Skip to main content

Advances Toward the Development of New Therapeutic Strategies Targeting Acetylcholinesterase and Its Remediation Processes

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Abstract

Acetylcholinesterase (AChE) is a serine protease, responsible for finalising the transmission of nerve impulses at cholinergic synapses by hydrolysis of the acetylcholine (ACh) neurotransmitter. Therefore, from this perspective, it is well-known that the irreversible or prolonged inhibition of AChE elevates the synaptic Ach level, resulting in severe central and peripheral adverse effects that fall under the cholinergic syndrome spectra. Certain AChE inhibitors (AChEI) with reactivator effects stand out more specifically to combat the possible toxic effects, such as denominated oximes that are widely designed substances. Current investigations focus on searching for new and more effective broad-spectrum reactivators of the inhibited AChE (same in its aged form) against diverse organophosphorus agents. Thus, the objective of this chapter is to present a more complete understanding of new therapeutic strategies targeting AChE and its remediation processes. Through the bioremediation techniques employing degrading enzymes also show advances as a promising approach of degrading toxic organophosphorus compounds, that is, preventing the individuals from undergoing the toxic effects of the AChE inhibition. It is also important to mention that AChE is a significant therapeutic target for the treatment of certain disorders, particularly neurodegenerative diseases, such as Alzheimer’s disease. The employment of nanotechnology and biosensors represents a promising alternative, with the potential to boost the forms of treatment and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araújo, C.R.M., Santos, V.L.A., Gonsalves, A.A.: Acetilcolinesterase—AChE: Uma Enzima de Interesse Farmacológico. Rev. Virtual Quim. 8, 1818–1834 (2016)

    Article  Google Scholar 

  2. Quinn, D.M.: Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 87, 955–979 (1987)

    Article  CAS  Google Scholar 

  3. Pezzementi, L., Nachon, F., Chatonnet, A.: Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the medaka oryzias latipes. PLoS One 6 (2011)

    Google Scholar 

  4. Doytchinova, I., Atanasova, M., Valkova, I., Stavrakov, G., Philipova, I., Zhivkova, Z., Zheleva-Dimitrova, D., Konstantinov, S., Dimitrov, I.: Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database. J. Enzyme Inhib. Med. Chem. 33, 768–776 (2018)

    Article  CAS  Google Scholar 

  5. Petronilho. C.E., P.C.A.V.F.D.J.: Acetilcolinesterase: Alzheimer e guerra química. Rev. Mil. Ciência e Tecnol. 28, 3–14 (2011)

    Google Scholar 

  6. Dias, K.S.T., De Paula, C.T., Riquiel, M.M., Do Lago, S.T.L., Costa, K.C.M., Vaz, S.M., Machado, R.P., De Lima, L.M.S., Viegas, C.: Aplicações recentes da abordagem de fármacos multialvo para o tratamento da doença de Alzheimer. Rev. Virtual Quim. 7, 609–648 (2015)

    Google Scholar 

  7. Habtemariam, S.: Natural products in Alzheimer’s disease therapy: would old therapeutic approaches fix the broken promise of modern medicines? Molecules 24, 1519 (2019)

    Article  CAS  Google Scholar 

  8. De Giacoppo, J.O.S., De Lima, W.E.A., Kuca, K., Da Cunha, E.F.F., França, T.C.C., De Ramalho, T.C.: Guerra química: Perspectivas no estudo de reativadores da enzima acetilcolinesterase inibida por organofosforados. Rev. Virtual Quim. 6, 653–670 (2014)

    Article  Google Scholar 

  9. Giacoppo, J.O.S., Mancini, D.T., Guimarães, A.P., Gonçalves, A.S., Da Cunha, E.F.F., França, T.C.C., Ramalho, T.C.: Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis. Eur. J. Med. Chem. 91, 63–71 (2015)

    Article  CAS  Google Scholar 

  10. Dvir, H., Silman, I., Harel, M., Rosenberry, T.L., Sussman, J.L.: Acetylcholinesterase: from 3D structure to function. Chem. Biol. Interact. 187, 10–22 (2010)

    Article  CAS  Google Scholar 

  11. Franklin, M.C., Rudolph, M.J., Ginter, C., Cassidy, M.S., Cheung, J.: Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins 84, 1246–1256 (2016)

    Article  CAS  Google Scholar 

  12. Patočka, J., Cabal, J., Kuča, K., Jun, D.: Oxime reactivation of acetylcholinesterase inhibited by toxic phosphorus esters: in vitro kinetics and thermodynamics. J. Appl. Biomed. 3, 91–99 (2005)

    Article  Google Scholar 

  13. Darvesh, S.: Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimers Disease. Curr. Alzheimer Res. 13 (2016)

    Google Scholar 

  14. de Azevedo, L.L., Cardoso, F.: Ação da levodopa e sua influência na voz e na fala de indivíduos com doença de Parkinson. Rev. da Soc. Bras. Fonoaudiol. 14, 136–141 (2009)

    Google Scholar 

  15. Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., Vasic, V.M.: Acetylcholinesterase Inhibitors: pharmacology and toxicology. Curr. Neuropharmacol. 11, 315–335 (2013)

    Article  CAS  Google Scholar 

  16. Castro, A.A. de, Prandi, I.G., Kuca, K., Ramalho, T.C.: Enzimas degradantes de organofosforados: Base molecular e perspectivas para biorremediaçÃ\poundso enzimÃ!`tica de agroquÃ\-micos. CiÃ\textordfemeninencia e Agrotecnologia 41, 471–482 (2017)

    Google Scholar 

  17. Pereira, A.F., de Castro, A.A., Soares, F.V., Soares Leal, D.H., da Cunha, E.F.F., Mancini, D.T., Ramalho, T.C.: Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact. 308, 323–331 (2019)

    Google Scholar 

  18. de Castro, A.A., Soares, F.V., Pereira, A.F., Silva, T.C., Silva, D.R., Mancini, D.T., Caetano, M.S., da Cunha, E.F.F., Ramalho, T.C.: Asymmetric biodegradation of the nerve agents Sarin and VX by human dUTPase: chemometrics, molecular docking and hybrid QM/MM calculations. J. Biomol. Struct. Dyn. 37, 2154–2164 (2019)

    Article  CAS  Google Scholar 

  19. Soares, F.V., de Castro, A.A., Pereira, A.F., Leal, D.H.S., Mancini, D.T., Krejcar, O., Ramalho, T.C., da Cunha, E.F.F., Kuca, K.: Theoretical studies applied to the evaluation of the DFPase bioremediation potential against chemical warfare agents intoxication. Int. J. Mol. Sci. 19 (2018)

    Google Scholar 

  20. de Castro, A.A., Assis, L.C., Silva, D.R., Corrêa, S., Assis, T.M., Gajo, G.C., Soares, F.V., Ramalho, T.C.: Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes. AIMS Microbiol. 3, 108–135 (2017)

    Article  CAS  Google Scholar 

  21. Sartorelli, J., de Castro, A.A., Ramalho, T.C., Giacoppo, J.O.S., Mancini, D.T., Caetano, M.S., da Cunha, E.F.F.: Asymmetric biocatalysis of the nerve agent VX by human serum paraoxonase 1: molecular docking and reaction mechanism calculations. Med. Chem. Res. 25, 2521–2533 (2016)

    Article  CAS  Google Scholar 

  22. de Castro, A.A., Caetano, M.S., Silva, T.C., Mancini, D.T., Rocha, E.P., da Cunha, E.F.F., Ramalho, T.C.: Molecular docking, metal substitution and hydrolysis reaction of chiral substrates of phosphotriesterase. Comb. Chem. High Throughput Screen. 19, 334–344 (2016)

    Article  CAS  Google Scholar 

  23. Ramalho, T.C., de Castro, A.A., Silva, D.R., Silva, M.C., Franca, T.C.C., Bennion, B.J., Kuca, K.: Computational enzymology and organophosphorus degrading enzymes: promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem. 23, 1041–1061 (2016)

    Article  CAS  Google Scholar 

  24. Sharma, R., Gupta, B., Singh, N., Acharya, J.R., Musilek, K., Kuca, K., Ghosh, K.: Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: a review. Mini-Reviews Med. Chem. 15, 58–72 (2014)

    Article  CAS  Google Scholar 

  25. De Giacoppo, J.O.S., De Lima, W.E. a; Kuca, K., Da Cunha, E.F.F., França, T.C.C., De Ramalho, T.C.: Chemical warfare: perspectives on reactivating the enzyme acetylcholinesterase inhibited by organophosphates. Rev. Virtual Quim. 6, 653–670 (2014)

    Google Scholar 

  26. de Castro, A.A., Assis, L.C., Soares, F. V; Kuca, K., Polisel, D.A., da Cunha, E.F.F., Ramalho, T.C.: Trends in the recent patent literature on cholinesterase reactivators (2016–2019). Biomolecules 10 (2020)

    Google Scholar 

  27. Benschop, H.P., De Jong, L.P.A.: Nerve agent stereoisomers: analysis, isolation, and toxicology. Acc. Chem. Res. 21, 368–374 (1988)

    Article  CAS  Google Scholar 

  28. Melzer, M., Chen, J.C.H., Heidenreich, A., Gäb, J., Koller, M., Kehe, K., Blum, M.M.: Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. J. Am. Chem. Soc. 131, 17226–17232 (2009)

    Article  CAS  Google Scholar 

  29. Marimuthu, P., Lee, Y.-J., Kim, B., Seo, S.S.: In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly. J. Biomol. Struct. Dyn. 37, 307–320 (2019)

    Article  CAS  Google Scholar 

  30. Wong, P.T., Bhattacharjee, S., Cannon, J., Tang, S., Yang, K., Bowden, S., Varnau, V., O’Konek, J.J., Choi, S.K.: Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers. Org. Biomol. Chem. 17, 3951–3963 (2019)

    Article  CAS  Google Scholar 

  31. Quinn, D.M., Topczewski, J.J.: Compounds and methods to treat organophosphorus poisoning, 1–10 (2016)

    Google Scholar 

  32. Da Petronilho, E.C., Figueroa-Villar, J.D.: Agents for defense against chemical warfare: reactivators of the inhibited acetylcholinesterase with organophosphorus neurotoxic compounds. Rev. Virtual Quim. 6, 671–686 (2014)

    Article  Google Scholar 

  33. Kim, K., Tsay, O.G., Atwood, D.A., Churchill, D.G.: Destruction and detection of chemical warfare agents. Chem. Rev. 111, 5345–5403 (2011)

    Article  CAS  Google Scholar 

  34. Ordentlich, A., Barak, D., Sod-Moriah, G., Kaplan, D., Mizrahi, D., Segall, Y., Kronman, C., Karton, Y., Lazar, A., Marcus, D., et al.: Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE. Biochemistry 43, 11255–11265 (2004)

    Article  CAS  Google Scholar 

  35. Alvim, R.S., Vaiss, V.S., Leitão, A.A., Borges, I.: Theoretical chemistry at the service of the chemical defense: degradation of nerve agents in magnesium oxide and hydroxide surface. Rev. Virtual Quim. 6, 687–723 (2014)

    Article  Google Scholar 

  36. Cavalcanti, L.P.A.N., De Aguiar, A.P., Lima, J.A., Lima, A.L.S.: Organophosphorous poisoning: treatment and analytical methodologies applied in evaluation of reactivation and inhibition of acetylcholinesterase. Rev. Virtual Quim. 8, 739–766 (2016)

    Article  Google Scholar 

  37. Zilker, T.: Medical management of incidents with chemical warfare agents. Toxicology 214, 221–231 (2005)

    Article  CAS  Google Scholar 

  38. Dichtwald, S., Weinbroum, A.A.: Bioterrorism and the anaesthesiologist’s perspective. Best Pract. Res. Clin. Anaesthesiol. 22, 477–502 (2008)

    Article  Google Scholar 

  39. WILSON, I.B. Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate. J. Biol. Chem. 1951, 190, 111–7.

    Google Scholar 

  40. Wilson, I.B., Ginsburg, S.: A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. Biophys. Acta 18, 168–170 (1955)

    Article  CAS  Google Scholar 

  41. Petroianu, G.A.: The history of pyridinium oximes as nerve gas antidotes: the British contribution. Pharmazie 68, 916–918 (2013)

    CAS  Google Scholar 

  42. Lundy, P.M., Raveh, L., Amitai, G.: Development of the bisquaternary oxime HI-6 toward clinical use in the treatment of organophosphate nerve agent poisoning. Toxicol. Rev. 25, 231–243 (2006)

    Article  CAS  Google Scholar 

  43. Worek, F., Thiermann, H.: The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 139, 249–259 (2013)

    Article  CAS  Google Scholar 

  44. Franjesevic, A.J., Sillart, S.B., Beck, J.M., Vyas, S., Callam, C.S., Hadad, C.M.: Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry 25, 5337–5371 (2019)

    Article  CAS  Google Scholar 

  45. Wang, J., Gu, J., Leszczynski, J., Feliks, M., Sokalski, W.A.: Oxime-induced reactivation of sarin-inhibited AChE: a theoretical mechanisms study. J. Phys. Chem. B 111, 2404–2408 (2007)

    Article  CAS  Google Scholar 

  46. Artursson, E., Akfur, C., Hörnberg, A., Worek, F., Ekström, F.: Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology 265, 108–114 (2009)

    Article  CAS  Google Scholar 

  47. Kuca, K., Jun, D., Musilek, K.: Structural requirements of acetylcholinesterase reactivators. Mini-Reviews Med. Chem. 6, 269–277 (2006)

    Article  CAS  Google Scholar 

  48. Pang, Y.-P., Kollmeyer, T.M., Hong, F., Lee, J.-C., Hammond, P.I., Haugabouk, S.P., Brimijoin, S.: Rational design of alkylene-linked bis-pyridiniumaldoximes as improved acetylcholinesterase reactivators. Chem. Biol. 10, 491–502 (2003)

    Article  CAS  Google Scholar 

  49. Kitagawa, D., Cavalcante, S., de Paula, R., Rodrigues, R., Bernardo, L., da Silva, M., da Silva, T., dos Santos, W., Granjeiro, J., de Almeida, J., et al.: In vitro evaluation of neutral aryloximes as reactivators for electrophorus eel acetylcholinesterase inhibited by paraoxon. Biomolecules 9, 583 (2019)

    Article  CAS  Google Scholar 

  50. Kuca, K., Nepovimova, E., Wu, Q., de Souza, F.R., Ramalho, T. de C., Franca, T.C.C., Musilek, K.: Experimental hydrophilic reactivator: bisoxime with three positive charges. Chem. Pap. 73, 777–782 (2019)

    Google Scholar 

  51. Polisel, D.A., de Castro, A.A., Mancini, D.T., da Cunha, E.F.F., França, T.C.C., Ramalho, T.C., Kuca, K.: Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: theoretical and experimental aspects. Chem. Biol. Interact. 309, 108671 (2019)

    Article  CAS  Google Scholar 

  52. Musilek, K., Holas, O., Kuca, K., Jun, D., Dohnal, V., Opletalova, V., Dolezal, M.: Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 23, 70–76 (2008)

    Article  CAS  Google Scholar 

  53. Lorke, D.E., Nurulain, S.M., Hasan, M.Y., Kuča, K., Petroianu, G.A.: Oximes as pretreatment before acute exposure to paraoxon. J. Appl. Toxicol. jat.3835 (2019)

    Google Scholar 

  54. Jaćević, V., Nepovimova, E., Kuča, K.: Toxic injury to muscle tissue of rats following acute oximes exposure. Sci. Rep. 9, 1–13 (2019)

    Google Scholar 

  55. Jaćević, V., Nepovimova, E., Kuča, K.: Acute toxic injuries of rat’s visceral tissues induced by different oximes. Sci. Rep. 9, 1–13 (2019)

    Google Scholar 

  56. de Koning, M.C., Horn, G., Worek, F., van Grol, M.: Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem. 157, 151–160 (2018)

    Article  CAS  Google Scholar 

  57. Carletti, E., Colletier, J.-P., Dupeux, F., Trovaslet, M., Masson, P., Nachon, F.: Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J. Med. Chem. 53, 4002–4008 (2010)

    Article  CAS  Google Scholar 

  58. Kalisiak, J., Ralph, E.C., Zhang, J., Cashman, J.R.: Amidine−oximes: reactivators for organophosphate exposure. J. Med. Chem. 54, 3319–3330 (2011)

    Article  CAS  Google Scholar 

  59. Quinn, M.D., Topczewski, J., Yasapala, N., Lodge, A.: Why is Aged Acetylcholinesterase So Difficult to Reactivate? Mol 22 (2017)

    Google Scholar 

  60. Iyer, R., Iken, B., Damania, A.: A comparison of organophosphate degradation genes and bioremediation applications. Environ. Microbiol. Rep. 5, 787–798 (2013)

    Article  CAS  Google Scholar 

  61. Iyer, R., Iken, B.: Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem. Eng. J. 94, 134–144 (2015)

    Article  CAS  Google Scholar 

  62. Field, M.J., Wymore, T.W.: Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel Prizes. Phys. Scr. 89, 108004 (2014)

    Article  CAS  Google Scholar 

  63. Wood, L.B., Winslow, A.R., Strasser, S.D.: Systems biology of neurodegenerative diseases. Integr. Biol. (United Kingdom) 7, 758–775 (2015)

    Article  CAS  Google Scholar 

  64. Gontijo, V.S., Viegas, F.P.D., Ortiz, C.J.C., de Freitas Silva, M., Damasio, C.M., Rosa, M.C., Campos, T.G., Couto, D.S., Tranches Dias, K.S., Viegas, C.: Molecular hybridization as a tool in the design of multi-target directed drug candidates for neurodegenerative diseases. Curr. Neuropharmacol. 18, 348–407 (2020)

    Google Scholar 

  65. Ortiz, C.J.C.: Síntese e Avaliação Farmacológica de Novos Ligantes Multialvo Visando ao Tratamento de Doenças Neurodegenerativas, Universidade Federal de Alfenas (2020)

    Google Scholar 

  66. Mathew, B., Parambi, D.G.T., Mathew, G.E., Uddin, M.S., Inasu, S.T., Kim, H., Marathakam, A., Unnikrishnan, M.K., Carradori, S.: Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. (Weinheim). 352, 1–13 (2019)

    Google Scholar 

  67. Farah, R., Haraty, H., Salame, Z., Fares, Y., Ojcius, D.M., Said Sadier, N.: Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed. J. 41, 63–87 (2018)

    Article  Google Scholar 

  68. McColgan, P., Tabrizi, S.J.: Huntington’s disease: a clinical review. Eur. J. Neurol. 25, 24–34 (2018)

    Article  CAS  Google Scholar 

  69. Ceschi, M., Pilotti, R., Lopes, J., Dapont, H., da Rocha, J., Afolabi, B., Guedes, I., Dardenne, L.: An expedient synthesis of tacrine-squaric hybrids as potent, selective and dual-binding cholinesterase inhibitors. J. Braz. Chem. Soc. 31, 857–866 (2020)

    CAS  Google Scholar 

  70. Araújo, C.R.M., Santos, V.L.A., Gonsalves, A.A.: Acetylcholinesterase—AChE: a pharmacological interesting enzyme. Rev. Virtual Quim. 8, 1818–1834 (2016)

    Article  Google Scholar 

  71. Toker, L., Tran, G.T., Sundaresan, J., Tysnes, O.: Genome-wide dysregulation of histone acetylation in the Parkinson ’ s disease brain 1–47 (2020)

    Google Scholar 

  72. Klein, C., Westenberger, A.: Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012)

    Article  Google Scholar 

  73. BRAVO, Patrício Andres Fuentes; NASSIF, M.C.: Doença de Parkinson: terapêutica atual e avançada. Pharm. Bras. 55, 25–29 (2006)

    Google Scholar 

  74. Chierrito, T.P.C., Mantoani, S.P., Roca, C., Requena, C., Sebastian-Perez, V., Castillo, W.O., Moreira, N.C.S., Pérez, C., Sakamoto-Hojo, E.T., Takahashi, C.S., et al.: From dual binding site acetylcholinesterase inhibitors to allosteric modulators: a new avenue for disease-modifying drugs in Alzheimer’s disease. Eur. J. Med. Chem. 139, 773–791 (2017)

    Article  CAS  Google Scholar 

  75. Silva, T., Reis, J., Teixeira, J., Borges, F.: Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res. Rev. 15, 116–145 (2014)

    Article  CAS  Google Scholar 

  76. Grøntvedt, G.R., Schröder, T.N., Sando, S.B., White, L., Bråthen, G., Doeller, C.F.: Alzheimer’s disease. Curr. Biol. 28, R645–R649 (2018)

    Article  CAS  Google Scholar 

  77. Gabriel, U., Cunha, D.V., Marino, C.G., Balabram, K., Marquete, C.R.: Uso de inibidores da colinesterase em idosos com comorbidades clínicas. 162–166

    Google Scholar 

  78. Nitrini, R., Caramelli, P., Bottino, C.M.D., Damasceno, B.P., Brucki, S.M.D., Anghinah, R.: Diagnosis of Alzheimer’s disease in Brazil: cognitive and functional evaluation. Recommendations of the scientifc department of cognitive neurology and aging of the Brazilian academy of neurology. Arq. Neuropsiquiatr. 63, 720–727 (2005)

    Google Scholar 

  79. Aprahamian, I., Martinelli, J.E., Yassuda, M.S.: Doença de Alzheimer : revisão da epidemiologia e diagnóstico * Alzheimer ’ s disease : an epidemiology and diagnosis review. Rev Bras Clin Med. 7, 27–35 (2009)

    Google Scholar 

  80. Forsell, Y., Winblad, B.: Major depression in a population of demented and nondemented older people: prevalence and correlates. J. Am. Geriatr. Soc. 46, 27–30 (1998)

    Article  CAS  Google Scholar 

  81. Pennypacker, L.C., Allen, R.H., Kelly, J.P., Matthews, L.M., Grigsby, J., Kaye, K., Lindenbaum, J., Stabler, S.P.: High prevalence of cobalamin deficiency in elderly outpatients. J. Am. Geriatr. Soc. 40, 1197–1204 (1992)

    Article  CAS  Google Scholar 

  82. Gilmore, J.H., Castillo, M., Rojas, M.: Early onset schizophrenia in a patient with premature birth, germinal matrix hemorrhage and periventricular leukomalacia. Schizophr. Res. 44, 158–160 (2000)

    Article  CAS  Google Scholar 

  83. Canineu, P.R., Canineu, R.F.B., Canineu, P.R.B., Silva, M.C.: Terapia Multidisciplinar: uma proposta de tratamento global do idoso. Mundo Saúde. 29, 662–665 (2005)

    Google Scholar 

  84. Giacobini, E.: Invited review cholinesterase inhibitors for Alzheimer’s disease therapy: from tacrine to future applications. Neurochem. Int. 32, 413–419 (1998)

    Article  CAS  Google Scholar 

  85. Chand, K., Alsoghier, H.M., Chaves, S., Santos, M.A.: Tacrine-(hydroxybenzoyl-pyridone) hybrids as potential multifunctional anti-Alzheimer’s agents: AChE inhibition, antioxidant activity and metal chelating capacity. J. Inorg. Biochem. 163, 266–277 (2016)

    Article  CAS  Google Scholar 

  86. Foye, W.O.: Foye’s Principles of Medicinal Chemistry. In: Wilkins, L.W. (ed.) (2008). ISBN 9780781768795.

    Google Scholar 

  87. Dias Viegas, F.P., de Freitas Silva, M., Divino da Rocha, M., Castelli, M.R., Riquiel, M.M., Machado, R.P., Vaz, S.M., Simoes de Lima, L.M., Mancini, K.C., Marques de Oliveira, P.C., et al.: Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem. 147, 48–65 (2018)

    Google Scholar 

  88. Tiseo, P.J., Rogers, S.L., Friedhoff, L.T.: Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br. J. Clin. Pharmacol. 46(Suppl 1), 13–18 (1998)

    Article  CAS  Google Scholar 

  89. Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J.: Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 55, 10282–10286 (2012)

    Article  CAS  Google Scholar 

  90. Almeida, J.R.: De Estudos de modelagem molecular e relação estrutura-atividade da acetilcolinesterase e inibidores em Mal de Alzheimer Estudos de modelagem molecular e relação estrutura-atividade da acetilcolinesterase e inibidores em Mal de Alzheimer 126 (2011)

    Google Scholar 

  91. Bar-On, P., Millard, C.B., Harel, M., Dvir, H., Enz, A., Sussman, J.L., Silman, I.: Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 41, 3555–3564 (2002)

    Article  CAS  Google Scholar 

  92. Geldenhuys, W.J., Van der Schyf, C.J.: Rationally designed multi-targeted agents against neurodegenerative diseases. Curr. Med. Chem. 20, 1662–1672 (2013)

    Article  CAS  Google Scholar 

  93. Chaves, M.B., Ferreira, A.A.F.: Terapia medicamentosa da doença de Alzheimer. Rev. Eletrônica Farmácia 1, 1–7 (2008)

    Google Scholar 

  94. Viegas, C., Bolzani, V.S., Pimentel, L.S.B., Castro, N.G., Cabral, R.F., Costa, R.S., Floyd, C., Rocha, M.S., Young, M.C.M., Barreiro, E.J., et al.: New selective acetylcholinesterase inhibitors designed from natural piperidine alkaloids. Bioorg. Med. Chem. 13, 4184–4190 (2005)

    Article  CAS  Google Scholar 

  95. Martínez, A., Zahran, M., Gomez, M., Cooper, C., Guevara, J., Ekengard, E., Nordlander, E., Alcendor, R., Hambleton, S.: Novel multi-target compounds in the quest for new chemotherapies against Alzheimer’s disease: an experimental and theoretical study. Bioorganic Med. Chem. 26, 4823–4840 (2018)

    Article  CAS  Google Scholar 

  96. Jalili-Baleh, L., Babaei, E., Abdpour, S., Nasir Abbas Bukhari, S., Foroumadi, A., Ramazani, A., Sharifzadeh, M., Abdollahi, M., Khoobi, M.: A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem. 152, 570–589 (2018)

    Google Scholar 

  97. de Freitas Silva, M., Dias, K.S.T., Gontijo, V.S., Ortiz, C.J.C., Viega, C.: Multi-target directed drugs as a modern approach for drug design towards alzheimer’s disease: an update. Curr. Med. Chem. 25, 3491–3525 (2018)

    Google Scholar 

  98. Potschka, H.: Targeting the brain--surmounting or bypassing the blood-brain barrier. Handb. Exp. Pharmacol. 411–431 (2010)

    Google Scholar 

  99. Silva, G.A.: Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann. N. Y. Acad. Sci. 1199, 221–230 (2010)

    Article  CAS  Google Scholar 

  100. Kreuter, J.: Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 47, 65–81 (2001)

    Article  CAS  Google Scholar 

  101. Brambilla, D., Le Droumaguet, B., Nicolas, J., Hashemi, S.H., Wu, L.-P., Moghimi, S.M., Couvreur, P., Andrieux, K.: Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine 7, 521–540 (2011)

    Article  CAS  Google Scholar 

  102. de Castro, A.A., Soares, F.V., Pereira, A.F., Polisel, D.A., Caetano, M.S., Leal, D.H.S., da Cunha, E.F.F., Nepovimova, E., Kuca, K., Ramalho, T.C.: Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev. Neurother. 19, 375–395 (2019)

    Article  CAS  Google Scholar 

  103. Wen, M.M., El-Salamouni, N.S., El-Refaie, W.M., Hazzah, H.A., Ali, M.M., Tosi, G., Farid, R.M., Blanco-Prieto, M.J., Billa, N., Hanafy, A.S.: Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J. Control. Release 245, 95–107 (2017)

    Article  CAS  Google Scholar 

  104. Kostarelos, K., Miller, A.D.: Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem. Soc. Rev. 34, 970–994 (2005)

    Article  CAS  Google Scholar 

  105. Borm, P.J.A., Muller-Schulte, D.: Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond). 1, 235–249 (2006)

    Article  CAS  Google Scholar 

  106. Xu, Z.P., Zeng, Q.H., Lu, G.Q., Yu, A.B.: Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61, 1027–1040 (2006)

    Article  CAS  Google Scholar 

  107. Foged, C., Nielsen, H.M.: Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin. Drug Deliv. 5, 105–117 (2008)

    Article  CAS  Google Scholar 

  108. Leary, S.P., Liu, C.Y., Apuzzo, M.L.J.: Toward the emergence of nanoneurosurgery: part III–nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 58, 1009–1026 (2006)

    Article  Google Scholar 

  109. Modi, G., Pillay, V., Choonara, Y.E.: Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann. N. Y. Acad. Sci. 1184, 154–172 (2010)

    Article  CAS  Google Scholar 

  110. Nazem, A., Mansoori, G.A.: Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J. Alzheimers. Dis. 13, 199–223 (2008)

    Article  CAS  Google Scholar 

  111. Pohanka, M., Jun, D., Kalasz, H., Kuca, K.: Cholinesterase biosensor construction—a review. Protein Pept. Lett. 15, 795–798 (2008)

    Article  CAS  Google Scholar 

  112. Porfírio, F.F.O., Giarola, J.D.F., Pereira, A.C.: Biosensor and beverages—review. Rev. Virtual Quim. 8, 1366–1391 (2016)

    Article  Google Scholar 

  113. Khaled, E., Hassan, H.N.A., Ahmed, M.A., El-Attar, R.O.: Highly sensitive method for analysis anticholinesterase drugs. Egypt. J. Chem. 62, 441–449 (2019)

    Google Scholar 

  114. Liu, X., Sakthivel, R., Liu, W.C., Huang, C.W., Li, J., Xu, C., Wu, Y., Song, L., He, W., Chung, R.J.: Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase. Food Chem. 324, 126889 (2020)

    Article  CAS  Google Scholar 

  115. Hernandez-Vargas, G., Sosa-Hernández, J.E., Saldarriaga-Hernandez, S., Villalba-Rodríguez, A.M., Parra-Saldivar, R., Iqbal, H.M.N.: Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants. Biosensors 8, 29 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. La Porta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Castro, A.A., Assis, L.C., Gajo, G.C., Ramalho, T.C., La Porta, F.A. (2021). Advances Toward the Development of New Therapeutic Strategies Targeting Acetylcholinesterase and Its Remediation Processes. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_21

Download citation

Publish with us

Policies and ethics