Skip to main content

Source-Sink Relationships and Its Effect on Plant Productivity: Manipulation of Primary Carbon and Starch Metabolism

  • Chapter
  • First Online:
Genome Engineering for Crop Improvement

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

The rate of photo-assimilation in source organs (source strength) and the rate of conversion of this photo-assimilate into end products in sink organs (sink strength) are the two key metabolic processes that determine plant productivity and yield. Enhancement of either the source or the sink processes alone will often have limited returns due to the feedback inhibition from the other process. Consequently, maximizing plant productivity requires synergistic improvement of both source and sink processes. In this chapter, we will talk about the advancements in improving plant productivity through the modification of primary carbon metabolism in source and sink organs, with special emphasis on starch metabolism. Furthermore, we will discuss the future directions for enhancing source and sink processes in crop species via the usage of modern genome editing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Yendrek CR et al (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ 35(1):38–52

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36(1):117–128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384. https://doi.org/10.1111/ppl.12731

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Nunes-Nesi A et al (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell 23(2):600–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashikari M, Sakakibara H et al (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745. https://doi.org/10.1126/science.1113373

  • Asseng S, Kassie B, Labra MH, Amador C, Calderini DF (2017) Simulating the impact of source–sink manipulations in wheat. Field Crops Res 202:47–56

    Google Scholar 

  • Atkinson N, Leitão N et al (2017) Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis. New Phytol 214(2):655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballicora MA, Frueauf JB et al (2000) Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J Biol Chem 275(2):1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Ballicora MA, Iglesias AA et al (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev MMBR 67(2):213–225. https://doi.org/10.1128/mmbr.67.2.213-225.2003

    Article  CAS  PubMed  Google Scholar 

  • Ballicora MA, Iglesias AA et al (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79(1):1–24. https://doi.org/10.1023/b:pres.0000011916.67519.58

    Article  CAS  PubMed  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ et al (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50(9):1651–1662

    Google Scholar 

  • Betti M, Bauwe H et al (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67(10):2977–2988

    Article  CAS  PubMed  Google Scholar 

  • Bihmidine S, Hunter CT III et al (2013) Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front Plant Sci 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE, Tiede DM et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805–809

    Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  CAS  PubMed  Google Scholar 

  • Bodirsky BL, Rolinski S et al (2015) Global food demand scenarios for the 21st century. PLoS ONE 10(11):e0139201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boehlein SK, Shaw JR et al (2008) Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined. Plant Physiol 146(1):289–299. https://doi.org/10.1104/pp.107.109942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehlein SK, Liu P et al (2019) Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. Plant J 99(1):23–40. https://doi.org/10.1111/tpj.14283

    Article  CAS  PubMed  Google Scholar 

  • Bracher A, Whitney SM et al (2017) Biogenesis and metabolic maintenance of Rubisco. Annu Rev Plant Biol 68:29–60

    Article  CAS  PubMed  Google Scholar 

  • Bull SE, Seung D et al (2018) Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Sci Adv 4(9):eaat6086. https://doi.org/10.1126/sciadv.aat6086

  • Burton RA, Johnson PE et al (2002) Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol 130(3):1464–1475. https://doi.org/10.1104/pp.010363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakir B, Shiraishi S et al (2016) Analysis of the rice ADP-glucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch. Plant Physiol 170(3):1271–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmo-Silva E, Scales JC et al (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38(9):1817–1832

    Article  CAS  PubMed  Google Scholar 

  • Chang T-G, Zhu X-G (2017) Source–sink interaction: a century old concept under the light of modern molecular systems biology. J Exp Bot 68(16):4417–4431. https://doi.org/10.1093/jxb/erx002

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li C et al (1994) Carbohydrate metabolism enzymes in CO2-enriched developing rice grains of cultivars varying in grain size. Physiol Plant 90(1):79–85

    Article  CAS  Google Scholar 

  • Cossani CM, Reynolds M (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Google Scholar 

  • Crevillen P, Ballicora MA et al (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278(31):28508–28515

    Article  CAS  PubMed  Google Scholar 

  • Crevillén P, Ventriglia T et al (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J Biol Chem 280(9):8143–8149. https://doi.org/10.1074/jbc.M411713200

    Article  CAS  PubMed  Google Scholar 

  • Cross JM, Clancy M et al (2004) Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiol 135(1):137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauvillée D, Chochois V et al (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48(2):274–285

    Article  PubMed  CAS  Google Scholar 

  • Denyer K, Dunlap F et al (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112(2):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan P, Ni S et al (2015) Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2:15203. https://doi.org/10.1038/nplants.2015.203

    Article  CAS  PubMed  Google Scholar 

  • Erb TJ, Zarzycki J (2018) A short history of RubisCO: the rise and fall (?) of nature’s predominant CO2 fixing enzyme. Curr Opin Biotechnol 49:100–107

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Xing Y et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171. https://doi.org/10.1007/s00122-006-0218-1

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Palta JA, Bramley H, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Google Scholar 

  • Farrar J, Jones D (2000) The control of carbon acquisition by roots. New Phytol 147(1):43–53

    Article  CAS  Google Scholar 

  • Feng L, Wang K et al (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26(9):1635–1646

    Article  CAS  PubMed  Google Scholar 

  • Fettke J, Albrecht T et al (2010) Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules. New Phytol 185(3):663–675. https://doi.org/10.1111/j.1469-8137.2009.03126.x

    Article  CAS  PubMed  Google Scholar 

  • Fettke J, Leifels L et al (2012) Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature. J Exp Bot 63(8):3011–3029. https://doi.org/10.1093/jxb/ers014

  • Fischer EH, Heilmeyer LMG et al (1971) Phosphorylase and the control of glycogen degradation. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation, vol 4. Academic Press, pp 211–251

    Google Scholar 

  • Fu Y, Ballicora MA et al (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045–25052

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M et al (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140(3):1070–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Yoshida M et al (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144(4):2009–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furbank RT (2016) Walking the C4 pathway: past, present, and future. J Exp Bot 67(14):4057–4066. https://doi.org/10.1093/jxb/erw161

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155(4):1566–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Stitt M (2000) Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant J 23(6):795-806X

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Regierer B et al (2005) Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17(7):2077–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgelis N, Braun EL et al (2007) The two AGPase subunits evolve at different rates in angiosperms, yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria. Plant Cell 19(5):1458–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson K, Park J-S et al (2011) Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Sci 181(3):275–281

    Article  CAS  PubMed  Google Scholar 

  • Giroux MJ, Shaw J et al (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93(12):5824–5829. https://doi.org/10.1073/pnas.93.12.5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gol L, Tomé F, von Korff M (2017) Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. J Exp Bot 68:1399–1410

    Google Scholar 

  • Gong HY, Li Y et al (2015) Transgenic rice expressing Ictb and FBP/Sbpase derived from cyanobacteria exhibits enhanced photosynthesis and mesophyll conductance to CO2. PLoS ONE 10(10):e0140928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Good AG, Shrawat AK et al (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605

    Article  CAS  PubMed  Google Scholar 

  • Greene TW, Hannah LC (1998) Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions. Proc Natl Acad Sci USA 95:13342–13347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths CA, Sagar R et al (2016) Chemical intervention in plant sugar signalling increases yield and resilience. Nature 540(7634):574

    Article  CAS  PubMed  Google Scholar 

  • Gustin JL, Boehlein SK et al (2018) Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-31216-9

  • Hannah LC, James M (2008) The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol 19(2):160–165

    Article  CAS  PubMed  Google Scholar 

  • Hannah LC, Futch B et al (2012) A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell 24(6):2352–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannah LC, Shaw JR et al (2017) A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number. Plant Direct 1(6):e00029. https://doi.org/10.1002/pld3.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison C, Hedley C et al (1998) Evidence that the rug3 locus of pea (Pisum sativum L.) encodes plastidial phosphoglucomutase confirms that the imported substrate for starch synthesis in pea amyloplasts is glucose-6-phosphate. Plant J 13(6):753–762

    Google Scholar 

  • Hay WT, Bihmidine S et al (2017) Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB. J Plant Physiol 212:58–68

    Article  CAS  PubMed  Google Scholar 

  • He JX, Gendron JM et al (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99(15):10185–10190. https://doi.org/10.1073/pnas.152342599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks JH, Kolbe A et al (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133(2):838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendry GA (1993) Evolutionary origins and natural functions of fructans—a climatological, biogeographic and mechanistic appraisal. New Phytol 123(1):3–14

    Article  CAS  Google Scholar 

  • Herbers K, Sonnewald U (1998) Molecular determinants of sink strength. Curr Opin Plant Biol 1(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Hocking P, Meyer C (1991) Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Funct Plant Biol 18(4):339–356

    Article  CAS  Google Scholar 

  • Huang XZ, Qian Q et al (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497. https://doi.org/10.1038/ng.352

    Article  CAS  PubMed  Google Scholar 

  • Huber SC (1981) Inter-and intra-specific variation in photosynthetic formation of starch and sucrose. Z Pflanzenphysiol 101(1):49–54

    Article  CAS  Google Scholar 

  • Huber SC, Hanson KR (1992) Carbon partitioning and growth of a starchless mutant of Nicotiana sylvestris. Plant Physiol 99(4):1449–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hütsch BW, Jahn D, Schubert S (2019) Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J Agron Crop Sci 205:22–32

    Google Scholar 

  • Hwang S-K, Salamone PR et al (2005) Allosteric regulation of the higher plant ADP-glucose pyrophosphorylase is a product of synergy between the two subunits. FEBS Lett 579(5):983–990. https://doi.org/10.1016/j.febslet.2004.12.067

    Article  CAS  PubMed  Google Scholar 

  • Hwang S-K, Nishi A et al (2010) Rice endosperm-specific plastidial α-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Arch Biochem Biophys 495(1):82–92

    Article  CAS  PubMed  Google Scholar 

  • Hwang S-K, Singh S et al (2016) The plastidial starch phosphorylase from rice endosperm: catalytic properties at low temperature. Planta 243(4):999–1009

    Article  CAS  PubMed  Google Scholar 

  • Iglesias AA, Preiss J (1992) Bacterial glycogen and plant starch biosynthesis. Biochem Educ 20(4):196–203. https://doi.org/10.1016/0307-4412(92)90191-n

    Article  CAS  Google Scholar 

  • Iglesias A, Barry G et al (1993) Expression of the potato tuber ADP-glucose pyrophosphorylase in Escherichia coli. J Biol Chem 268(2):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Iglesias AA, Charng YY et al (1994) Characterization of the kinetic, regulatory, and structural properties of ADP-glucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol 104(4):1287–1294. https://doi.org/10.1104/pp.104.4.1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihemere U, Arias-Garzon D et al (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4(4):453–465

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa C, Hatanaka T et al (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156(3):1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru K, Hirotsu N et al (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45(6):707–711. https://doi.org/10.1038/ng.2612

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985. https://doi.org/10.3389/fpls.2018.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferson R, Bevan M (1987) Regulated expression of a chimeric patatin-glucuronidase fusion in tubers and induced internode cuttings of transformed potato. J Cell Biochem

    Google Scholar 

  • Joana Rodrigues JEA (2019) Source–sink regulation in crops under water deficit. Trends Plant Sci 24(7):652–663

    Google Scholar 

  • Jonik C, Sonnewald U et al (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10(9):1088–1098

    Article  CAS  PubMed  Google Scholar 

  • Jung Y-J et al (2018) Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol Bioprocess Eng 23

    Google Scholar 

  • Kanchiswamy CN (2016) DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep 35(7):1469–1474. https://doi.org/10.1007/s00299-016-1982-2

    Article  CAS  PubMed  Google Scholar 

  • Kebeish R, Niessen M et al (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25(5):593

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MU (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Kolbe A, Tiessen A et al (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci 102(31):11118–11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114

    Article  PubMed  CAS  Google Scholar 

  • Koßmann J, Visser RG et al (1991) Cloning and expression analysis of a potato cDNA that encodes branching enzyme evidence for co-expression of starch biosynthetic genes. Mol Gen Genet MGG 230(1–2):39–44

    Article  PubMed  Google Scholar 

  • Kromdijk J, GÅ‚owacka K et al (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857–861

    Google Scholar 

  • Kruger NJ, ap Rees T (1983) Properties of α-glucan phosphorylase from pea chloroplasts. Phytochemistry 22(9):1891–1898. https://doi.org/10.1016/0031-9422(83)80007-7

  • Kumar RR, Goswami S, Shamim M et al (2017) Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Front Plant Sci 8:1603

    Google Scholar 

  • Langner T, Kamoun S et al (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56(56):479–512. https://doi.org/10.1146/annurev-phyto-080417-050158

    Article  CAS  PubMed  Google Scholar 

  • Laterre R, Pottier M et al (2017) Photosynthetic trichomes contain a specific Rubisco with a modified pH-dependent activity. Plant Physiol 173(4):2110–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-K, Hwang S-K et al (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65(4):531–546

    Google Scholar 

  • Lee SK, Eom JS et al (2016) Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot 67(18):5557–5569. https://doi.org/10.1093/jxb/erw324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre S, Lawson T et al (2005) Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138(1):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung P, Lee Y-M et al (1986) Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol 167(1):82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32. https://doi.org/10.1016/j.pbi.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  • Li M, Tang D et al (2011a) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013. https://doi.org/10.1111/j.1467-7652.2011.00610.x

  • Li N, Zhang S et al (2011b) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233(2):241–250

    Google Scholar 

  • Li SY, Zhao BR et al (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA 110(8):3167–3172. https://doi.org/10.1073/pnas.1300359110

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Sun Y et al (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10(3):526–529. https://doi.org/10.1016/j.molp.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  • Lin T-P, Caspar T et al (1988) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86(4):1131–1135

    Google Scholar 

  • Lin MT, Occhialini A et al (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513(7519):547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen J et al (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043. https://doi.org/10.1038/nplants.2017.43

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA et al (2006a) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921

    Google Scholar 

  • Long SP, Zhu XG et al (2006b) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29(3):315–330

    Google Scholar 

  • Long BM, Rae BD et al (2016) Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. Curr Opin Plant Biol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ludewig F, Sonnewald U (2016) Demand for food as driver for plant sink development. J Plant Physiol 203:110–115

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Fahnenstich H et al (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:38

    Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155(4):1501–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson-Delmotte T et al (2018) IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global. World Meteorological Organization, Geneva, Tech. Rep

    Google Scholar 

  • McCormick AJ, Cramer MD et al (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171(4):759–770. https://doi.org/10.1111/j.1469-8137.2006.01785.x

    Article  CAS  PubMed  Google Scholar 

  • McCormick A, Watt D et al (2008) Supply and demand: sink regulation of sugar accumulation in sugarcane. J Exp Bot 60(2):357–364

    Article  PubMed  CAS  Google Scholar 

  • Meyer FD, Smidansky ED et al (2004) The maize Sh2r6hs ADP-glucose pyrophosphorylase (AGP) large subunit confers enhanced AGP properties in transgenic wheat (Triticum aestivum). Plant Sci 167(4):899–911

    Article  CAS  Google Scholar 

  • Meyer F, Talbert L et al (2007) Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci 47(1):336–342

    Article  CAS  Google Scholar 

  • Miao C, Xiao L et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA 115(23):6058–6063. https://doi.org/10.1073/pnas.1804774115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalska J, Zauber H et al (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc Natl Acad Sci 106(24):9908–9913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K, Hatanaka T et al (2014) Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. Plant Physiol 164(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Mu HH, Yu Y et al (2001) Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase. Arch Biochem Biophys 388(1):155–164. https://doi.org/10.1006/abbi.2000.2267

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Pantin F et al (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62(6):1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Müller-Röber BT, Koßmann J et al (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet MGG 224(1):136–146

    Article  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Makino A et al (1997) The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol 115(1):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nations U (2015) World population prospects. The 2015 revision, key findings and advanced tables. Working paper no. ESA7P/WP.241. 2015. 2

    Google Scholar 

  • Newgard CB, Hwang PK et al (1989) The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol 24(1):69–99

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Krapp A et al (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 21(5):443–454

    Article  CAS  Google Scholar 

  • Nölke G, Houdelet M et al (2014) The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol J 12(6):734–742

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Wu J et al (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33(8):862

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Carrari F et al (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137(2):611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill BC, Dalton M et al (2010) Global demographic trends and future carbon emissions. Proc Natl Acad Sci 107(41):17521–17526

    Google Scholar 

  • Obana Y, Omoto D et al (2006) Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylases in Arabidopsis thaliana. Plant Sci 170(1):1–11

    Article  CAS  Google Scholar 

  • Occhialini A, Lin MT et al (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J 85(1):148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi K, Makino A et al (2000) Growth and carbon utilization in rice plants under conditions of physiologically low temperature and irradiance. Funct Plant Biol 27(2):99–107

    Article  Google Scholar 

  • Ohdan T, Francisco PB Jr et al (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56(422):3229–3244. https://doi.org/10.1093/jxb/eri292

    Article  CAS  PubMed  Google Scholar 

  • Oiestad AJ, Martin JM et al (2016) Overexpression of ADP-glucose pyrophosphorylase in both leaf and seed tissue synergistically increase biomass and seed number in rice (Oryza sativa ssp. japonica). Funct Plant Biol 43(12):1194–1204

    Google Scholar 

  • Okita TW, Nakata PA et al (1990) The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol 93(2):785–790. https://doi.org/10.1104/pp.93.2.785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr DJ, Pereira AM et al (2017) Engineering photosynthesis: progress and perspectives. F1000Research 6

    Google Scholar 

  • Ort DR, Merchant SS et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci 112(28):8529–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400. https://doi.org/10.1093/pcp/pcu170

    Article  CAS  PubMed  Google Scholar 

  • Ozbun JL, Hawker JS et al (1973) Starch synthetase, phosphorylase, ADPglucose pyrophosphorylase, and UDPglucose pyrophosphorylase in developing maize kernels. Plant Physiol 51(1):1–5. https://doi.org/10.1104/pp.51.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pammenter NW, Loreto F et al (1993) End product feedback effects on photosynthetic electron transport. Photosynth Res 35(1):5–14. https://doi.org/10.1007/BF02185407

    Article  CAS  PubMed  Google Scholar 

  • Pieters AJ, Paul MJ et al (2001) Low sink demand limits photosynthesis under Pi deficiency. J Exp Bot 52(358):1083–1091. https://doi.org/10.1093/jexbot/52.358.1083

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3(3):443–463

    Article  Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38(1):419–458. https://doi.org/10.1146/annurev.mi.38.100184.002223

    Article  CAS  PubMed  Google Scholar 

  • Preiss J, Levi C (1980) Starch biosynthesis and degradation. In: Carbohydrates: structure and function. Elsevier, pp 371–423

    Google Scholar 

  • Preiss J, Romeo T (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in Bacteria11A glossary for this chapter appears on pp. 326–327. In: Cohn WE, Moldave K (eds) Progress in nucleic acid research and molecular biology, vol 47. Academic Press, pp 299–329

    Google Scholar 

  • Preiss J, Sivak MN (1998) Biochemistry, molecular biology and regulation of starch synthesis. In: Setlow JK (ed) Genetic engineering: principles and methods. Springer US, Boston, pp 177–223

    Chapter  Google Scholar 

  • Qi P, Lin YS et al (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22(12):1666–1680. https://doi.org/10.1038/cr.2012.151

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Regierer B, Fernie AR et al (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20(12):1256

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Foulkes J et al (2012) Achieving yield gains in wheat. Plant Cell Environ 35(10):1799–1823

    Article  PubMed  Google Scholar 

  • Rocha-Sosa M, Sonnewald U et al (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J 8(1):23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal DM, Locke AM et al (2011) Over-expressing the C 3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rösti S, Fahy B et al (2007) A mutant of rice lacking the leaf large subunit of ADP-glucose pyrophosphorylase has drastically reduced leaf starch content but grows normally. Funct Plant Biol 34(6):480–489

    Article  PubMed  Google Scholar 

  • Rowland-Bamford AJ, Allen LH Jr et al (1990) Carbon dioxide effects on carbohydrate status and partitioning in rice. J Exp Bot 41(12):1601–1608

    Article  CAS  Google Scholar 

  • Sakulsingharoj C, Choi S-B et al (2004) Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci 167(6):1323–1333

    Article  CAS  Google Scholar 

  • Satoh H, Shibahara K et al (2008) Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20(7):1833–1849. https://doi.org/10.1105/tpc.107.054007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheible W-R, Gonzalez-Fontes A et al (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9(5):783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlosser AJ, Martin JM et al (2012) The maize leaf starch mutation agps-m1 has diminished field growth and productivity. Crop Sci 52(2):700–706

    Article  CAS  Google Scholar 

  • Schlosser AJ, Martin JM et al (2014) Enhanced rice growth is conferred by increased leaf ADP-glucose pyrophosphorylase activity. J Plant Physiol Pathol 2(4)

    Google Scholar 

  • Schupp N, Ziegler P (2004) The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol 45(10):1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Shapiro B, Wertheimer E (1943) Phosphorolysis and synthesis of glycogen in animal tissues. Biochem J 37(3):397–403. https://doi.org/10.1042/bj0370397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharwood RE (2017) Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol 213(2):494–510

    Article  CAS  PubMed  Google Scholar 

  • Shomura A, Izawa T et al (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028. https://doi.org/10.1038/ng.169

    Article  CAS  PubMed  Google Scholar 

  • Sikka VK, Choi S-B et al (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci. 161:461–468

    Article  CAS  Google Scholar 

  • Simkin AJ, McAusland L et al (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66(13):4075–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, McAusland L et al (2017) Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol 175(1):134–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Pandey P et al (2014) Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnol J 12(9):1217–1230

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL (2012) Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J Exp Bot 63(13):4647–4670

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL, Ma Y et al (2008) Determining the role of Tie-dyed1 in starch metabolism: epistasis analysis with a maize ADP-glucose pyrophosphorylase mutant lacking leaf starch. J Hered 99(6):661–666

    Article  CAS  PubMed  Google Scholar 

  • Smidansky ED, Clancy M et al (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci 99(3):1724–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smidansky ED, Martin JM et al (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216(4):656–664

    Article  CAS  PubMed  Google Scholar 

  • Smidansky ED, Meyer FD et al (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225(4):965–976

    Article  CAS  PubMed  Google Scholar 

  • Smith MR, Rao IM et al (2018) Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front Plant Sci 9

    Google Scholar 

  • Sokolov LN, Déjardin A et al (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem J 336(3):681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song XJ, Huang W et al (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630. https://doi.org/10.1038/ng2014

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Basner A et al (1995) A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Biol 27(3):567–576

    Article  CAS  PubMed  Google Scholar 

  • Sowokinos JR (1981) Pyrophosphorylases in Solanum tuberosum: II. Catalytic properties and regulation of ADP-glucose and UDP-glucose pyrophosphorylase activities in potatoes. Plant Physiol 68(4):924–929. https://doi.org/10.1104/pp.68.4.924

  • Sowokinos JR, Preiss J (1982) Pyrophosphorylases in Solanum tuberosum: III. Purification, physical, and catalytic properties of adpglucose pyrophosphorylase in potatoes. Plant Physiol 69(6):1459–1466. https://doi.org/10.1104/pp.69.6.1459

  • Stark DM, Timmerman KP et al (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258(5080):287–292. https://doi.org/10.1126/science.258.5080.287

  • Steup M (1988) Starch degradation. Biochem Plants 14:255–296

    Google Scholar 

  • Stitt M (2013) Progress in understanding and engineering primary plant metabolism. Curr Opin Biotechnol 24(2):229–238

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Quick WP (1989) Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiol Plant 77(4):633–641. https://doi.org/10.1111/j.1399-3054.1989.tb05402.x

    Article  CAS  Google Scholar 

  • St-Pierre B, Brisson N (1995) Induction of the plastidic starch-phosphorylase gene in potato storage sink tissue. Planta 195(3):339–344

    Article  CAS  Google Scholar 

  • Sun J, Edwards GE et al (1999a) Feedback inhibition of photosynthesis in rice measured by O2 dependent transients. Photosynth Res 59(2):187–200. https://doi.org/10.1023/a:1006180102395

  • Sun J, Okita TW et al (1999b) Modification of carbon partitioning, photosynthetic capacity, and O2 sensitivity in Arabidopsis plants with low ADP-glucose pyrophosphorylase activity. Plant Physiol 119(1):267–276

    Google Scholar 

  • Sun J, Gibson KM et al (2002) Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and Rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol 130(3):1573–1583

    Google Scholar 

  • Sun YW, Jiao GA et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8. https://doi.org/10.3389/Fpls.2017.00298

  • Sweetlove LJ, Burrell MM (1996) Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase. Biochem J 320(2):493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetlove LJ, Kossmann J et al (1998) The control of source to sink carbon flux during tuber development in potato. Plant J 15(5):697–706

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Nielsen J et al (2017) Engineering central metabolism—a grand challenge for plant biologists. Plant J 90(4):749–763

    Article  CAS  PubMed  Google Scholar 

  • Tang X-J, Peng C et al (2016) ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci 249:70–83

    Article  CAS  PubMed  Google Scholar 

  • Tetlow IJ, Morell MK et al (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55(406):2131–2145

    Article  CAS  PubMed  Google Scholar 

  • Thomsen HC, Eriksson D et al (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19(10):656–663

    Article  CAS  PubMed  Google Scholar 

  • Thorbjørnsen T, Villand P et al (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10(2):243–250

    Article  Google Scholar 

  • Tiessen A, Hendriks JH et al (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14(9):2191–2213

    Google Scholar 

  • Tiessen A, Prescha K et al (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J 35(4):490–500

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Wittmiß M et al (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27(7):1968–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong H, Liu L et al (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24(6):2562–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci 211:52–60. https://doi.org/10.1016/j.plantsci.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  • Tuncel A, Cakir B et al (2014) The role of the large subunit in redox regulation of the rice endosperm ADP-glucose pyrophosphorylase. FEBS J 281(21):4951–4963. https://doi.org/10.1111/febs.13041

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34(6):582. https://doi.org/10.1038/nbt0616-582

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen X et al (2007) Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tissue Organ Cult 88(1):83–92

    Article  CAS  Google Scholar 

  • Watson A, Ghosh S et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23

    Article  PubMed  Google Scholar 

  • Whitney SM, Houtz RL et al (2011a) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155(1):27–35

    Google Scholar 

  • Whitney SM, Sharwood RE et al (2011b) Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci 108(35):14688–14693

    Google Scholar 

  • Whitney SM, Birch R et al (2015) Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc Natl Acad Sci 112(11):3564–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson WA, Roach PJ et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34(6):952–985. https://doi.org/10.1111/j.1574-6976.2010.00220.x

    Article  CAS  PubMed  Google Scholar 

  • Wingenter K, Schulz A et al (2010) Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol 154(2):665–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo JW, Kim J et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164. https://doi.org/10.1038/nbt.3389

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Wang G et al (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci 112(39):E5411–E5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaya T, Obara M et al (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53(370):917–925

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Akiyama A et al (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci 101(20):7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang L et al (2017) Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica 55(3):467–477

    Google Scholar 

  • Yao X-Y, Liu X-Y et al (2017) Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. J Integr Agric 16(1):97–105

    Article  Google Scholar 

  • Zamski E, Schaffer AA (1996) Photoassimilate distribution in plants and crops: source–sink relationships. Books in soils

    Google Scholar 

  • Zeeman SC, Thorneycroft D et al (2004) Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135(2):849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Häusler RE et al (2008) Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol J 6(5):453–464

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang J et al (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109(52):21534–21539. https://doi.org/10.1073/pnas.1219776110

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Massel K et al (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):210. https://doi.org/10.1186/s13059-018-1586-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Agriculture and Food Research Initiative [grant no. 2018-67013-27458/project accession no. 1014859] from the USDA National Institute of Food and Agriculture (T.O. and S.K.H.), USDA Hatch Umbrella Project #1015621, and Hatch Regional NC-1200 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Okita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koper, K., Hwang, SK., Singh, S., Okita, T.W. (2021). Source-Sink Relationships and Its Effect on Plant Productivity: Manipulation of Primary Carbon and Starch Metabolism. In: Sarmah, B.K., Borah, B.K. (eds) Genome Engineering for Crop Improvement. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-63372-1_1

Download citation

Publish with us

Policies and ethics