Skip to main content

Conducting Polymers and Their Composites

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The on-going shrinkage in the size of electronic devices and the high-power generation of electrical appliances have led to new challenges in insulating polymers for packaging applications. The main aim of this review is to study fabrication of polymer composites coupled with improved electrical properties and thermal resistivity, with lower dielectric constant, lowers thermal expansion and the cost associated with the production of such composites. Polymeric materials are an excellent choice for production of electronic materials as they can be processed with ease and are economical. The disadvantage of using polymers for processing of electrically conductive materials is that they possess low thermal conductivity. However, the properties can be enhanced by incorporating appropriate fillers that have high thermal conductivity; these include boron nitride, aluminium oxide and silicon nitride. This chapter aims to review the available conducting polymers, fillers, processing techniques, final properties, and the end use applications of such conducting polymer composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abidian, M.R., Kim, D.H., Martin, D.C.: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18(4), 405–409 (2006)

    Article  Google Scholar 

  2. Akagi, K., Piao, G., Kaneko, S., Higuchi, I., Shirakawa, H., Kyotani, M.: Helical polyacetylene synthesized under chiral nematic liquid crystals. Synth. Met. 102(1–3), 1406–1409 (1999)

    Article  Google Scholar 

  3. Al-Saleh, M.H., Sundararaj, U.: A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009)

    Article  Google Scholar 

  4. Aphesteguy, J., Bercoff, P., Jacobo, S.: Preparation of magnetic and conductive Ni–Gd ferrite-polyaniline composite. Phys. B 398(2), 200–203 (2007)

    Article  Google Scholar 

  5. Athawale, A.A., Kulkarni, M.V.: Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens. Actuators B: Chem 67(1–2), 173–177 (2000)

    Article  Google Scholar 

  6. Awuzie, C.I.: Conducting polymers. Mater. Today: Proc. 4(4, Part E), 5721–5726 (2017)

    Google Scholar 

  7. Bai, H., Zhao, L., Lu, C., Li, C., Shi, G.: Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer 50(14), 3292–3301 (2009)

    Article  Google Scholar 

  8. Baker, C.O., Shedd, B., Innis, P.C., Whitten, P.G., Spinks, G.M., Wallace, G.G., Kaner, R.B.: Monolithic actuators from flash-welded polyaniline nanofibers. Adv. Mater. 20(1), 155–158 (2008)

    Article  Google Scholar 

  9. Baker, C.O., Shedd, B., Tseng, R.J., Martinez-Morales, A.A., Ozkan, C.S., Ozkan, M., Yang, Y., Kaner, R.B.: Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices. ACS Nano 5(5), 3469–3474 (2011)

    Article  Google Scholar 

  10. Balint, R., Cassidy, N.J., Cartmell, S.H.: Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10(6), 2341–2353 (2014)

    Article  Google Scholar 

  11. Ballard, D., Courtis, A., Shirley, I., Taylor, S.: Synthesis of polyphenylene from a cis-dihydrocatechol biologically produced monomer. Macromolecules 21(2), 294–304 (1988)

    Article  Google Scholar 

  12. Banerjee, S., Konwar, D., Kumar, A.: Polyaniline nanofiber reinforced nanocomposite based highly sensitive piezoelectric sensors for selective detection of hydrochloric acid: analysis of response mechanism. Sens. Actuators B: Chem. 190, 199–207 (2014)

    Article  Google Scholar 

  13. Begin, D., Marêché, J., Billaud, D.: Electrical properties of p-doped highly-oriented polyacetylene. Synth. Met. 34(1–3), 671–676 (1989)

    Article  Google Scholar 

  14. Bello, A., Giannetto, M., Mori, G., Seeber, R., Terzi, F., Zanardi, C.: Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sens. Actuators B: Chem. 121(2), 430–435 (2007)

    Article  Google Scholar 

  15. Bhattacharya, A., Ganguly, K., De, A., Sarkar, S.: A new conducting nanocomposite—PPy-zirconium (IV) oxide. Mater. Res. Bull. 31(5), 527–530 (1996)

    Article  Google Scholar 

  16. Billas, I.M., Chatelain, A., de Heer, W.A.: Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265(5179), 1682–1684 (1994)

    Article  Google Scholar 

  17. Bott, D., Skotheim, T.: Handbook of Conducting Polymers. Marcel Dekker, New York (1986)

    Google Scholar 

  18. Burroughes, J.H., Bradley, D.D., Brown, A., Marks, R., Mackay, K., Friend, R.H., Burns, P., Holmes, A.: Light-emitting diodes based on conjugated polymers. Nature 347(6293), 539 (1990)

    Google Scholar 

  19. Chapman, B., Buckley, R., Kemp, N., Kaiser, A., Beaglehole, D., Trodahl, H.: Low-energy conductivity of PF 6-doped polypyrrole. Phys. Rev. B 60(19), 13479 (1999)

    Article  Google Scholar 

  20. Chen, G.Z., Shaffer, M.S., Coleby, D., Dixon, G., Zhou, W., Fray, D.J., Windle, A.H.: Carbon nanotube and polypyrrole composites: coating and doping. Adv. Mater. 12(7), 522–526 (2000)

    Article  Google Scholar 

  21. Chen, H., Dong, W., Ge, J., Wang, C., Wu, X., Lu, W., Chen, L.: Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci. Rep. 3, 1910 (2013)

    Article  Google Scholar 

  22. Chiang, C.K., Fincher, C., Jr., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098 (1977)

    Article  Google Scholar 

  23. Chun, K.Y., Oh, Y., Rho, J., Ahn, J.H., Kim, Y.J., Choi, H.R., Baik, S.: Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5(12), 853 (2010)

    Article  Google Scholar 

  24. Crowley, K., Morrin, A., Shepherd, R.L., M. in het Panhuis, G. G. Wallace, M. R. Smyth and A. J. Killard, : Fabrication of polyaniline-based gas sensors using piezoelectric inkjet and screen printing for the detection of hydrogen sulfide. IEEE Sens. J. 10(9), 1419–1426 (2010)

    Article  Google Scholar 

  25. Dallolio, A., Dascola, G., Varacca, V., Bocchi, V.: Electronic paramagnetic resonance and conductivity of a black electrolytic oxypyrrole. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 267(6), 433–440 (1968)

    Google Scholar 

  26. Darmanin, T., Guittard, F.: Wettability of poly (3-alkyl-3, 4-propylenedioxythiophene) fibrous structures forming nanoporous, microporous or micro/nanostructured networks. Mater. Chem. Phys. 146(1–2), 6–11 (2014)

    Article  Google Scholar 

  27. Das, T.K., Prusty, S.: Review on conducting polymers and their applications. Polym.-Plast. Technol. Eng. 51(14), 1487–1500 (2012)

    Article  Google Scholar 

  28. Daver, F., Baez, E., Shanks, R.A., Brandt, M.: Conductive polyolefin–rubber nanocomposites with carbon nanotubes. Compos. A Appl. Sci. Manuf. 80, 13–20 (2016)

    Article  Google Scholar 

  29. De, A., Das, A., Lahiri, S.: Heavy ion irradiation on conducting polypyrrole and ZrO2–polypyrrole nanocomposites. Synth. Met. 144(3), 303–307 (2004)

    Article  Google Scholar 

  30. De Paoli, M.A., Waltman, R., Diaz, A., Bargon, J.: An electrically conductive plastic composite derived from polypyrrole and poly (vinyl chloride). Journal of Polymer Science: Polymer Chemistry Edition 23(6), 1687–1698 (1985)

    Google Scholar 

  31. De Surville, R., Jozefowicz, M., Yu, L., Pepichon, J., Buvet, R.: Electrochemical chains using protolytic organic semiconductors. Electrochim. Acta 13(6), 1451–1458 (1968)

    Article  Google Scholar 

  32. Diaz, A., Kanazawa, K., Gardini, G.: Electrochemically conducting polypyrrole . J. Chem. Soc. Chem. Commun 14, 635–636 (1979)

    Article  Google Scholar 

  33. Diaz, A., Kanazawa, K.K., Gardini, G.P.: Electrochemical polymerization of pyrrole. J. Chem. Soc., Chem. Commun. (14), 635–636 (1979)

    Google Scholar 

  34. Diaz, A., Logan, J.: Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 111(1), 111–114 (1980)

    Article  Google Scholar 

  35. Dogan, S., Akbulut, U., Toppare, L.: Conducting polymers of aniline I. Electrochemical synthesis of a conducting composite. Synth. Met. 53(1), 29–35 (1992)

    Article  Google Scholar 

  36. Downs, C., Nugent, J., Ajayan, P.M., Duquette, D.J., Santhanam, K.S.: Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. 11(12), 1028–1031 (1999)

    Article  Google Scholar 

  37. Dul, S., Fambri, L., Pegoretti, A.: Fused deposition modelling with ABS–graphene nanocomposites. Compos. A Appl. Sci. Manuf. 85, 181–191 (2016)

    Article  Google Scholar 

  38. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Béguin, S.: Supercapacitors based on conducting polymers/nanotubes composites. 153(2), 413–418 (2006)

    Google Scholar 

  39. Galembeck, A., Alves, O.L.: Chemical polymerization of pyrrole on CeO2 films. Synth. Met. 84(1–3), 151–152 (1997)

    Article  Google Scholar 

  40. Gao, M., Huang, S., Dai, L., Wallace, G., Gao, R., Wang, Z.: Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. 112(20), 3810–3813 (2000)

    Article  Google Scholar 

  41. Gerard, M., Chaubey, A., Malhotra, B.: Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)

    Article  Google Scholar 

  42. Gosk, J., Kulszewicz-Bajer, I., Twardowski, A.: Magnetic properties of polyaniline doped with FeCl3. Synth. Met. 156(11–13), 773–778 (2006)

    Article  Google Scholar 

  43. Greene, R.L., Street, G.B., Suter, L.: Superconductivity in polysulfur nitride (SN) x. Phys. Rev. Lett. 34(10), 577 (1975)

    Article  Google Scholar 

  44. Greenham, N.C., Friend, R.H., Brown, A.R., Bradley, D.D., Pichler, K., Burn, P.L., Kraft, A., Holmes, A.B.: Electroluminescent devices made with conjugated polymers. In: Electroluminescent Materials, Devices, and Large-Screen Displays. International Society for Optics and Photonics (1993)

    Google Scholar 

  45. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R.: Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12(7), 481–494 (2000)

    Article  Google Scholar 

  46. Guo, Q., Du, K., Guo, X., Wang, F.: Electrochemical impedance spectroscope analysis of microwave absorbing coatings on magnesium alloy in 3.5 wt.% NaCl solution. Electrochim. Acta 98, 190–198 (2013)

    Article  Google Scholar 

  47. Guo, Z.P., Wang, J.Z., Liu, H.K., Dou, S.X.: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J. Power Sources 146(1), 448–451 (2005)

    Article  Google Scholar 

  48. Gupta, N., Sharma, S., Mir, I.A., Kumar, D.: Advances in sensors based on conducting polymers (2006)

    Google Scholar 

  49. Gurunathan, K., Amalnerkar, D., Trivedi, D.: Synthesis and characterization of conducting polymer composite (PAn/TiO2) for cathode material in rechargeable battery. Matér. Lett. 57(9–10), 1642–1648 (2003)

    Article  Google Scholar 

  50. Gurunathan, T., Rao, C.R., Narayan, R., Raju, K.: Polyurethane conductive blends and composites: synthesis and applications perspective. J. Mater. Sci. 48(1), 67–80 (2013)

    Article  Google Scholar 

  51. Gurusiddesh, M., Madhu, B., Shankaramurthy, G.: Structural, dielectric, magnetic and electromagnetic interference shielding investigations of polyaniline decorated Co 0.5 Ni 0.5 Fe 2 O 4 nanoferrites. J. Mater. Sci.: Mater. Electron. 29(4), 3502–3509 (2018)

    Google Scholar 

  52. Hatano, M., Kambara, S., Okamoto, S.: Paramagnetic and electric properties of polyacetylene. J. Polym. Sci. 51(156), S26–S29 (1961)

    Article  Google Scholar 

  53. Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40(14), 2591–2611 (2001)

    Article  Google Scholar 

  54. Heywang, G., Jonas, F.: Poly (alkylenedioxythiophene) s—new, very stable conducting polymers. Adv. Mater. 4(2), 116–118 (1992)

    Article  Google Scholar 

  55. Hill, R.F., Supancic, P.H.: Thermal conductivity of platelet-filled polymer composites. J. Am. Ceram. Soc. 85(4), 851–857 (2002)

    Article  Google Scholar 

  56. Hosseini, S.H., Sadeghi, M.: Investigation of microwave absorbing properties for magnetic nanofiber of polystyrene–polyvinylpyrrolidone. Curr. Appl. Phys. 14(7), 928–931 (2014)

    Article  Google Scholar 

  57. Huang, J., Kaner, R.B.: Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. 43(43), 5817–5821 (2004)

    Article  Google Scholar 

  58. Huang, J., Mao, C., Zhu, Y., Jiang, W., Yang, X.: Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 73, 267–274 (2014)

    Article  Google Scholar 

  59. Huang, K., Zhang, Y., Long, Y., Yuan, J., Han, D., Wang, Z., Niu, L., Chen, Z.: Preparation of highly conductive, self‐assembled gold/polyaniline nanocables and polyaniline nanotubes. Chem.–A Eur. J. 12(20), 5314–5319 (2006)

    Google Scholar 

  60. Huang, X., Jiang, P., Tanaka, T.: A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27(4), 8–16 (2011)

    Article  Google Scholar 

  61. Hwang, S., Reyes, E.I., Moon, K.S., Rumpf, R.C., Kim, N.S.: Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44(3), 771–777 (2015)

    Article  Google Scholar 

  62. Isseroff, R.R., Dahle, S.E.: Electrical stimulation therapy and wound healing: where are we now? Adv. Wound Care 1(6), 238–243 (2012)

    Article  Google Scholar 

  63. Ivory, D., Miller, G., Sowa, J., Shacklette, L., Chance, R., Baughman, R.: Highly conducting charge-transfer complexes of poly (p-phenylene). J. Chem. Phys. 71(3), 1506–1507 (1979)

    Article  Google Scholar 

  64. Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N.: Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59(2), 280–337 (2019)

    Article  Google Scholar 

  65. Kalita, G., Umeno, M., Tanemura, M.: Blend of Silicon Nanostructures and Conducting Polymers for Solar Cells, pp. 495–508. Elsevier, Nanostructured Polymer Blends (2014)

    Book  Google Scholar 

  66. Kanazawa, K.K., Diaz, A., Geiss, R.H., Gill, W.D., Kwak, J.F., Logan, J.A., Rabolt, J.F., Street, G.B.: ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’polymer. J. Chem. Soc., Chem. Commun. (19), 854–855 (1979)

    Google Scholar 

  67. Kaur, G., Adhikari, R., Cass, P., Bown, M., Gunatillake, P.: Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5(47), 37553–37567 (2015)

    Article  Google Scholar 

  68. Kirchmeyer, S., Reuter, K.: Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). J. Mater. Chem. 15(21), 2077–2088 (2005)

    Article  Google Scholar 

  69. Koul, S., Chandra, R., Dhawan, S.: Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sens. Actuators B: Chem. 75(3), 151–159 (2001)

    Article  Google Scholar 

  70. Kuang, T., Chang, L., Chen, F., Sheng, Y., Fu, D., Peng, X.: Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016)

    Article  Google Scholar 

  71. Kumar, D., Sharma, R.: Advances in conductive polymers. Eur. Polym. J. 34(8), 1053–1060 (1998)

    Article  Google Scholar 

  72. Kumar, R., Singh, S., Yadav, B.: Conducting polymers: synthesis, properties and applications. Int. Adv. Res. J. Sci., Eng. Technol. 2(11), 110–124 (2015)

    Google Scholar 

  73. Kumar, S.S., Mathiyarasu, J., Phani, K., Yegnaraman, V.: Simultaneous determination of dopamine and ascorbic acid on poly (3, 4-ethylenedioxythiophene) modified glassy carbon electrode. J. Solid State Electrochem. 10(11), 905–913 (2006)

    Article  Google Scholar 

  74. Lee, D., Baek, S., Ree, M., Kim, O.: Effect of the electrode material on the electrical-switching characteristics of nonvolatile memory devices based on poly ($ o $-anthranilic acid) thin films. IEEE Electron Device Lett. 29(7), 694–697 (2008)

    Article  Google Scholar 

  75. Letheby, H.: XXIX.—on the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 15, 161–163 (1862)

    Article  Google Scholar 

  76. Leung, L.M., Tan, K.H., Lam, T., WeiDong, H.: Electrical and optical properties of polyacetylene copolymers. React. Funct. Polym. 50(2), 173–179 (2002)

    Article  Google Scholar 

  77. Li, D., Del Rio Castillo, A.E., Jussila, H., Ye, G., Ren, Z., Bai, J., Chen, X., Lipsanen, H., Sun, Z., Bonaccorso, F.: Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 4, 17–23 (2016)

    Article  Google Scholar 

  78. Li, D., Huang, J., Kaner, R.B.: Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 42(1), 135–145 (2008)

    Article  Google Scholar 

  79. Li, L., Yu, Z., Hu, W., Chang, C.H., Chen, Q., Pei, Q.: Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 23(46), 5563–5567 (2011)

    Article  Google Scholar 

  80. Li, S., Li, Z., Fang, X., Chen, G.Q., Huang, Y., Xu, K.: Synthesis and characterization of polyparaphenylene from cis-dihydrocatechol. J. Appl. Polym. Sci. 110(4), 2085–2093 (2008)

    Article  Google Scholar 

  81. Li, Y., Huang, X., Zeng, L., Li, R., Tian, H., Fu, X., Wang, Y., Zhong, W.H.: A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci. 54(2), 1036–1076 (2019)

    Article  Google Scholar 

  82. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q.: Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7(10), 817 (2013)

    Article  Google Scholar 

  83. Lin, J.W.P., Dudek, L.P.: Synthesis and properties of poly (2, 5-thienylene). J. Polym. Sci.: Polym. Chem. Edition 18(9), 2869–2873 (1980)

    Google Scholar 

  84. Lin, P., Yan, F., Chan, H.L.: Improvement of the tunable wettability property of poly (3-alkylthiophene) films. Langmuir 25(13), 7465–7470 (2009)

    Article  Google Scholar 

  85. Lin, Y.J., Liu, B.Y., Chin, Y.M.: Effects of (NH4) 2Sx treatment on the electrical and optical properties of indium tin oxide/conducting polymer electrodes. Thin Solid Films 517(18), 5508–5511 (2009)

    Article  Google Scholar 

  86. Little, W.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134(6A), A1416 (1964)

    Article  Google Scholar 

  87. Liu, J., Wan, M.: Composites of polypyrrole with conducting and ferromagnetic behaviors. J. Polym. Sci., Part a: Polym. Chem. 38(15), 2734–2739 (2000)

    Article  Google Scholar 

  88. Liu, Y., Lv, H., Lan, X., Leng, J., Du, S.: Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 69(13), 2064–2068 (2009)

    Article  Google Scholar 

  89. Long, Y., Duvail, J., Li, M., Gu, C., Liu, Z., Ringer, S.P.: Electrical conductivity studies on individual conjugated polymer nanowires: two-probe and four-probe results. Nanoscale Res. Lett. 5(1), 237 (2010)

    Article  Google Scholar 

  90. Lu, X., Zhang, W., Wang, C., Wen, T.C., Wei, Y.: One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 36(5), 671–712 (2011)

    Article  Google Scholar 

  91. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41(10), 1345–1367 (2010)

    Article  Google Scholar 

  92. MacDiarmid, A.G.: “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 40(14), 2581–2590 (2001)

    Article  Google Scholar 

  93. Machado, J., Masse, M., Karasz, F.: Anisotropic mechanical properties of uniaxially oriented electrically conducting poly (p-phenylene vinylene). Polymer 30(11), 1992–1996 (1989)

    Article  Google Scholar 

  94. Mannoor, M.S., Jiang, Z., James, T., Kong, Y.L., Malatesta, K.A., Soboyejo, W.O., Verma, N., Gracias, D.H., McAlpine, M.C.: 3D printed bionic ears. Nano Lett. 13(6), 2634–2639 (2013)

    Article  Google Scholar 

  95. Mapkar, J.A., Belashi, A., Berhan, L.M., Coleman, M.R.: Formation of high loading flexible carbon nanofiber network composites. Compos. Sci. Technol. 75, 1–6 (2013)

    Article  Google Scholar 

  96. Martin, C.R., Kohli, P.: The emerging field of nanotube biotechnology. Nat. Rev. Drug Discovery 2(1), 29 (2003)

    Article  Google Scholar 

  97. Matsushita, A., Akagi, K., Liang, T.S., Shirakawa, H.: Effects of pressure on the electrical resistivity of iodine-doped polyacetylene. Synth. Met. 101(1–3), 447–448 (1999)

    Article  Google Scholar 

  98. McCullough, R.D.: The chemistry of conducting polythiophenes. Adv. Mater. 10(2), 93–116 (1998)

    Article  Google Scholar 

  99. McNeill, R., Siudak, R., Wardlaw, J., Weiss, D.: Electronic conduction in polymers. I. The chemical structure of polypyrrole. Aust. J. Chem. 16(6), 1056–1075 (1963)

    Article  Google Scholar 

  100. McQuade, D.T., Pullen, A.E., Swager, T.M.: Conjugated polymer-based chemical sensors. Chem. Rev. 100(7), 2537–2574 (2000)

    Article  Google Scholar 

  101. Mecklenburg, M., Mizushima, D., Ohtake, N., Bauhofer, W., Fiedler, B., Schulte, K.: On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites. Carbon 91, 275–290 (2015)

    Article  Google Scholar 

  102. Meng, H., Li, G.: A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199–2221 (2013)

    Article  Google Scholar 

  103. Meng, Q., Hu, J.: A review of shape memory polymer composites and blends. Compos. A Appl. Sci. Manuf. 40(11), 1661–1672 (2009)

    Article  Google Scholar 

  104. Meyer, W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10(6), 439–448 (1998)

    Article  Google Scholar 

  105. Miller, T.F., III., Wang, Z.G., Coates, G.W., Balsara, N.P.: Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc. Chem. Res. 50(3), 590–593 (2017)

    Article  Google Scholar 

  106. Misra, S., Mathur, P., Srivastava, B.: Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide. Sens. Actuators, A 114(1), 30–35 (2004)

    Article  Google Scholar 

  107. Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J., Lee, W.R.: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)

    Article  Google Scholar 

  108. Nandapure, B., Kondawar, S., Salunkhe, M., Nandapure, A.: Magnetic and transport properties of conducting polyaniline/nickel oxide nanocomposites. Adv. Mater. Lett. 4(2), 134–140 (2013)

    Article  Google Scholar 

  109. Narkis, M., Zilberman, M., Siegmann, A.: On the ”curiosity” of electrically conductive melt processed doped-polyaniline/polymer blends versus carbon-black/polymer compounds. Polym. Adv. Technol. 8(8), 525–528 (1997)

    Article  Google Scholar 

  110. Naveen, M.H., Gurudatt, N.G., Shim, Y.B.: Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9, 419–433 (2017)

    Article  Google Scholar 

  111. Novák, P., Müller, K., Santhanam, K., Haas, O.: Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97(1), 207–282 (1997)

    Article  Google Scholar 

  112. Oyama, N., Tatsuma, T., Sato, T., Sotomura, T.: Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density. Nature 373(6515), 598 (1995)

    Article  Google Scholar 

  113. Ozaki, M., Peebles, D., Weinberger, B., Heeger, A., MacDiarmid, A.: Semiconductor properties of polyacetylene p-(CH) x: n-CdS heterojunctions. J. Appl. Phys. 51(8), 4252–4256 (1980)

    Article  Google Scholar 

  114. Pan, L., Pu, L., Shi, Y., Song, S., Xu, Z., Zhang, R., Zheng, Y.: Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Adv. Mater. 19(3), 461–464 (2007)

    Article  Google Scholar 

  115. Pang, H., Xu, L., Yan, D.X., Li, Z.M.: Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39(11), 1908–1933 (2014)

    Article  Google Scholar 

  116. Pant, H., Patra, M., Negi, S., Bhatia, A., Vadera, S., Kumar, N.: Studies on conductivity and dielectric properties of polyaniline-zinc sulphide composites. Bull. Mater. Sci. 29(4), 379–384 (2006)

    Article  Google Scholar 

  117. Park, K.S., Schougaard, S.B., Goodenough, J.B.: Conducting-polymer/iron-redox- couple composite cathodes for lithium secondary batteries. Adv. Mater. 19(6), 848–851 (2007)

    Article  Google Scholar 

  118. Park, S.-J., Son, Y.-R., Heo, Y.-J.: Chapter 6—Prospective synthesis approaches to emerging materials for supercapacitor. In: Cheong, K.Y., Impellizzeri, G., Fraga, M.A. (eds.) Emerging Materials for Energy Conversion and Storage, pp. 185–208. Elsevier

    Google Scholar 

  119. Pei, Q., Inganäs, O.: Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. The J. Phys. Chem. 97(22), 6034–6041 (1993)

    Article  Google Scholar 

  120. Peng, C., Zhang, S., Jewell, D., Chen, G.Z.: Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 18(7), 777–788 (2008)

    Article  Google Scholar 

  121. Peng, X.F., Wu, X.Y., Ji, X.X., Ren, J., Wang, Q., Li, G.Q., Yang, X.H.: Modified conducting polymer hole injection layer for high-efficiency perovskite light-emitting devices: enhanced hole injection and reduced luminescence quenching. The J. Phys. Chem. Lett. 8(19), 4691–4697 (2017)

    Article  Google Scholar 

  122. Penner, R., Martin, C.: Microporous membrane-modified electrodes for preparation of chemical microstructures on electrode surfaces. J. Electrochem. Soc., Electrochemical Soc Inc 10 South Main Street, Pennington, NJ 08534 (1987)

    Google Scholar 

  123. Phang, S.W., Hino, T., Abdullah, M., Kuramoto, N.: Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Mater. Chem. Phys. 104(2–3), 327–335 (2007)

    Article  Google Scholar 

  124. Phang, S.W., Tadokoro, M., Watanabe, J., Kuramoto, N.: Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Curr. Appl. Phys. 8(3–4), 391–394 (2008)

    Article  Google Scholar 

  125. Plieth, W.: Electrochemistry for Materials Science. Elsevier (2008)

    Google Scholar 

  126. Pokharel, P., Xiao, D., Erogbogbo, F., Keles, O.: A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nanoplatelets, carbon black and multi-walled carbon nanotubes. Compos. B Eng. 161, 169–182 (2019)

    Article  Google Scholar 

  127. Porcarelli, L., Shaplov, A.S., Bella, F., Nair, J.R., Mecerreyes, D., Gerbaldi, C.: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 1(4), 678–682 (2016)

    Article  Google Scholar 

  128. Pramanik, P., Khastgir, D., Saha, T.: Conductive nitrile rubber composite containing carbon fillers: studies on mechanical properties and electrical conductivity. Composites 23(3), 183–191 (1992)

    Article  Google Scholar 

  129. Qian, C., Zhu, Y., Dong, Y., Fu, Y.: Vapor-grown carbon nanofiber/poly (ethylene-co-vinyl acetate) composites with electrical-active two-way shape memory behavior. J. Intell. Mater. Syst. Struct. 28(19), 2749–2756 (2017)

    Article  Google Scholar 

  130. Qiao, Y., Li, C.M., Bao, S.J., Bao, Q.L.: Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170(1), 79–84 (2007)

    Article  Google Scholar 

  131. Ramya, R., Sivasubramanian, R., Sangaranarayanan, M.: Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim. Acta 101, 109–129 (2013)

    Article  Google Scholar 

  132. Ravichandran, R., Sundarrajan, S., Venugopal, J.R., Mukherjee, S., Ramakrishna, S.: Applications of conducting polymers and their issues in biomedical engineering. J. Roy. Soc. Interface 7(suppl_5), S559–S579 (2010)

    Google Scholar 

  133. Raza, M.A., Westwood, A.V.K., Stirling, C., Ahmad, R.: Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications. Compos. Sci. Technol. 120, 9–16 (2015)

    Article  Google Scholar 

  134. Reddinger, J.L., Reynolds, J.R.: Molecular engineering of π-conjugated polymers. In: Radical Polymerisation Polyelectrolytes, pp. 57-122. Springer (1999)

    Google Scholar 

  135. Roncali, J.: Conjugated poly (thiophenes): synthesis, functionalization, and applications. Chem. Rev. 92(4), 711–738 (1992)

    Article  Google Scholar 

  136. Ryu, K.S., Kim, K.M., Kang, S.G., Lee, G.J., Joo, J., Chang, S.H.: Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synth. Met. 110(3), 213–217 (2000)

    Article  Google Scholar 

  137. Sadeghi, A., Moeini, R., Yeganeh, J.K.: Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding. Polym. Compos. (2018)

    Google Scholar 

  138. San, F.G.B., Isik-Gulsac, I.: Effect of surface wettability of polymer composite bipolar plates on polymer electrolyte membrane fuel cell performances. Int. J. Hydrogen Energy 38(10), 4089–4098 (2013)

    Google Scholar 

  139. Sariciftci, N., Braun, D., Zhang, C., Srdanov, V., Heeger, A., Stucky, G., Wudl, F.: Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 62(6), 585–587 (1993)

    Article  Google Scholar 

  140. Scrosati, B.: Applications of Electroactive Polymers. Springer (1993)

    Google Scholar 

  141. Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494 (2009)

    Article  Google Scholar 

  142. Selampinar, F., Toppare, L., Akbulut, U., Yalçin, T., Süzer, Ş.: A conducting composite of polypyrrole II. As a gas sensor. Synth. Met. 68(2), 109–116 (1995)

    Article  Google Scholar 

  143. Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., Longaker, M.T.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair and Regeneration 17(6), 763–771 (2009)

    Article  Google Scholar 

  144. Sgreccia, E., Khadhraoui, M., De Bonis, C., Licoccia, S., Di Vona, M., Knauth, P.: Mechanical properties of hybrid proton conducting polymer blends based on sulfonated polyetheretherketones. J. Power Sources 178(2), 667–670 (2008)

    Article  Google Scholar 

  145. Shi, G., Rouabhia, M., Wang, Z., Dao, L.H., Zhang, Z.: A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25(13), 2477–2488 (2004)

    Article  Google Scholar 

  146. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. J. Chem. Soc., Chem. Commun. (16), 578–580 (1977)

    Google Scholar 

  147. Simonet, J., Rault-Berthelot, J.: Electrochemistry: a technique to form, to modify and to characterize organic conducting polymers. Prog. Solid State Chem. 21(1), 1–48 (1991)

    Article  Google Scholar 

  148. Skotheim, T., Inganäs, O., Prejza, J., Lundström, I.: Polypyrrole-semiconductor photovoltaic devices. Mol. Cryst. Liq. Cryst. 83(1), 329–339 (1982)

    Article  Google Scholar 

  149. Somanathan, N., Wegner, G.: Mechanical properties of conducting poly (3-cyclohexyl thiophene) films. Polymer 37(10), 1891–1895 (1996)

    Article  Google Scholar 

  150. Stefanescu, E., Daranga, C., Stefanescu, C.: Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles. Materials 2(4), 2095–2153 (2009)

    Article  Google Scholar 

  151. Stejskal, J., Sapurina, I., Trchová, M.: Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35(12), 1420–1481 (2010)

    Article  Google Scholar 

  152. Street, G., Clarke, T.: Conducting polymers: a review of recent work. IBM J. Res. Dev. 25(1), 51–57 (1981)

    Article  Google Scholar 

  153. Su, S.J., Kuramoto, N.: Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synth. Met. 114(2), 147–153 (2000)

    Article  Google Scholar 

  154. Sulong, A.B., Ramli, M.I., Hau, S.L., Sahari, J., Muhamad, N., Suherman, H.: Rheological and mechanical properties of carbon nanotube/Graphite/SS316L/polypropylene nanocomposite for a conductive polymer composite. Compos. B Eng. 50, 54–61 (2013)

    Article  Google Scholar 

  155. Talikowska, M., Fu, X., Lisak, G.: Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens. Bioelectron. (2019)

    Google Scholar 

  156. Tanaka, H., Danno, T.: Effects of impurities and thermal isomerization on the electrical properties of undoped polyacetylene. Synth. Met. 17(1–3), 545–550 (1987)

    Article  Google Scholar 

  157. Tanner, D., Doll, G., Rao, A., Eklund, P., Arbuckle, G., MacDiarmid, A.: Optical properties of potassium-doped polyacetylene. Synth. Met. 141(1–2), 75–79 (2004)

    Article  Google Scholar 

  158. Teh, K.S., Takahashi, Y., Yao, Z., Lu, Y.W.: Influence of redox-induced restructuring of polypyrrole on its surface morphology and wettability. Sens. Actuators, a 155(1), 113–119 (2009)

    Article  Google Scholar 

  159. Tibbetts, G.G., Lake, M.L., Strong, K.L., Rice, B.P.: A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67(7), 1709–1718 (2007)

    Article  Google Scholar 

  160. Ting, T., Jau, Y., Yu, R.: Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl. Surf. Sci. 258(7), 3184–3190 (2012)

    Article  Google Scholar 

  161. Trivedi, D.: Observation of ferromagnetism in polyaniline. Synth. Met. 121(1), 1780–1781 (2001)

    Article  Google Scholar 

  162. Tsukamoto, J., Takahashi, A.: Synthesis and electrical properties of polyacetylene yielding conductivity of 105 S/cm. Synth. Met. 41(1–2), 7–12 (1991)

    Article  Google Scholar 

  163. Virji, S., Huang, J., Kaner, R.B., Weiller, B.H.: Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4(3), 491–496 (2004)

    Article  Google Scholar 

  164. Vishnuvardhan, T., Kulkarni, V., Basavaraja, C., Raghavendra, S.: Synthesis, characterization and ac conductivity of polypyrrole/Y 2 O 3 composites. Bull. Mater. Sci. 29(1), 77–83 (2006)

    Article  Google Scholar 

  165. Wan, M.: A template-free method towards conducting polymer nanostructures. Adv. Mater. 20(15), 2926–2932 (2008)

    Article  Google Scholar 

  166. Wang, J., Langhe, D., Ponting, M., Wnek, G.E., Korley, L.T., Baer, E.: Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer 55(2), 673–685 (2014)

    Article  Google Scholar 

  167. Wang, Y., Zhu, C., Pfattner, R., Yan, H., Jin, L., Chen, S., Molina-Lopez, F., Lissel, F., Liu, J., Rabiah, N.I., Chen, Z., Chung, J.W., Linder, C., Toney, M.F., Murmann, B., Bao, Z.: A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3(3), e1602076 (2017)

    Article  Google Scholar 

  168. Wang, Y.G., Li, H.Q., Xia, Y.Y.: Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18(19), 2619–2623 (2006)

    Article  Google Scholar 

  169. Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z., Sun, Z.: 3D printable graphene composite. Sci. Rep. 5, 11181 (2015)

    Article  Google Scholar 

  170. Weisman, J.A., Nicholson, J.C., Tappa, K., Jammalamadaka, U., Wilson, C.G., Mills, D.K.: Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int. J. Nanomed. 10, 357 (2015)

    Google Scholar 

  171. Wise, D.L.: Electrical and Optical Polymer Systems: Fundamentals: Methods, and Applications. CRC Press (1998)

    Google Scholar 

  172. Wu, C.G., Bein, T.: Conducting polyaniline filaments in a mesoporous channel host. Science 264(5166), 1757–1759 (1994)

    Article  Google Scholar 

  173. Wu, D., Zhang, Y., Zhang, M., Yu, W.: Selective localization of multiwalled carbon nanotubes in poly (ε-caprolactone)/polylactide blend. Biomacromol 10(2), 417–424 (2009)

    Article  Google Scholar 

  174. Wynne, K.J., Street, G.B.: Conducting polymers. A short review. Ind. Eng. Chem. Prod. Res. Dev. 21(1), 23–28 (1982)

    Article  Google Scholar 

  175. Xu, C., Fang, L., Huang, Q., Yin, B., Ruan, H., Li, D.: Preparation and surface wettability of TiO2 nanorod films modified with triethoxyoctylsilane. Thin Solid Films 531, 255–260 (2013)

    Article  Google Scholar 

  176. Yakhmi, J.V., Saxena, V., Aswal, D.K.: 2—Conducting polymer sensors, actuators and field-effect transistors. In: Banerjee, S., Tyagi, A.K. (eds.) Functional Materials, pp. 61–110. London, Elsevier (2012)

    Google Scholar 

  177. Yamamoto, T., Sanechika, K., Yamamoto, A.: Preparation of thermostable and electric-conducting poly (2, 5-thienylene). J. Polym. Sci.: Polym. Lett. Edition 18(1), 9–12 (1980)

    Google Scholar 

  178. Yan, F., Xue, G., Chen, J., Lu, Y.: Preparation of a conducting polymer/ferromagnet composite film by anodic-oxidation method. Synth. Met. 123(1), 17–20 (2001)

    Article  Google Scholar 

  179. Yang, X., Dai, T., Zhu, Z., Lu, Y.: Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process. Polymer 48(14), 4021–4027 (2007)

    Article  Google Scholar 

  180. Yeganeh, J.K., Goharpey, F., Moghimi, E., Petekidis, G., Foudazi, R.: Manipulating the kinetics and mechanism of phase separation in dynamically asymmetric LCST blends by nanoparticles. Phys. Chem. Chem. Phys. 17(41), 27446–27461 (2015)

    Article  Google Scholar 

  181. Yoshino, K., Tada, K., Yoshimoto, K., Yoshida, M., Kawai, T., Araki, H., Hamaguchi, M., Zakhidov, A.: Electrical and optical properties of molecularly doped conducting polymers. Synth. Met. 78(3), 301–312 (1996)

    Article  Google Scholar 

  182. Yu, J.H., Fridrikh, S.V., Rutledge, G.C.: Production of submicrometer diameter fibers by two-fluid electrospinning. Adv. Mater. 16(17), 1562–1566 (2004)

    Article  Google Scholar 

  183. Yu, Z., Niu, X., Liu, Z., Pei, Q.: Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23(34), 3989–3994 (2011)

    Article  Google Scholar 

  184. Yu, Z., Zhang, Q., Li, L., Chen, Q., Niu, X., Liu, J., Pei, Q.: Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23(5), 664–668 (2011)

    Article  Google Scholar 

  185. Zaidi, N.A., Giblin, S., Terry, I., Monkman, A.: Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer 45(16), 5683–5689 (2004)

    Article  Google Scholar 

  186. Zhang, B., Fu, R., Zhang, M., Dong, X., Wang, L., Pittman, C.U.: Gas sensitive vapor grown carbon nanofiber/polystyrene sensors. Mater. Res. Bull. 41(3), 553–562 (2006)

    Article  Google Scholar 

  187. Zhang, D., Zhang, L., Yang, K., Wang, H., Yu, C., Xu, D., Xu, B., Wang, L.M.: Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 9(42), 36886–36896 (2017)

    Article  Google Scholar 

  188. Zhang, F., Nyberg, T., Inganäs, O.: Conducting polymer nanowires and nanodots made with soft lithography. Nano Lett. 2(12), 1373–1377 (2002)

    Article  Google Scholar 

  189. Zhang, W., Blackburn, R.S., Dehghani-Sanij, A.A.: Effect of silica concentration on electrical conductivity of epoxy resin–carbon black–silica nanocomposites. Scripta Mater. 56(7), 581–584 (2007)

    Article  Google Scholar 

  190. Zhang, W., Dehghani-Sanij, A.A., Blackburn, R.S.: Carbon based conductive polymer composites. J. Mater. Sci. 42(10), 3408–3418 (2007)

    Article  Google Scholar 

  191. Zhang, X., MacDiarmid, A.G., Manohar, S.K.: Chemical synthesis of PEDOT nanofibers. Chem. Commun. (42), 5328–5330 (2005)

    Google Scholar 

  192. Zhang, Y., Zhu, C., Kan, J.: Synthesis and characterization of ferromagnetic polyaniline with conductivity in an applied magnetic field. J. Appl. Polym. Sci. 109(5), 3024–3029 (2008)

    Article  Google Scholar 

  193. Zhou, M., Qian, J., Ai, X., Yang, H.: Redox-active Fe(CN)64−-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv. Mater. 23(42), 4913–4917 (2011)

    Article  Google Scholar 

  194. Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Karki, A.B., Young, D.P., Guo, Z.: Polyaniline-tungsten oxide metacomposites with tunable electronic properties. J. Mater. Chem. 21(2), 342–348 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabzoi Nizamuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jadhav, A. et al. (2021). Conducting Polymers and Their Composites. In: Mubarak, N.M., Khalid, M., Walvekar, R., Numan, A. (eds) Contemporary Nanomaterials in Material Engineering Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62761-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62761-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62760-7

  • Online ISBN: 978-3-030-62761-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics