Skip to main content

Chemical, Gas and Optical Sensors Based on Conducting Polymers

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Sensing technology has evolved from large systems with immovable components to flexible wearable devices capable of non-invasive and location-independent detection. With the demand for portable systems capable of real-time monitoring and accurate detection at ambient conditions increasing in every sector, there arises a need to transform or replace the conventional sensing elements with superior alternatives. Conducting polymers have unique features of processability and flexibility that make them prime candidates for developing new and advanced wearable devices. They represent a promising class of materials for sensing applications whose true potential is yet to be harnessed for device fabrication. Conducting polymers possess several advantages for use as sensing materials. These include their ability to respond to chemical and gaseous species through a change in their conductance at ambient conditions, large scale production and tunable electrical properties. This chapter focuses on the advances made in the development of conducting polymer-based sensors to detect chemical molecules, gaseous analytes, and optical detection of molecules of interest. The use of hybrid conducting polymer systems incorporating nanomaterials and metal oxides towards sensing pollutants, pharmaceuticals, microbes, volatile gases in the environment and breath, and clinically relevant biomarkers has been discussed in detail. The challenges involved in conducting polymer-based systems and the potential for the evolution of this class of sensors by integrating emerging technologies are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review 25(1), 29–46 (2013)

    Google Scholar 

  2. Stetter, J.R., Penrose, W.R., Yao, S.: Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 150(2), S11 (2003)

    Article  Google Scholar 

  3. Hall, E.A.H.: Overview of biosensors. In: Biosensors and Chemical Sensors, pp. 1–14. American Chemical Society (1992)

    Google Scholar 

  4. Justino, C.I.L., et al.: Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal. Chem. 68, 2–17 (2015)

    Article  Google Scholar 

  5. Bourgeois, W., et al.: The use of sensor arrays for environmental monitoring: interests and limitations. J. Environ. Monit. 5(6), 852–860 (2003)

    Article  Google Scholar 

  6. Shrivastava, S., Jadon, N., Jain, R.: Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC Trends Anal. Chem. 82, 55–67 (2016)

    Article  Google Scholar 

  7. Chen, H.-I., Chou, Y.-I., Chu, C.-Y.: A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating. Sens. Actuators B: Chem. 85(1), 10–18 (2002)

    Article  Google Scholar 

  8. Kannan, P.K., et al.: Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7(32), 13293–13312 (2015)

    Article  Google Scholar 

  9. Partridge, A.C., Jansen, M.L., Arnold, W.M.: Conducting polymer-based sensors. Mater. Sci. Eng., C 12(1), 37–42 (2000)

    Article  Google Scholar 

  10. Naveen, M.H., Gurudatt, N.G., Shim, Y.-B.: Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9, 419–433 (2017)

    Article  Google Scholar 

  11. Yoon, H., Jang, J.: Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 19(10), 1567–1576 (2009)

    Article  Google Scholar 

  12. MacDiarmid, A.G.: Synthetic metals: a novel role for organic polymers (nobel lecture). Angew. Chem. Int. Ed. 40, 2581–2590 (2001)

    Article  Google Scholar 

  13. Chandrasekhar, P.: Conducting Polymers and Other New Electronically Conductive Materials Including Carbon Nanotubes and Graphene: Fundamentals and Applications. Springer, Berlin (2018)

    Google Scholar 

  14. Hu, J., Liu, S.: Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43(20), 8315–8330 (2010)

    Article  Google Scholar 

  15. Tourillon, G., Garnier, F.: Effect of dopant on the physicochemical and electrical properties of organic conducting polymers. J. Phys. Chem. 87(13), 2289–2292 (1983)

    Article  Google Scholar 

  16. Arshak, K., et al.: Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sens. J. 9, 1942–1951 (2009)

    Article  Google Scholar 

  17. Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)

    Article  Google Scholar 

  18. Persaud, K.C.: Polymers for chemical sensing. Mater. Today 8(4), 38–44 (2005)

    Article  Google Scholar 

  19. Ivanova, E.V., et al.: Evaluation of redox mediators for amperometric biosensors: Ru-complex modified carbon-paste/enzyme electrodes. Bioelectrochemistry 60(1), 65–71 (2003)

    Article  MathSciNet  Google Scholar 

  20. Wenjuan, Y., et al.: Electrogenerated trisbipyridyl Ru(II)-/nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: application to the determination of thrombin and anti-cholera toxinantibody. Biosens. Bioelectron. 42, 556–562 (2013)

    Article  Google Scholar 

  21. Lange, U., Roznyatovskaya, N.V., Mirsky, V.M.: Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614(1), 1–26 (2008)

    Article  Google Scholar 

  22. Teles, F.R.R., Fonseca, L.P.: Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater. Sci. Eng., C 28(8), 1530–1543 (2008)

    Article  Google Scholar 

  23. Miasik, J.J., Hooper, A., Tofield, B.C.: Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 82(4), 1117–1126 (1986)

    Google Scholar 

  24. Ates, M.: A review study of (bio)sensor systems based on conducting polymers (1873–0191 (Electronic))

    Google Scholar 

  25. Pilo, M., et al.: Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (Poly)thiophene films. J. Anal. Methods Chem. 2018, 1849439 (2018)

    Article  Google Scholar 

  26. Jugović, B., et al.: Electrochemical science: polypyrrole-based enzyme electrode with immobilized glucose oxidase for electrochemical determination of glucose. Int. J. Electrochem. Sci. 11, 1152–1161 (2016)

    Google Scholar 

  27. Li, Y., et al.: Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 10, 21–28 (2020)

    Article  Google Scholar 

  28. Bhadra, S., et al.: Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polim. Int. 58(10), 1173–1180 (2009)

    Article  Google Scholar 

  29. Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38(8), 2397–2409 (2009)

    Article  Google Scholar 

  30. Viter, R., et al.: Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. J. Phys. Chem. C 120(9), 5124–5132 (2016)

    Article  Google Scholar 

  31. Forzani, E.S., et al.: A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4, 1785–1788 (2004)

    Article  Google Scholar 

  32. Kailasa, S., et al.: High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J. Mater. Sci.: Mater. Electron. 31, 2926–2937 (2020)

    Google Scholar 

  33. Zhang, X.-L., et al.: Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 5, 580–593 (2005)

    Article  Google Scholar 

  34. Li, J., Wei, W., Luo, S.: A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine. Microchim. Acta 171, 109–116 (2010)

    Article  Google Scholar 

  35. Berk, M., et al.: Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr. Scand. 116(s434), 41–49 (2007)

    Article  Google Scholar 

  36. Adhikari, A., et al.: Selective sensing of dopamine by sodium cholate tailored polypyrrole-silvernanocomposite. Synth. Met. 260, 116296–116309 (2020)

    Article  Google Scholar 

  37. Gao, Q., et al.: A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry 81, 109–113 (2011)

    Article  Google Scholar 

  38. Kong, B., et al.: Voltammetric determination of hydroquinone using β-Cyclodextrin/Poly(N-Acetylaniline)/carbon nanotube composite modified glassy carbon electrode. Anal. Lett. 40, 2141–2150 (2007)

    Article  Google Scholar 

  39. Harrazab, F., et al.: Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl. Surf. Sci. 508, 145226 (2020)

    Google Scholar 

  40. Kwon, O.S., et al.: Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 6, 2797–2802 (2012)

    Article  Google Scholar 

  41. Bakker, E., Qin, Y.: Electrochemical sensors. Anal. Chem. 78(12), 3965–3984 (2006)

    Article  Google Scholar 

  42. Soylemez, S., et al.: A multipurpose conjugated polymer: electrochromic device and biosensor construction for glucose detection. Org. Electron. 65, 327–333 (2019)

    Article  Google Scholar 

  43. Maity, D., Minitha, C.R, Rajendra Kumar, R.T.: Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C 105, 110075 (2019)

    Google Scholar 

  44. Kong, Y.-T., Boopathi, M., Shim, Y.-B.: Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosens. Bioelectron. 19(3), 227–232 (2003)

    Article  Google Scholar 

  45. Miyazaki, C.M., et al.: Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. Mater. Sci. Eng., C 58, 310–315 (2016)

    Article  Google Scholar 

  46. Kaur, N., Thakur, H., Prabhakar, N.: Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem. J. 147, 393–402 (2019)

    Article  Google Scholar 

  47. Shelke, U.N., et al.: Synthesis of poly o-anisidine based sensor for amperometric detection of pesticide carbaryl. Current Pharma Res. 9, 3208–3215 (2019)

    Google Scholar 

  48. Cancar, H.D., et al.: A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 12, 8058–8067 (2016)

    Article  Google Scholar 

  49. Viter, R., et al.: Photoelectrochemical bisphenol S sensor based on ZnO-nanoroads modified by molecularly imprinted polypyrrole. Macromol. Chem. Phys. 221, 1900232 (2019)

    Article  Google Scholar 

  50. Kuwahara, T., et al.: Immobilization of glucose oxidase and electron-mediating groups on the film of 3-methylthiophene/thiophene-3-acetic acid copolymer and its application to reagentless sensing of glucose. Polymer 46(19), 8091–8097 (2005)

    Article  Google Scholar 

  51. Shelke, U.N., K.S.P., Deshmukh, V.B., Folane, S.A., Gade, V.K.: Synthesis of poly o-anisidine based sensor for amperometric detection of pesticide. carbaryl. Current Pharma Res. 9(4), 3208–3215 (2019)

    Google Scholar 

  52. Chen, X., et al.: Development and validation of HPLC-MS/MS method for the simultaneous determination of 8-Hydroxy-2′-deoxyguanosine and twelve cosmetic phenols in human urine. Chromatographia 82(9), 1415–1421 (2019)

    Article  Google Scholar 

  53. Guler, M., Turkoglu, V., Kivrak, A.: Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ. Sci. Pollut. Res. 23(12), 12343–12351 (2016)

    Article  Google Scholar 

  54. Dzudzevic Cancar, H., et al.: A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 8(12), 8058–8067 (2016)

    Article  Google Scholar 

  55. Wang, M., et al.: Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 832, 174–181 (2019)

    Article  Google Scholar 

  56. Raj, M., et al.: Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens. Actuat. B: Chem. 239, 993–1002 (2017)

    Article  Google Scholar 

  57. Ghanbari, K., Hajheidari, N.: ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal. Biochem. 473, 53–62 (2015)

    Article  Google Scholar 

  58. Ghanbari, K., Moloudi, M.: Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)

    Article  Google Scholar 

  59. Narouei, F.: An electrochemical sensor based on conductive polymers/graphite paste electrode for simultaneous determination of dopamine, uric acid and tryptophan in biological samples. Int. J. Electrochem. Sci. 12, 7739–7753 (2017)

    Google Scholar 

  60. Harraz, F.A., et al.: Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuat. B: Chem. 234, 573–582 (2016)

    Article  Google Scholar 

  61. Yang, Z., et al.: One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim. Acta 184(7), 2219–2226 (2017)

    Article  Google Scholar 

  62. Faisal, M., et al.: Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor. Mater. Chem. Phys. 214, 126–134 (2018)

    Article  Google Scholar 

  63. Kotanen, C.N., et al.: Fabrication and in vitro performance of a dual responsive lactate and glucose biosensor. Electrochim. Acta 267, 71–79 (2018)

    Article  Google Scholar 

  64. Hasanzadeh, M., et al.: Electropolymerization of proline supported beta-cyclodextrin inside amino functionalized magnetic mesoporous silica nanomaterial: one step preparation, characterization and electrochemical application. Anal. Bioanal. Electrochem 10, 77–97 (2018)

    Google Scholar 

  65. Ding, M., et al.: An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J. Electroanal. Chem. 763, 25–31 (2016)

    Article  Google Scholar 

  66. Sharma, V., et al.: Graphene nanoplatelets-silver nanorods-polymer based in-situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples. Appl. Surf. Sci. 449, 558–566 (2018)

    Article  Google Scholar 

  67. Akbulut, H., et al.: Polythiophene-g-poly(ethylene glycol) with lateral amino groups as a novel matrix for biosensor construction. ACS Appl. Mater. Interfaces. 7(37), 20612–20622 (2015)

    Article  Google Scholar 

  68. Sangamithirai, D., et al.: Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH. Mater. Sci. Eng., C 55, 579–591 (2015)

    Article  Google Scholar 

  69. Baskar, S., Chang Jl Fau-Zen, J.-M., Zen, J.M.: Simultaneous detection of NADH and H(2)O(2) using flow injection analysis based on a bifunctional poly(thionine)-modified electrode (1873–4235 (Electronic))

    Google Scholar 

  70. Warren, S., et al.: Scanning electrochemical microscopy imaging of poly (3,4-ethylendioxythiophene)/thionine electrodes for lactate detection via NADH electrocatalysis. Biosens. Bioelectron. 137, 15–24 (2019)

    Article  Google Scholar 

  71. Sahin, M., Ayranci, E.: Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochim. Acta 166, 261–270 (2015)

    Article  Google Scholar 

  72. Barsan, M.M., et al.: New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Anal. Chim. Acta 927, 35–45 (2016)

    Article  Google Scholar 

  73. Aydoğdu Tığ, G.: Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Talanta 175, 382–389 (2017)

    Article  Google Scholar 

  74. Ghanbari, K., Nejabati, F.: Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection. J. Food Measur. Character. 13(2), 1411–1422 (2019)

    Article  Google Scholar 

  75. Sahyar, B.Y., et al.: Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry 130, 107327 (2019)

    Article  Google Scholar 

  76. Dervisevic, M., et al.: Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J. Electroanal. Chem. 776, 18–24 (2016)

    Article  Google Scholar 

  77. Dervisevic, M., et al.: Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem. 181, 277–283 (2015)

    Article  Google Scholar 

  78. Dervisevic, M., et al.: Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J. Food Drug. Anal. 25(3), 510–519 (2017)

    Article  Google Scholar 

  79. Saito, M., et al.: A microbial platform based on conducting polymers for evaluating metabolic activity. Anal. Chem. 20, 12793–12798 (2019)

    Article  Google Scholar 

  80. Butina, K., et al.: Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sens. Actuat. B: Chem. 297, 126703–126709 (2019)

    Google Scholar 

  81. Riul, A., et al.: Artificial taste sensor: efficient combination of sensors made from langmuir−blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 1, 239–245 (2002)

    Article  Google Scholar 

  82. Peng, H., et al.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30(11), 2132–2148 (2009)

    Article  Google Scholar 

  83. Peng, H., et al.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)

    Article  Google Scholar 

  84. Janata, J., Josowicz, M.: Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003)

    Article  Google Scholar 

  85. Chang, J.B., et al.: Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 100, 014506 (2006)

    Article  Google Scholar 

  86. Jun, H.K., et al.: Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sens. Actuators, B 96, 576–581 (2003)

    Article  Google Scholar 

  87. Saxena, V., Malhotra, B.D.: Prospects of conducting polymers in molecular electronics. Curr. Appl. Phys. 3, 293–305 (2003)

    Article  Google Scholar 

  88. Stetter, J.R., Li, J.: Amperometric gas sensors—a review. Chem. Rev. 108, 352–366 (2008)

    Article  Google Scholar 

  89. Xie, D., et al.: Fabrication and characterization of polyaniline based gas sensor by ultra-thin film technology. Sens. Actuators, B 81, 158–164 (2002)

    Article  Google Scholar 

  90. Tang, C., Chen, N., Hu, X.: Conducting polymer nanocomposites: recent developments and future prospects. In: K. V, K. S, and S. H (eds.) Conducting Polymer Hybrids. Springer Series on Polymer and Composite Materials. Springer, Cham (2017)

    Google Scholar 

  91. Hatchett, D.W., Josowicz, M.: Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)

    Article  Google Scholar 

  92. Kaushik, A., et al.: Organic−inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115, 4571–4606 (2015)

    Article  Google Scholar 

  93. Liu, Y., Kumar, S.: Polymer/carbon nanotube nanocomposite fibers—a review. ACS Appl. Mater. Interfaces 6, 6069–6087 (2014)

    Article  Google Scholar 

  94. Rhazi, M.E., et al.: Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett. 8, 79–99 (2018)

    Article  Google Scholar 

  95. Yu, X., et al.: Fabrication technologies and sensing applications of graphene-based composite flms: advances and challenges. Biosens. Bioelectron. 89, 72–84 (2017)

    Article  Google Scholar 

  96. Wong, Y.C., et al.: Conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167, 037503 (2020)

    Article  Google Scholar 

  97. Korotcenkov, G., Cho, B.K.: Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuat. B 244, 182–210 (2017)

    Article  Google Scholar 

  98. Pandey, S.: Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J. Sci. Adv. Mater. Dev. 1(4), 431–453 (2016)

    Google Scholar 

  99. Fratoddi, I., et al.: Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuat. B: Chem. 220, 534–548 (2015)

    Article  Google Scholar 

  100. Hatchett, D.W., Josowicz, M.: Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008)

    Article  Google Scholar 

  101. El Rhazi, M., et al.: Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett. 8(2), 79–99 (2018)

    Article  Google Scholar 

  102. Ray, C., Pal, T.: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 5(20), 9465–9487 (2017)

    Article  Google Scholar 

  103. Mallakpour, S., Khadem, E.: Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem. Eng. J. 302 (2016)

    Google Scholar 

  104. Lakard, B., et al.: Gas sensors based on electrodeposited polymers. Metals 5, 1371–1386 (2015)

    Article  Google Scholar 

  105. Wang, X., et al.: Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth. Met. 233, 86–93 (2017)

    Article  Google Scholar 

  106. Han, G., Shi, G.: Porous polypyrrole/polymethylmethacrylate composite film prepared by vapor deposition polymerization of pyrrole and its application for ammonia detection. Thin Solid Films 515, 6986–6991 (2007)

    Article  Google Scholar 

  107. Lobotka, P., et al.: Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films 519, 4123–4127 (2011)

    Article  Google Scholar 

  108. Wu, Z., et al.: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuator. B 178, 485–493 (2013)

    Article  Google Scholar 

  109. Van Hieu, N., et al.: Thin film polypyrrole/SWCNTs nanocomposites based NH3 sensor operated at room temperature. Sens. Actuat. B 140, 500−507 (2009)

    Google Scholar 

  110. Sun, J., et al.: Facile preparation of polypyrrole-reduced graphene oxide hybrid forenhancing NH3 sensing at room temperature. Sens. Actuat. B 241, 658–664 (2017)

    Article  Google Scholar 

  111. Sharma, S., et al.: MWCNT-conducting polymer composite based ammonia gas sensors: a new approach for complete recovery process. Sens. Actuat. B 194, 213–219 (2014)

    Article  Google Scholar 

  112. Tai, H., et al.: Fabrication and gas sensitivity of polyaniline−titanium dioxide nanocomposite thin film. Sens. Actuat. B, 125, 644−650 (2007)

    Google Scholar 

  113. Tai, H., et al.: Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J. Mater. Sci. Technol. 26, 605–613 (2010)

    Article  Google Scholar 

  114. Kulkarni, S.B., et al.: Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites. Org. Electron. 45, 65–73 (2017)

    Article  MathSciNet  Google Scholar 

  115. Joulazadeh, M., Navarchian, A.H.: Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 210, 404–411 (2015)

    Article  Google Scholar 

  116. Wang, Y., et al.: Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers. Electroanalysis 21, 1432–1438 (2009)

    Article  Google Scholar 

  117. Hien, H.T., et al.: Elaboration of Pd-nanoparticle decorated polyaniline films for roomtemperature NH3 gas sensors. Sens. Actuat. B 249, 348–356 (2017)

    Article  Google Scholar 

  118. Hong, L., Li, Y., Yang, M.: Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sens. Actuat. B 145, 25–31 (2010)

    Google Scholar 

  119. Kaushik, A., et al.: Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NOx gas sensing. J. Nanosci. Nanotechnol. 9, 1792–1796 (2009)

    Article  Google Scholar 

  120. Geng, L., et al.: The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met. 156, 1078–1082 (2006)

    Article  Google Scholar 

  121. Xu, M., et al.: Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic−organic hybrids. Sens. Actuat. B 146, pp. 8–13 (2010)

    Google Scholar 

  122. Ram, M.K., Yavuz, O., Aldissi, M.: NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met. 151, 77–84 (2005)

    Article  Google Scholar 

  123. Do, J.-S., Chang, W.-B.: Amperometric nitrogen dioxide gas sensor based on Pan/Au/Nafion prepared by constant current and cyclic voltammetry methods. Sens. Actuat. B, 101, 97−106 (2004)

    Google Scholar 

  124. Roy, A., et al.: Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): room temperature resistive carbon monoxide (CO) sensor. Synth. Met. 245, 182–189 (2018)

    Article  Google Scholar 

  125. Jin, G.P., et al.: Electrodeposition of platinum−nickel alloy nanocomposites on polyaniline-multiwalled carbon nanotubes for carbon monoxide redox. J. Solid State Electrochem. 13, 967–973 (2009)

    Article  Google Scholar 

  126. Waghuley, S.A., et al.: Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuat. B 128, 366–373 (2008)

    Article  Google Scholar 

  127. Chiang, C.-J., et al.: In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron. Eng. 111, 409–415 (2013)

    Article  Google Scholar 

  128. Bhadra, J., et al.: Fabrication of polyaniline–graphene/polystyrene nanocomposites for flexible gas sensors. RSC Adv. 9, 12496–12506 (2019)

    Article  Google Scholar 

  129. Barde, R.V.: Preparation, characterization and CO2 gas sensitivity of Polyaniline doped with Sodium Superoxide (NaO2). Mater. Res. Bull. 73, 70–76 (2016)

    Article  MathSciNet  Google Scholar 

  130. Li, W., Kim, D.: Polyaniline/multiwall carbon nanotube nanocomposite for detecting aromatic hydrocarbon vapors. J. Mater. Sci. Technol. 46, 1857–1861 (2011)

    Google Scholar 

  131. Patil, S.L., et al.: Measurements on room temperature gas sensing properties of CSA doped polyaniline ZnO nanocomposites. Measurement 45, 243–249 (2012)

    Article  Google Scholar 

  132. Bandgar, D.K., et al.: Ultrasensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)

    Article  Google Scholar 

  133. Venditti, I., et al.: Nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties. Nanotechnology 24, 155503–155510 (2013)

    Article  Google Scholar 

  134. Zhang, J., et al.: One-pot fabrication of uniformpolypyrrole/Au nanocomposites and investigation for gas sensing. Sen. Actuators B 186, 695–700 (2013)

    Article  Google Scholar 

  135. Zhang, W., et al.: High performance tube sensor based on PANI/Eu3+ nanofiber for low-volume NH3 detection. Anal. Chim. Acta 1093, 115–122 (2020)

    Article  Google Scholar 

  136. Radhakrishnan, S., Deshpande, S.D.: Conducting polymers functionalized with phthalocyanine as nitrogen dioxide sensors. Sensors 2, 185–194 (2002)

    Article  Google Scholar 

  137. Xu, M., et al.: Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sens. Actuators B: Chem. 146(1), 8–13 (2010)

    Article  Google Scholar 

  138. Barn, P., et al.: A review of the experimental evidence on the toxicokinetics of carbon monoxide: the potential role of pathophysiology among susceptible groups. Environ. Health 17(1), 13 (2018)

    Article  Google Scholar 

  139. Wong, Y.C., et al.: Review—conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167(3), 037503 (2019)

    Article  Google Scholar 

  140. Ram, M.K., et al.: CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuat. B, 106, 750−757 (2005)

    Google Scholar 

  141. Wells, R.M.G.: Chapter 6—Blood–gas transport and hemoglobin function: adaptations for functional and environmental hypoxia. In: Richards, J.G., Farrell, A.P., Brauner, C.J. (eds.) Fish Physiology, pp. 255–299. Academic Press (2009)

    Google Scholar 

  142. Waghuley, S.A., et al.: Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuators B: Chem. 128(2), 366–373 (2008)

    Article  Google Scholar 

  143. Lu, J., et al.: Polyaniline nanoparticle−carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology 21, 255501 (2010)

    Article  Google Scholar 

  144. Wang, J., et al.: The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 514, 329–333 (2006)

    Article  Google Scholar 

  145. Athawale, A.A., Bhagwat, S.V., Katre, P.P.: Nanocomposite of Pd−polyaniline as a selective methanol sensor. Sens. Actuators, B 114, 263−267 (2006)

    Google Scholar 

  146. Ashraf, A., et al.: Electronic structure of polythiophene gas sensors for chlorinated analytes. J. Mol. Model. 26, 44 (2020)

    Article  Google Scholar 

  147. Sharma, S., et al.: Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuat. B 85, 131–136 (2002)

    Article  Google Scholar 

  148. Sharma, S., et al.: Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B: Chem. 85(1), 131–136 (2002)

    Article  Google Scholar 

  149. Wang, J., et al.: The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Films 514(1), 329–333 (2006)

    Google Scholar 

  150. Adhikari, A., et al.: Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano-Struct. Nano-Obj. 21, 10041 (2020)

    Google Scholar 

  151. Kundu, S., et al.: Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55, 3884–3901 (2020)

    Article  Google Scholar 

  152. Zeng, F.-W., et al.: Humidity sensors based on polyaniline nanofibres. Sens. Actuators B: Chem. 143, 530–534 (2010)

    Article  Google Scholar 

  153. Sarkar, B., Satapathy, D.K., Jaiswal, M.: Nanostructuring mechanical cracks in a flexible conducting polymer thin film for ultra-sensitive vapor sensing. Nanoscale 11, 200–210 (2019)

    Article  Google Scholar 

  154. Suhaila, M.H., Abdullah, O.G., Kadhim, G.A.: Hydrogen sulfide sensors based on PANI/f-SWCNT polymer nanocomposite thin films prepared by electrochemical polymerization. J. Sci. Adv. Mater. Dev. 4, 143–149 (2019)

    Google Scholar 

  155. Fang, Q., et al.: Micro-gas-sensor with conducting polymers. Sens. Actuators B: Chem. 84, 66–71 (2002)

    Article  Google Scholar 

  156. Stella, R., et al.: Characterisation of olive oil by an electronic nose based on conducting polymer sensors. Sens. Actuators B: Chem. 63, 1–9 (2000)

    Article  Google Scholar 

  157. Adhikari, A., et al.: Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano-Struct. Nano-Obj. 21, 100419 (2020)

    Article  Google Scholar 

  158. Kundu, S., et al.: Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J. Mater. Sci. 55(9), 3884–3901 (2020)

    Article  Google Scholar 

  159. HadiIsmaila, A., et al.: Optical ammonia gas sensor of poly(3,4-polyethylenedioxythiophene), polyaniline and polypyrrole: A comparative study. Synth. Met. 260, 116294 (2020)

    Article  Google Scholar 

  160. Xu, X., et al.: Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352–364 (2018)

    Article  Google Scholar 

  161. Ho, H.-A., Leclerc, M.: Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 126, 1384–1387 (2004)

    Article  Google Scholar 

  162. Jin, Z., Su, Y., Duan, Y.: Development of a polyaniline-based optical ammonia sensor. Sens. Actuators B: Chem. 72, 75–79 (2001)

    Article  Google Scholar 

  163. Pringsheim, E., Terpetschnig, E., Wolfbeis, O.S.: Optical sensing of pH using thin films of substituted polyanilines. Anal. Chim. Acta 357, 247–252 (1997)

    Article  Google Scholar 

  164. Le, T.H., et al.: Polypyrrole/graphene quantum dot composites as a sensor media for epinephrine. J. Nanosci. Nanotechnol. 20, 4005–4010 (2020)

    Article  Google Scholar 

  165. Khanikar, T., Singh, V.K.: PANI-PVA composite film coated optical fiber probe as a stable and highly sensitive pH sensor. Opt. Mater. 88, 244–251 (2019)

    Article  Google Scholar 

  166. Ko, Y., et al.: pH-responsive polyaniline/polyethylene glycol composite arrays for colorimetric sensor application. Sens. Actuators B: Chem. 305, 127447 (2020)

    Article  Google Scholar 

  167. Stelmach, E., et al.: Tailoring polythiophene cation-selective optodes for wide pH range sensing. Talanta 211, 120663 (2020)

    Article  Google Scholar 

  168. Mishra, K.S., Kumari, D., Gupta, B.D.: Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B: Chem. 171–172, 976–983 (2012)

    Google Scholar 

  169. Chandra, S., Mukherji, S.: Conducting polymer-based optical sensor for heavy metal detection in drinking water. Proceedings of SPIE 10680, optical sensing and detection V, 106801A (9 May 2018)

    Google Scholar 

  170. Verma, R., Gupta, B.D.: Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 166, 568–575 (2015)

    Article  Google Scholar 

  171. Baba, A., et al.: Optical properties of ultrathin poly(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ electrochemical surface plasmon resonance spectroscopy. Langmuir 21, 9058–9064 (2003)

    Article  Google Scholar 

  172. Tian, S., et al.: Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide. Adv. Func. Mater. 13, 473–479 (2003)

    Article  Google Scholar 

  173. Celiesiute, R., et al.: Electrochromic sensors based on conducting polymers, metal oxides, and coordination complexes. Crit. Rev. Anal. Chem. 49, 195–208 (2018)

    Article  Google Scholar 

  174. Turemis, M., et al.: ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta 211, 120658 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Research Council of United Kingdom (funding from RCUK grant MR/P027881/1) and SASTRA Deemed University for infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nellaiappan, S., Shalini Devi, K.S., Selvaraj, S., Krishnan, U.M., Yakhmi, J.V. (2021). Chemical, Gas and Optical Sensors Based on Conducting Polymers. In: Shahabuddin, S., Pandey, A.K., Khalid, M., Jagadish, P. (eds) Advances in Hybrid Conducting Polymer Technology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62090-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62090-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62089-9

  • Online ISBN: 978-3-030-62090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics