuzzo B, Carata E, Dini L (2013) Nanomaterials and autophagy: new insights in cancer treatment. Cancers 5(1):296–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera AS, Zhang S, Homer-Vanniasinkam S, Coppens MO, Edirisinghe M (2018) Polymer–magnetic composite fibers for remote-controlled drug release. ACS Appl Mater Interfaces 10(18):15524–15531

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Wallingford, pp 53–70

    Chapter  Google Scholar 

  • Rico-Yuste A, Carrasco S (2019) Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers 11(7):1173

    Article  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Cabello JC, De Torre IG, Ibañez-Fonseca A, Alonso M (2018) Bioactive scaffolds based on elastin-like materials for wound healing. Adv Drug Deliv Rev 129:118–133

    Article  PubMed  CAS  Google Scholar 

  • Saylan Y, Denizli A (2019) Supermacroporous composite cryogels in biomedical applications. Gels 5(2):20

    Article  CAS  PubMed Central  Google Scholar 

  • Silva GA, Ducheyne P, Reis RL (2007) Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 1(1):4–24

    Article  CAS  PubMed  Google Scholar 

  • Sithole MN, Choonara YE, du Toit LC, Kumar P, Pillay V (2017) A review of semi-synthetic biopolymer complexes: modified polysaccharide nano-carriers for enhancement of oral drug bioavailability. Pharm Dev Technol 22(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Specht R, Han B, Wickramasinghe SR, Carlson JO, Czermak P, Wolf A, Reif OW (2004) Densonucleosis virus purification by ion exchange membranes. Biotechnol Bioeng 88(4):465–473

    Article  CAS  PubMed  Google Scholar 

  • Svec F (2006) Less common applications of monoliths: preconcentration and solid-phase extraction. J Chromatogr B 841:52–64

    Article  CAS  Google Scholar 

  • Tamahkar E, Bereli N, Say R, Denizli A (2011) Molecularly imprinted supermacroporous cryogels for cytochrome c recognition. J Sep Sci 34(23):3433–3440

    Article  CAS  PubMed  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55:315–328

    Article  CAS  PubMed  Google Scholar 

  • Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Func Biomater 9(1):17

    Article  CAS  Google Scholar 

  • Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Article  CAS  Google Scholar 

  • Uzun L, Türkmen D, Karakoç V, Yavuz H, Denizli A (2011) Performance of protein-A-based affinity membranes for antibody purification. J Biomater Sci Polym Ed 22(17):2325–2341

    Article  CAS  PubMed  Google Scholar 

  • Vehof JW, Fisher JP, Dean D, van der Waerden JPC, Spauwen PH, Mikos AG, Jansen JA (2002) Bone formation in transforming growth factor β-1-coated porous poly (propylene fumarate) scaffolds. J Biomed Mater Res 60(2):241–251

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Glebe U, Böker A (2015) Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 6:5143–5184

    Article  CAS  Google Scholar 

  • Xing Q, Qian Z, Jia W, Ghosh A, Tahtinen M, Zhao F (2017) Natural extracellular matrix for cellular and tissue biomanufacturing. ACS Biomater Sci Eng 3:1462–1476

    Article  CAS  PubMed  Google Scholar 

  • Yang DP, Oo MNNL, Deen GR, Li Z, Loh XJ (2017) Nano-star-shaped polymers for drug delivery applications. Macromol Rapid Commun 38:1700410

    Article  CAS  Google Scholar 

  • Yavuz H, Bereli N, Yılmaz F, Armutçu C, Denizli A (2015) Antibody purification from human plasma by metal chelated affinity membranes. In: Zachariou M (ed) Affinity chromatography: methods and protocols, Methods in molecular biology series, vol 1286. Springer, Berlin, pp 43–46

    Chapter  Google Scholar 

  • Yavuz H, Bereli N, Baydemir G, Andaç M, Türkmen D, Denizli A (2016) Cryogels: applications in extracorporeal affinity therapy. In: Supermacroporous Cryogels: biomedical and biotechnological applications. CRC Press, Boca Raton, FL, pp 387–416

    Google Scholar 

  • Yuan R, Rao T, Cheng F, Yu WM, Ruan Y, Zhang XB, Larré S (2018) Quantum dot-based fluorescent probes for targeted imaging of the EJ human bladder urothelial cancer cell line. Exp Ther Med 16(6):4779–4783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar MS, Khurshid Z, Almas K (2015) Oral tissue engineering progress and challenges. Tissue Eng Regenerat Med 12(6):387–397

    Article  CAS  Google Scholar 

  • Zagho MM, Hussein EA, Elzatahry AA (2018) Recent overviews in functional polymer composites for biomedical applications. Polymers (Basel) 10(7):739

    Article  CAS  Google Scholar 

  • Zhao Z, Harris B, Hu Y, Harmon T, Pentel PR, Ehrich M, Zhang C (2018) Rational incorporation of molecular adjuvants into a hybrid nanoparticle-based nicotine vaccine for immunotherapy against nicotine addiction. Biomaterials 155:165–175

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Niu Y, Li Y, Gong Y, Shi H, Huo Q et al (2017) Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. J Mater Chem B 5(7):1339–1352

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuşat, K., Akgöl, S. (2021). Advanced Functional Polymers for Biomedical Applications: Drug, Sensor, Diagnosis, and Prognosis. In: Saglam, N., Korkusuz, F., Prasad, R. (eds) Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64410-9_10

Download citation

Publish with us

Policies and ethics