Skip to main content

Strigolactones: A Novel Carotenoid-Derived Phytohormone – Biosynthesis, Transporters, Signalling, and Mechanisms in Abiotic Stress

  • Chapter
  • First Online:

Abstract

Phytohormones (PHs) play central roles in improving the survival ability of plants to various abiotic stresses. The major PHs are auxins, abscisic acid (ABA), gibberellins (GAs), jasmonic acid (JA), salicylic acid (SA), ethylene (ET), cytokinin (CK), and brassinosteroids (BRs), and nitric oxide (NO), polyamines (PA), and plant peptide are also considered as PHs. Besides them, newly identified PHs are strigolactones (SLs) and karrikins (KARs). Among them, SLs have been categorized as novel carotenoid-derived PHs, although they were primarily recognized as host-derived stimulating substances for germination of parasitic weeds under the genera Striga and Orobanche. Lately, SLs were established as host detection and hyphal-branching signals for arbuscular mycorrhizal (AM) fungi. In plants, they control numerous developing processes which lead plants to acclimatize to survive various abiotic stresses, particularly heat, drought, cold, salinity and waterlogging. In the last decade, the detection of SLs provides a novel prospect to reconnoitre PHs regulation of plant for advance and adaptation to ecological restrictions. Recent investigations also recognized novel examples of PHs cross talk contributing in the adaptation of inclusive rejoinders in plants. In this chapter, we have discussed the biosynthesis, signalling, governing, and physiochemical roles of SLs in numerous abiotic stress conditions. Therefore, it is revealed that the comprehensive thoughtful of SLs will be a significant issue for overwhelming the difficulties of crop damage as a consequence of hostile environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AM:

Arbuscular mycorrhizal

APX:

Ascorbate peroxidase

BRs:

Brassinosteroids

CAT:

Catalase

CCO:

Carotenoid cleavage oxygenase

CK:

Cytokinin

ET:

Ethylene

GAs:

Gibberellins

GPX:

Glutathione peroxidase

HI:

Harvest index

JA:

Jasmonic acid

KAR:

Karrikins

LRs:

Lateral roots

MDA:

Malondialdehyde

NAA:

1-Naphthylacetic acid

NCED:

Nine-cis-epoxycarotenoid cleavage dioxygenase

NO:

Nitric oxide

NPA:

1-Naphthylphthalamic acid

PAs:

Polyamines

PHs:

Phytohormones

POD:

Peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SLs:

Strigolactones

SOD:

Superoxide dismutase

References

  • Abdel Latef AA, Srivastava AK, Abdel-sadek MS, Kordrostam M, Tran L-SP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline conditions. Land Degrad Dev 29:1065–1073

    Article  Google Scholar 

  • Abdel Latef AA, Mostafa MG, Rahman MM, Abdel-Farid A, Tran LSP (2019) Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. J Plant Growth Regul 38:966–979

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Abu Alhmad MF, Kordrostami M et al (2020) Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10065-9

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Noumara T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA 111:18084–18089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH (2020) Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem 157:47–59

    Google Scholar 

  • Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem J 416:289–296

    Article  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Alghabari F, Ihsan MZ (2018) Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh J Bot 47(3):421–428

    Article  Google Scholar 

  • Aman R, Schieber A, Carle R (2005) Effects of heating and illumination on trans-cis isomerization and degradation of beta-carotene and lutein in isolated spinach chloroplasts. J Agric Food Chem 53:9512–9518

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51(10):19–29

    Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2005) Abiotic stresses. Plant resistance through breeding and molecular approaches. Haworth Press, New York

    Book  Google Scholar 

  • Asseng S, Ewert F, Martre P (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Bainbridge K, Sorefan K, Ward S, Leyser O (2005) Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J 44:569–580

    Article  CAS  PubMed  Google Scholar 

  • Basbouss-Serhal I, Leymarie J, Bailly C (2016) Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage. J Exp Bot 67:119–130

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol 115:1251–1258

    Article  CAS  PubMed Central  Google Scholar 

  • Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359:eaam8328

    Article  PubMed  CAS  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid leavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B et al (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Brown LR (2008) Plan B 4.0: mobilizing to save civilization (substantially revised). W. W. Norton & Company, New York

    Google Scholar 

  • Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S (2014) On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett 588:1802–1807

    Article  CAS  PubMed  Google Scholar 

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439

    Article  CAS  PubMed  Google Scholar 

  • Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS (2014) Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signalling in Arabidopsis. Plant Cell 26:1134–1150. https://doi.org/10.1105/tpc.114.122903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu RS, Nahal H, Provart NJ, Gazzarrini S (2012) The role of the Arabidopsis FUSCA3transcription factor during inhibition of seed germination at high temperature. BMC Plant Biol 12:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiwocha SD, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, Riseborough J-AM, Smith SM, Stevens JC (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci 177:252–256

    Article  CAS  Google Scholar 

  • Conn CE, Nelson DC (2016) Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front Plant Sci 6:1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, Beveridge CA, Foyer CH (2018) Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ 41:1298–1310

    Article  CAS  PubMed  Google Scholar 

  • Daniel P, Roberts and Autar K. Mattoo. (2018) Sustainable agriculture – enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture 8:8 https://doi.org/10.3390/agriculture8010008.

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362. https://doi.org/10.1371/journal.pone.0156362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (eds) Plant hormones. Springer, Dordrecht, pp 1–15. https://doi.org/10.1007/978-1-4020-2686-7_1

  • De Cuyper C, Goormachtig S (2017) Strigolactones in the Rhizosphere: friend or foe? MPMI 30(9):683–690

    Article  CAS  PubMed  Google Scholar 

  • de San Celedonio RP, Abeledo LG, Miralles DJ (2014) Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 378:265–277. https://doi.org/10.1007/s11104-014-2028-6

    Article  CAS  Google Scholar 

  • Delahunty A, Nuttall J, Nicolas M, Brand J (2015) Genotypic heat tolerance in lentil. In: Proceedings of the 17th ASA conference, Hobart, Australia, pp 20–24

    Google Scholar 

  • Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    Article  CAS  PubMed  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana JF, Schmidhuber J (2007) Food, fibre and forest products. Clim Chang 273:313

    Google Scholar 

  • EL Sabagh A, Hossain A, Islam MS, Iqbal MA, Raza A, Karademir Ç, Karademir E, Rehman A, Rahman MA, Singhal RK, Llanes A (2020) Elevated CO2 Concentration Improves Heat-Tolerant Ability in Crops. In: Fahad S (eds.) Abiotic Stress in Plants, IntechOpen, UK. https://doi.org/10.5772/intechopen.94128

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203:81–102. https://doi.org/10.1111/jac.12169

    Article  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977–977

    Article  CAS  PubMed  Google Scholar 

  • Flematti GR, Scaffidi A, Goddard-Borger ED, Heath CH, Nelson DC, Commander LE, Stick RV, Dixon KW, Smith SM, Ghisalberti EL (2010) Structure−activity relationship of karrikin germination stimulants. J Agric Food Chem 58:8612–8617

    Article  CAS  PubMed  Google Scholar 

  • Flematti GR, Scaffidi A, Dixon KW, Smith SM, Ghisalberti EL (2011) Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. J Agric Food Chem 59:1195–1198

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Foo E (2001) Long-distance signaling and the control of branching in therms1 mutant of pea. Plant Physiol 126:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolomè J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signalling pathways in Arabidopsis. Proc Natl Acad Sci USA 109:13446–13451. https://doi.org/10.1073/pnas.1119992109

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghobadi ME, Ghobadi M, Zebarjadi A (2016) Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. Int J Biometeorol. https://doi.org/10.1007/s00484-016-1240-x

  • Gomes MP, Smedbol É, Carneiro MMLC, Garcia QS, Juneau P (2014) Reactive oxygen species and plant hormones. In: Ahmad P (eds.) Oxidative damage to plants. Elsevier, Academic Press, San Diego, CA, USA, pp 65–88. https://doi.org/10.1016/B978-0-12-799963-0.00002-2

  • Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S (2012) Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol 160:1303–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856. https://doi.org/10.1073/pnas.1322135111

    Article  CAS  PubMed  Google Scholar 

  • Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, Ntui VO, Guo X, Charnikhova T, Al-Babili S (2018) The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot 69:2403–2414

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MH, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. https://doi.org/10.3390/antiox9080681

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412. https://doi.org/10.1104/pp.109.137646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethyl eneandaux in signalling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916. https://doi.org/10.1111/j.1365-313X.2005.02575.x

    Article  CAS  PubMed  Google Scholar 

  • Heger M, Zens G, Bangalor M (2018) Does the environment matter for poverty reduction? The role of soil fertility and vegetation vigor in poverty reduction. The World Bank, Washington, DC

    Book  Google Scholar 

  • Hossain A, Alam MA, Jahan N, Alam MK, Islam MR, Vemuri H, Syed MA, Shahriar SM (2020) TTargeting phytohormone levels for genetic engineering abiotic stress tolerance in rice. In: Roychoudhury A (eds) Rice research for quality improvement: genomics and genetic engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_27

  • Hu Q, Zhang S, Huang B (2018) Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Sci 271:34–39

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Zhang S, Huang B (2019) Strigolactones promote leaf elongation in tall fescue through upregulation of cell cycle genes and down regulation of auxin transport genes in tall fescue under different temperature regimes. Int J Mol Sci 20:1836. https://doi.org/10.3390/ijms20081836

    Article  CAS  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018a) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-allah S, Tanveer M (2018b) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag J 201:152–166

    Article  Google Scholar 

  • Hussain HAS, Men S, Hussain S, Chen Y, Ali S, Zhang S, Zhang K, Li Y, Xu Q, Liao C, Wang L (2019) Interactive effects of drought and heat stresses on morphophysiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9:3890. https://doi.org/10.1038/s41598-019-40362-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86

    Article  CAS  PubMed  Google Scholar 

  • Jensen NH, Nielsen AB, Wilbrandt R (1982) Chlorophyll a-sensitized trans-cis photoisomerization of all-trans-beta-carotene. J Am Chem Soc 104:6117–6119

    Article  CAS  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L (2013) DWARF 53 acts as are pressor of strigolactone signalling in rice. Nature 504:401–405. https://doi.org/10.1038/nature12870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Lian F, Wang Z, Xing B (2020) The role of biochars in sustainable crop production and soil resiliency. J Exp Bot 71:520–542

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141–146. https://doi.org/10.4161/epi.6.2.13627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kjellstrom E, Nikulin G, Strandberg G, Christensen OB, Jacob D, Keuler K, Lenderink G, Van Meijgaard E, Schar C, Somot S (2018) European climate change at global mean temperature increases of 1.5 and 2 degrees above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst Dynam 9:459–478

    Article  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    Article  CAS  PubMed  Google Scholar 

  • Koltai H (2014) Receptors, repressors, PINs: a playground for strigolactone signalling. Trends Plant Sci 19:727–733. https://doi.org/10.1016/j.tplants.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010) A tomato strigolactone impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V, Dor BB, Resnick N, Wininger S, Kapulnik Y (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993–1996

    Article  CAS  PubMed  Google Scholar 

  • Kong CC, Ren CG, Li RZ, Xie ZH, Wang JP (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in Sesbania cannabina seedlings. J Plant Growth Regul 36:734–742

    Article  CAS  Google Scholar 

  • Koohafkan P, Altieri MA, Gimenez EH (2012) Green agriculture: foundations for biodiverse, resilient and productive agricultural systems. Int J Agric Sustain 10:61–75

    Article  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    Article  CAS  PubMed  Google Scholar 

  • Kukal MS, Irmak S (2018) Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci Rep 8:3450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar K, Solanki S, Singh SN, Khan MA (2016) Abiotic constraints of pulse production in India. In: Biswas SK, Kumar S, Chand G (eds) Diseases of pulse crops and their sustainable management. Biotech Books, New Delhi, pp 23–39

    Google Scholar 

  • Kumar B, Gangwar V, Parihar SKS (2017) Effect of saline water irrigation on germination and yield of wheat (Triticum aestivum L.) Genotypes. Agrotechnol 6:156. https://doi.org/10.4172/2168-9881.1000156

    Article  Google Scholar 

  • Lechat MM, Brun G, Montiel G, Véronési C, Simier P, Thoiron S, Pouvreau JB, Delavault P (2015) Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel J Exp Bot 66:3129–3140

    Article  CAS  PubMed  Google Scholar 

  • Ledger SE, Janssen BJ, Karunairetnam S, Wang T, Snowden KC (2010) Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). New Phytol 188:803–813

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. https://doi.org/10.1038/nature16467

    Article  CAS  PubMed  Google Scholar 

  • Li W, Nguyen KH, Tran CD, Watanabe Y, Tian C, Yin X, Li K, Yang Y, Guo J, Miao Y, Yamaguchi S, Tran LP (2020) Negative roles of strigolactone-related smxl6, 7 and 8 proteins in drought resistance in arabidopsis. Biomolecules 10:607. https://doi.org/10.3390/biom10040607

    Article  CAS  PubMed Central  Google Scholar 

  • Liang J, Zhao L, Challis R, Leyser O (2010) Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J Exp Bot 61:3069–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling F, Su Q, Jiang H, Cui J, He X, Wu Z, Zhang Z, Liu J, Zhao Y (2020) Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep 10:1–8

    Article  CAS  Google Scholar 

  • Liu J, He H, Vitali M, Visentin I, Charnikhova T (2015) Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241:1435–1451

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YL, Zeevaart JAD, Chen LJ (2008) A novel class of Gibberellin 2-oxidases control semi dwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618. https://doi.org/10.1105/tpc.108.060913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  • Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1:42

    Article  Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter-Spira C (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci 27(8):1671

    Article  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  • Maleki A, Naderi A, Naseri R, Fathi A, Bahamin S, Maleki R (2013) Physiological performance of soybean cultivars under drought stress. Bull Environ Pharmacol Life Sci 2:38–44

    Google Scholar 

  • Mar S, Nomura H, Takahashi Y, Ogata K, Yabe M (2018) Impact of erratic rainfall from climate change on pulse production efficiency in lower Myanmar. Sustainability 10:402

    Article  Google Scholar 

  • Marzec M, Muszynska A (2015) In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. Int J Mol Sci 16:6757–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoni A, Pampana S, Arduini I (2016) Barley response to waterlogging duration at tillering. Crop Sci 56:2722–2730. https://doi.org/10.2135/cropsci2016.02.0106

    Article  CAS  Google Scholar 

  • Matusova R (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellerowicz EJ (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Development 145:dev164376

    Article  PubMed  CAS  Google Scholar 

  • Middendorf BJ, Prasad PVV, Pierzynsk GM (2020) Setting research priorities for tackling climate change. J Exp Bot 71:480–489

    Article  CAS  PubMed  Google Scholar 

  • Min ZR, Li L, Chen Y, Zhang Z, Li M, Liu Y, Ju Y, Fang Y (2018) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110. https://doi.org/10.1016/j.plaphy.2018.11.037

    Article  CAS  PubMed  Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Smith D (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Morris SE, Turnbull C, Murfet IC, Beveridge C (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol 126:1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LS (2018) Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ 41(10):2227–2243. https://doi.org/10.1111/pce.13364

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K (2013) Molecular mechanism of strigolactone perception DWARF14. Nat Commun 4:2613. https://doi.org/10.1038/ncomms3613

    Article  CAS  PubMed  Google Scholar 

  • Napoli C (1996) Highly branched phenotype of the petunia dad1-1mutant is reversed by grafting. Plant Physiol 111:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okon OG (2019) Effect of salinity on physiological processes in plants. In: Giri B, Varma A (eds) Microorganisms in saline environments: strategies and functions. soil biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_10

    Chapter  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto IM, Reckien D, Reyer CP, Marcus R, Le Masson V, Jones L, Norton A, Serdeczny O (2017) Social vulnerability to climate change: a review of concepts and evidence. Reg Environ Chang 17:1651–1662

    Article  Google Scholar 

  • Ouyang X, Li J, Li G, Li B, Chen B, Shen H, Huang X, Mo X, Wan X, Lin R (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23:2514–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pampana S, Masoni A, Arduini I (2016a) Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res Commun 44:706–716. https://doi.org/10.1556/0806.44.2016.026

    Article  Google Scholar 

  • Pampana S, Masoni A, Arduini I (2016b) Response of cool-season grain legumes to waterlogging at flowering. Can J Plant Sci 96:597–603. https://doi.org/10.1139/cjps-2015-0268

    Article  CAS  Google Scholar 

  • Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H (2014) Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and act in filament architecture. New Phytol 202:1184–1196. https://doi.org/10.1111/nph.12744

    Article  CAS  PubMed  Google Scholar 

  • Pasare SA, Ducreux LJ, Morris WL, Campbell R, Sharma SK (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198:1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Pastor AV, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, Kabat P, Ludwig F (2019) The global nexus of food–trade–water sustaining environmental flows by 2050. Nat Sustain 13:1

    Google Scholar 

  • Porfirio LL, Newth D, Finnigan JJ, Cai Y (2018) Economic shifts in agricultural production and trade due to climate change. Palgrave Commun 4:111

    Article  Google Scholar 

  • Priya M, Sharma L, Kaur R, Bindumadhava H, Nair RM, Siddique KHM, Nayyar H (2019) GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Sci Rep 9:7788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qureshi AS, Mohammed M, Daba AW, Hailu B, Belay G, Tesfaye A, Ertebo TM (2019) Improving agricultural productivity on salt-affected soils in Ethiopia: farmers’ perceptions and proposals. Afr J Agric Res 14(21):897–906. https://doi.org/10.5897/AJAR2019.14077

    Article  Google Scholar 

  • Rameau C, Goormachtig S, Cardinale F, Bennett T, Cubas P (2019) Strigolactones as plant hormones. InStrigolactones-Biology and Applications. Springer, Cham, pp 47–87

    Book  Google Scholar 

  • Ramırez V, Xiong G, Mashiguchi K, Yamaguchi S, Pauly M (2018) Growth- and stress-related defects associated with wall hypoacetylation are strigolactone dependent. Plant Direct 2:1–11. https://doi.org/10.1002/pld3.62

    Article  CAS  Google Scholar 

  • Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A (2019) Ocimum metabolomics in response to abiotic stresses: cold, flood, drought and salinity. PLoS One 14(2):e0210903. https://doi.org/10.1371/journal.pone.0210903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  CAS  PubMed  Google Scholar 

  • Raza A (2020) Eco-physiological and Biochemical Responses of Rapeseed (Brassica napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies. J Plant Growth Regul https://doi.org/10.1007/s00344-020-10231-z

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019a) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Hasanuzzaman M., Nahar K., Hossain M. (eds) Wheat production in changing environments. Springer, Singapore, pp 557–577. https://doi.org/10.1007/978-981-13-6883-7_22

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019b) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 117–145

    Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases droughttolerancethroughthecoordinatedregulationofcarbonandnitrogen assimilation in rice. Plant Physiol 163:1609–1622. https://doi.org/10.1104/pp.113.227702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren CG, Kong CC, Xie ZH (2018) Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol 18(1):74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A (2017) Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium dependent protein kinases during plant abiotic stress. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley, New York, pp 197–241. https://doi.org/10.1002/9781118889022.ch9

  • Ruiz-Lozano JM, Aroca R, Zamarreno AM, Molina S, Andreo-Jimenez B (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester HJ (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci U S A 106:15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz AM, Harrison MJ (2014) Signaling events during initiation of arbuscular mycorrhizal symbiosis. J Integr Plant Biol 56:250–261

    Article  PubMed  Google Scholar 

  • Seto Y (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci U S A 111:1640–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah F, Wu W (2019) Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11:1485. https://doi.org/10.3390/su11051485

    Article  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 43–53. https://doi.org/10.1007/978-3-319-96190-3_2

    Chapter  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin flux protein PIN1from the plasma membrane. PLoS Biol 1:e1001474. https://doi.org/10.1371/journal.pbio.1001474

    Article  CAS  Google Scholar 

  • Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM (2005) The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto MJ, Fernandez-Aparicio MN, Castellanos-Morales V, Garcia-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochemist 42:383–385

    Article  CAS  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol 163:318–330

    Google Scholar 

  • Stewart ZP, Pierzynski GM, Middendorf BJ, Prasad PVV (2020) Approaches to improve soil fertility in Sub-Sahara Africa. J Exp Bot 71:632–641

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Tao J, Gu P, Xu G, Zhang Y (2016) The role of strigolactones in root development. Plant Signal Behav 11(1):e1110662. https://doi.org/10.1080/15592324.2015.1110662

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Xu F, Guo X, Wu D, Zhang X, Lou M, Luo F, Zhao Q, Xu G, Zhang Y (2019) A strigolactone signal inhibits secondary lateral root development in rice. Front Plant Sci 10:1527. https://doi.org/10.3389/fpls.2019.01527

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebaldi C, Lobell D (2018) Estimated impacts of emission reductions on wheat and maize crops. Clim Chang 146:533–545

    Article  CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741

    Article  CAS  PubMed  Google Scholar 

  • Tully K, Sullivan C, Weil R, Sanchez P (2015) The state of soil degradation in Sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability 7:6523–6552

    Article  Google Scholar 

  • Turnbull C, Booker J, Leyser O (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud out growth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uphoff N, Ball A, Fernandes ECM, Herren H, Husson O, Laing M, Palm CA, Pretty J, Sanchez PA, Sanginga N (2006) Understanding the functioning and management of soil systems. In: Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 1–6

    Chapter  Google Scholar 

  • Van Ha C, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Van Dong N (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceed Nati Acad Sci 111:851–856

    Article  CAS  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212:954–963

    Article  CAS  PubMed  Google Scholar 

  • Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F (2020) A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ. https://doi.org/10.1111/pce.13758

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161. https://doi.org/10.3389/fpls.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    Article  CAS  PubMed  Google Scholar 

  • Vurro M, Yoneyama K (2012) Strigolactones-intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application. Pest Manag Sci 68:664–668

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y (2019) Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv 5(12):eaax9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner ES, López-Salmerón V, Belevich I, Poschet G, Jung I, Grünwald K, Sevilem I, Jokitalo E, Hell R, Helariutta Y (2017) Strigolactone-and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr Biol 27:1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  CAS  PubMed  Google Scholar 

  • Wang M (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ni J, Shah F, Liu W, Wang D, Yao Y, Hu H, Huang S, Hou J, Songling F, Lifang W (2019) Overexpression of the stress-inducible SsMAX2 promotes drought and salt resistance via the regulation of redox homeostasis in Arabidopsis. Int J Mol Sci 20:837. https://doi.org/10.3390/ijms20040837

    Article  CAS  PubMed Central  Google Scholar 

  • Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 28:68. https://doi.org/10.1146/annurev-arplant-042916-040925

    Article  CAS  Google Scholar 

  • Wollmer AC, Pitann B, Mühling KH (2018) Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J Agron Crop Sci 204:165–174. https://doi.org/10.1111/jac.12244

    Article  CAS  Google Scholar 

  • Wu W, Ma BL, Whalen JK (2018) Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Adv Agron 151:87–159

    Article  Google Scholar 

  • Xia X-J, Zhou Y-H, Shi K, Zhou J, Foyer CH, Yu J-Q (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Lian Y, Wang C (2019) Comparing and contrasting the multiple roles of butenolide plant growth regulators: strigolactones and karrikins in plant development and adaptation to abiotic stresses. Int J Mol Sci 20:6270. https://doi.org/10.3390/ijms20246270

    Article  CAS  PubMed Central  Google Scholar 

  • Yang YY, Ren YR, Zheng PF, Zhao LL, You CX, Wang XF, Hao YJ (2020) Cloning and functional identification of a strigolactone receptor gene MdD14 in apple. Plant Cell Tissue Org Cult 140:197–208

    Article  CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, van DijK ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao QP, Wang XN, Li NN, Zhu ZY, Mu SC, Zhao X, Zhang X (2018) Functional analysis of MAX2 in phototropins-mediated cotyledon flattening in Arabidopsis. Front Plant Sci 9:1507

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Germain AS, Chory J (2014) Unfolding the mysteries of strigolactone signalling. Mol Plant 7:934–936. https://doi.org/10.1093/mp/ssu021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N (2013) D14–SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410. https://doi.org/10.1038/nature12878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L (2016) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 532:406

    Article  Google Scholar 

  • Zhuang L, Wang J, Huang B (2017) Drought inhibition of tillering in Festuca arundinacea associated with axillary bud development and strigolactone signaling. Environ Exp Bot 142:15–23

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A. et al. (2021). Strigolactones: A Novel Carotenoid-Derived Phytohormone – Biosynthesis, Transporters, Signalling, and Mechanisms in Abiotic Stress. In: Aftab, T., Hakeem, K.R. (eds) Plant Growth Regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_13

Download citation

Publish with us

Policies and ethics