Skip to main content

Novel Technologies in Upper Extremity Rehabilitation

  • Chapter
  • First Online:
Bionic Limb Reconstruction
  • 806 Accesses

Abstract

Structured and sufficient training is a key factor for successful fitting of an upper limb prosthesis. This is especially true for more advanced myoelectric control strategies, or for individuals with comorbidities that require additional treatment. With advances in technology, not only have the control strategies become more complex, but also possibilities for more tailored rehabilitation have increased. Novel rehabilitation technologies include virtual and augmented reality systems, as well as training systems relying on computers and smartphone apps. These technologies can be used within the clinical setting, enable telerehabilitation, and/or can support unsupervised home training. While most experts agree that novel rehabilitation technologies can be a good supplement for conventional therapy, one of the greatest challenges is to transfer the progress achieved in the technology-assisted realm into real-world situations and actual prosthetic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grigore C. Burdea, “Virtual reality technology for the clinician,” 2015 International Conference on Virtual Rehabilitation (ICVR). Valencia. 2015: p. 1–1. https://doi.org/10.1109/ICVR.2015.7358629.

  2. Adamse C, Dekker-Van Weering MGH, van Etten-Jamaludin FS, Stuiver MM. The effectiveness of exercise-based telemedicine on pain, physical activity and quality of life in the treatment of chronic pain: a systematic review. J Telemed Telecare. 2018;24(8):511–26.

    Article  Google Scholar 

  3. Al-Jumaily A, Olivares RA. Electromyogram (EMG) driven system based virtual reality for prosthetic and rehabilitation devices. In: Proceedings of the 11th international conference on information integration and web-based applications & services. New York: ACM; 2009. p. 582–6.

    Google Scholar 

  4. Alcañiz M, Perpiña C, Baños R, Lozano JA, Montesa J, Botella C, Palacios AG, Villa H, Alozano J. A new realistic 3D body representation in virtual environments for the treatment of disturbed body image in eating disorders. CyberPsychology Behav. 2000;3:433–439. https://doi.org/10.1089/10949310050078896.

  5. Anderson F, Bischof WF. Augmented reality improves myoelectric prosthesis training. Int J Disabil Hum Dev. 2014;13:349–54. https://doi.org/10.1515/ijdhd-2014-0327.

    Article  Google Scholar 

  6. Annett M, Anderson F, Bischof WF. Activities and evaluations for technology-based upper extremity rehabilitation. Virtual Real Enhanc Robot Syst Disabil Rehabil. 2016;307. https://doi.org/10.4018/978-1-4666-9740-9.ch015.

  7. Aprile I, Cruciani A, Germanotta M, Gower V, Pecchioli C, Cattaneo D, Vannetti F, Padua L, Gramatica F. Upper limb robotics in rehabilitation: an approach to select the devices, based on rehabilitation aims, and their evaluation in a feasibility study. Appl Sci. 2019;9(18):3920. https://doi.org/10.3390/app9183920.

    Article  Google Scholar 

  8. Armiger RS, Vogelstein RJ. Air-Guitar Hero: a real-time video game interface for training and evaluation of dexterous upper-extremity neuroprosthetic control algorithms. Biomed Circuits Syst Conf. 2008;121–4. https://doi.org/10.1109/biocas.2008.4696889.

  9. Baker L. Neuro muscular electrical stimulation: a practical guide. 4th ed. Downey, CA: Los Amigos Research Institute; 2000.

    Google Scholar 

  10. Biddiss E, Irwin J. Active video games to promote physical activity in children and youth: a systematic review. Arch Pediatr Adolesc Med. 2010;164:664–72. https://doi.org/10.1001/archpediatrics.2010.104.

    Article  PubMed  Google Scholar 

  11. Boudreau SA, Badsberg S, Christensen SW, Egsgaard LL. Digital pain drawings: assessing touch-screen technology and 3D body schemas. Clin J Pain. 2016;32(2):139–45. https://doi.org/10.1097/AJP.0000000000000230.

    Article  PubMed  Google Scholar 

  12. Bouwsema H, van der Sluis CK, Bongers RM. The role of order of practice in learning to handle an upper-limb prosthesis. Arch Phys Med Rehabil. 2008;89:1759–64. https://doi.org/10.1016/j.apmr.2007.12.046.

    Article  PubMed  Google Scholar 

  13. Bouwsema H, van der Sluis CK, Bongers RM. Effect of feedback during virtual training of grip force control with a myoelectric prosthesis. PLoS One. 2014;9:e98301. https://doi.org/10.1371/journal.pone.0098301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burke JW, McNeill M, Charles D, Morrow P, Crosbie J, McDonough SM. Serious games for upper limb rehabilitation following stroke. In: Conference in games and virtual worlds for serious applications, 2009. VS-GAMES’09; 2009. p. 103–10.

    Google Scholar 

  15. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singap. 1994;23(2):129–38.

    CAS  PubMed  Google Scholar 

  16. Cottrell MA, Galea OA, O’Leary SP, Hill AJ, Russell TG. Real-time telerehabilitation for the treatment of musculoskeletal conditions is effective and comparable to standard practice: a systematic review and meta-analysis. Clin Rehabil. 2017;31(5):625–38.

    Article  Google Scholar 

  17. Csikszentmihalyi M. Toward a psychology of optimal experience. In: Flow and the foundations of positive psychology: the collected works of Mihaly Csikszentmihalyi; 2014. p. 209–26.

    Google Scholar 

  18. Dawson MR, Carey JP, Fahimi F. Myoelectric training systems. Expert Rev Med Devices. 2011;8:581–9. https://doi.org/10.1586/erd.11.23.

    Article  PubMed  Google Scholar 

  19. Deci EL, Ryan RM, Koestner R. A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychol Bull. 1999;125:627–68. https://doi.org/10.1037/0033-2909.125.6.627.

    Article  CAS  PubMed  Google Scholar 

  20. Deterding S, Dixon D, Khaled R, Nacke L, Sicart M, O’Hara K. Gamification: using game design elements in non-game contexts. In: Proc 2011 Annu Conf Ext Abstr Hum Factors Comput Syst (CHI 2011); 2011. p. 2425–8. https://doi.org/10.1145/1979742.1979575.

  21. Van Dijk L, Van Der Sluis CK, Van Dijk HW, Bongers RM. Task-oriented gaming for transfer to prosthesis use. IEEE Trans Neural Syst Rehabil Eng. 2015;24(12):1384–94. https://doi.org/10.1109/TNSRE.2015.2502424.

    Article  PubMed  Google Scholar 

  22. Donaghy E, Atherton H, Hammersley V, McNeilly H, Bikker A, Robbins L, Campbell J, McKinstry B. Acceptability, benefits, and challenges of video consulting: a qualitative study in primary care. Br J Gen Pract. 2019;69(686):e586–94. https://doi.org/10.3399/bjgp19X704141.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dudkiewicz I, Gabrielov R, Seiv-Ner I, Zelig G, Heim M. Evaluation of prosthetic usage in upper limb amputees. Disabil Rehabil. 2004;26:60–3. https://doi.org/10.1080/09638280410001645094.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrer-Garcia M, Gutiérrez-Maldonado J, Riva G. Virtual reality based treatments in eating disorders and obesity: a review. J Contemp Psychother. 2013;43(4):207–21. https://doi.org/10.1007/s10879-013-9240-1.

    Article  Google Scholar 

  25. Flores E, Tobon G, Cavallaro E, Cavallaro FI, Perry JC, Keller T. Improving patient motivation in game development for motor deficit rehabilitation. In: Proceedings of the 2008 international conference on advances in computer entertainment technology; 2008. p. 381–4.

    Google Scholar 

  26. Gusman J, Mastinu E, Ortiz-Catalan M. Evaluation of computer-based target achievement tests for myoelectric control. IEEE J Transl Eng Heal Med. 2017;5:1–10. https://doi.org/10.1109/JTEHM.2017.2776925.

    Article  Google Scholar 

  27. Halton J. Virtual rehabilitation with video games: a new frontier for occupational therapy. Occup Ther Now. 2008;10:12–4.

    Google Scholar 

  28. Handelzalts JE, Ben-Artzy-Cohen Y. The draw-a-person test and body image. Rorschachiana. 2014;35(1):3–22. https://doi.org/10.1027/1192-5604/a000042.

    Article  Google Scholar 

  29. Hargrove L, Losier Y, Lock B, Englehart K, Hudgins B. A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment. In: Annu Int Conf IEEE Eng Med Biol—Proc; 2007. p. 4842–5. https://doi.org/10.1109/IEMBS.2007.4353424.

  30. Herz NB, Mehta SH, Sethi KD, Jackson P, Hall P, Morgan JC. Nintendo Wii rehabilitation (“Wii-hab”) provides benefits in Parkinson’s disease. Park Relat Disord. 2013;19:1039–42. https://doi.org/10.1016/j.parkreldis.2013.07.014.

    Article  Google Scholar 

  31. Hussaini A, Kyberd P. Refined clothespin relocation test and assessment of motion. Prosthet Orthot Int. 2016;41(3):294–302. https://doi.org/10.1177/0309364616660250.

    Article  PubMed  Google Scholar 

  32. Intrinsic Motivation Inventory. Intrinsic Motivation Inventory (IMI). Intrinsic Motiv Invent Scale Descr. 1994;1–3. www.selfdeterminationtheory.org.

  33. Jensen TS, Krebs B, Nielsen J, Rasmussen P. Phantom limb, phantom pain and stump pain in amputees during the first 6 months following limb amputation. Pain. 1983;17(3):243–56. https://doi.org/10.1007/BF01402796.

    Article  CAS  PubMed  Google Scholar 

  34. Jensen TS, Krebs B, Nielsen J, Rasmussen P. Non-painful phantom limb phenomena in amputees: incidence, clinical characteristics and temporal course. Acta Neurol Scand. 1984;70:407–14. https://doi.org/10.1111/j.1600-0404.1984.tb00845.x.

    Article  CAS  PubMed  Google Scholar 

  35. Johnson SS, Mansfield E. Prosthetic training: upper limb. Phys Med Rehabil Clin N Am. 2014;25(1):133–51.

    Article  Google Scholar 

  36. Kuiken TA, Miller LA, Turner K, Hargrove LJ. A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis. IEEE J Transl Eng Heal Med. 2016;4:2100508. https://doi.org/10.1109/JTEHM.2016.2616123.

    Article  Google Scholar 

  37. Lang CE, Macdonald JR, Reisman DS, Boyd L, Kimberley TJ, Schindler-ivens SM, Hornby TG, Ross SA, Scheets PL. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2010;90:1692–8. https://doi.org/10.1016/j.apmr.2009.04.005.Observation.

    Article  Google Scholar 

  38. Letosa-Porta A, Ferrer-Garcia M, Gutiérrez-Maldonado J. A program for assessing body image disturbance using adjustable partial image distortion. Behav Res Methods. 2005;37(4):638–43. https://doi.org/10.3758/BF03192734.

    Article  PubMed  Google Scholar 

  39. Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95:415–25.

    Article  Google Scholar 

  40. Lloréns R, Alcañiz M, Colomer C, Gil-Gomez J-A, Llorens R, Alcaniz M, Colomer C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil. 2011;8:30. https://doi.org/10.1186/1743-0003-8-30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lohse K, Shirzad N, Verster A, Hodges N. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013;37(4):166–75. https://doi.org/10.1097/NPT.0000000000000017.

    Article  PubMed  Google Scholar 

  42. Lohse K, Shirzad N, Verster A, Hodges N, der Loos HFM V. Video Games and Rehabilitation. J Neurol Phys Ther. 2013;37:166–75. https://doi.org/10.1097/NPT.0000000000000017.

    Article  PubMed  Google Scholar 

  43. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–91. https://doi.org/10.5014/ajot.39.6.386.

    Article  CAS  PubMed  Google Scholar 

  44. Michie S, Ashford S, Sniehotta FF, Dombrowski SU, Bishop A, French DP. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: the CALO-RE taxonomy. Psychol Health. 2011;26:1479–98. https://doi.org/10.1080/08870446.2010.540664.

    Article  PubMed  Google Scholar 

  45. Murray CD, Pettifer S, Howard T, Patchick EL, Caillette F, Kulkarni J, Bamford C. The treatment of phantom limb pain using immersive virtual reality: three case studies. Disabil Rehabil. 2007;29:1465–9. https://doi.org/10.1080/09638280601107385.

    Article  PubMed  Google Scholar 

  46. Noble D, Price DB, Gilder R. Psychiatric disturbances following amputation. Am J Psychiatry. 1954;110:609–13. https://doi.org/10.1176/ajp.110.8.609.

    Article  CAS  PubMed  Google Scholar 

  47. Oppenheim H, Armiger RS, Vogelstein RJ. WiiEMG: a real-time environment for control of the Wii with surface electromyography. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS); 2010. p. 957–60.

    Google Scholar 

  48. Ortiz-Catalan M, Gudmundsdottir RA, Kristoffersen MB, Zepeda-Echavarria A, Caine-Winterberger K, Kulbacka-Ortiz K, Widehammar C, Eriksson K, Stockselius A, Ragnö C, Pihlar Z, Burger H, Hermansson L. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet. 2016;388:2885–94. https://doi.org/10.1016/S0140-6736(16)31598-7.

    Article  PubMed  Google Scholar 

  49. Ottobock. MyoBoy upgrade/exchange | Myo Software. 2016. https://professionals.ottobockus.com/Prosthetics/Upper-Limb-Prosthetics/Myo-Hands-and-Components/Myo-Software/MyoBoy-Upgrade-Exchange/p/757M11~5X-CHANGE. Accessed 1 Sept 2017.

  50. Ottobock. PAULA 1.2 | Myo Software. 2016. https://professionals.ottobockus.com/Prosthetics/Upper-Limb-Prosthetics/Myo-Hands-and-Components/Myo-Software/PAULA-1-2/p/646C52~5V1~82. Accessed 1 Sept 2017.

  51. Ottobock. Myo Plus App. 2020. https://www.ottobock.com/en/apps/myoplusapp/myo-plus-app-de.html. Accessed 20 May 2020.

  52. Prahm C, Bauer K, Sturma A, Hruby L, Pittermann A, Aszmann O. 3D body image perception and pain visualization tool for upper limb amputees. In: IEEE proceedings on serious games and applications for health, Kyoto; 2019. p. 1–5.

    Google Scholar 

  53. Prahm C, Kayali F, Aszmann O. MyoBeatz: using music and rhythm to improve prosthetic control in a mobile game for health. In: IEEE proceedings on serious games and applications for health, Kyoto; 2019. p. 1–6.

    Google Scholar 

  54. Prahm C, Kayali F, Sturma A, Aszmann O. Recommendations for games to increase patient motivation during upper limb amputee rehabilitation. In: Converging clinical and engineering research on neurorehabilitation {II}. Cham: Springer; 2017. p. 1157–61.

    Chapter  Google Scholar 

  55. Prahm C, Kayali F, Sturma A, Aszmann O. PlayBionic: game-based interventions to encourage patient engagement and performance in prosthetic motor rehabilitation. PM&R. 2018;10:1252–60. https://doi.org/10.1016/j.pmrj.2018.09.027.

    Article  Google Scholar 

  56. Prahm C, Kayali F, Vujaklija I, Sturma A, Aszmann O. Increasing motivation, effort and performance through game-based rehabilitation for upper limb myoelectric prosthesis control. In: 2017 International conference on virtual rehabilitation (ICVR). Montreal, CA: IEEE; 2017. p. 1–6.

    Google Scholar 

  57. Prahm C, Schulz A, Paaben B, Schoisswohl J, Kaniusas E, Dorffner G, Hammer B, Aszmann O. Counteracting electrode shifts in upper-limb prosthesis control via transfer learning. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):956–62. https://doi.org/10.1109/TNSRE.2019.2907200.

    Article  PubMed  Google Scholar 

  58. Prahm C, Sturma A, Kayali F, Mörth E, Aszmann O. Smart Rehab: app-based rehabilitation training for upper extremity amputees—case report. Handchir Mikrochir Plast Chir. 2018;50:1–8. https://doi.org/10.1055/a-0747-6037.

    Article  Google Scholar 

  59. Prahm C, Sturma A, Mörth E, Aszmann O. Interactive mobile training app after nerve transfer or amputation of the upper extremity. In: Journal of Hand Surgery, Federation of European Societies for Surgery of the Hand (FESSH), vol. 43. Copenhagen: Sage; 2018. p. 198–9.

    Google Scholar 

  60. Prahm C, Vujaklija I, Kayali F, Purgathofer P, Aszmann OC. Game-based rehabilitation for myoelectric prosthesis control. JMIR Ser Games. 2017;5:13. https://doi.org/10.2196/games.6026.

    Article  Google Scholar 

  61. Price DD, McGrath PA, Rafii A, Buckingham B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain. 1983;17(1):45–56. https://doi.org/10.1016/0304-3959(83)90126-4.

    Article  CAS  PubMed  Google Scholar 

  62. Rand D, Yacoby A, Weiss R, Reif S, Malka R, Weingarden H, Zeilig G. Home-based self-training using video-games: preliminary data from a randomised controlled trial. In: Virtual Rehabil Proc (ICVR), 2015 Int Conf; 2015. p. 86–91. https://doi.org/10.1109/ICVR.2015.7358588.

  63. Raymer R. Gamification: using game mechanics to enhance eLearning. 2011. https://elearnmag.acm.org/featured.cfm?aid=2031772. Accessed 30 Aug 2019.

  64. Reinkensmeyer DJ, Housman SJ. “If I can’t do it once, why do it a hundred times?”: connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. In: 2007 virtual rehabilitation. IEEE; 2007. p. 44–8.

    Google Scholar 

  65. Resnik L, Etter K, Klinger SL, Kambe C. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. J Rehabil Res Dev. 2011;48(6):707–18.

    Article  Google Scholar 

  66. Roche AD, Vujaklija I, Amsüss S, Sturma A, Göbel P, Farina D, Aszmann OC. A structured rehabilitation protocol for improved multifunctional prosthetic control: a case study. J Vis Exp. 2015;(105):e52968. https://doi.org/10.3791/52968.

  67. la Rosa R, Alonso A, de la Rosa S, Abasolo D. Myo-Pong: a neuromuscular game for the UVa-Neuromuscular training system platform. In: 2008 virtual rehabilitation; 2008. p. 61.

    Google Scholar 

  68. Rush KL, Hatt L, Janke R, Burton L, Ferrier M, Tetrault M. The efficacy of telehealth delivered educational approaches for patients with chronic diseases: a systematic review. Patient Educ Couns. 2018;101(8):1310–21.

    Article  Google Scholar 

  69. Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55:68–78. https://doi.org/10.1037/0003-066X.55.1.68.

    Article  CAS  PubMed  Google Scholar 

  70. Seagal I, Morin E. A virtual training environment for prosthetic control. In: CMBES proceedings 39, Calgary, AB; 2016. p. 1–4.

    Google Scholar 

  71. Shani M, Feldman Y, Chared M. ReAbility online. http://www.reabilityonline.com/. Accessed 15 May 2020.

  72. Simon AM, Hargrove LJ, Lock BA, Kuiken TA. Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev. 2011;48:619. https://doi.org/10.1682/JRRD.2010.08.0149.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Smurr LM, Gulick K, Yancosek K, Ganz O. Managing the upper extremity amputee: a protocol for success. J Hand Ther. 2008;21:160–75.; ; quiz 176. https://doi.org/10.1197/j.jht.2007.09.006.

    Article  PubMed  Google Scholar 

  74. Solutions Ag. Navigate pain. 2017. https://aglancesolutions.com/. Accessed 4 Apr 2017.

  75. Spyridonis F, Ghinea G. 2D vs. 3D pain visualization: User preferences in a spinal cord injury cohort. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics); 2011

    Google Scholar 

  76. Spyridonis F, Ghinea G. 3-D pain drawings and seating pressure maps: relationships and challenges. IEEE Trans Inf Technol Biomed. 2011;15(3):409–15. https://doi.org/10.1109/TITB.2011.2107578.

    Article  PubMed  Google Scholar 

  77. Stubblefield KA, Miller LA, Lipschutz RD, Kuiken TA. Occupational therapy protocol for amputees with targeted muscle reinnervation. J Rehabil Res Dev. 2009;46:481. https://doi.org/10.1682/JRRD.2008.10.0138.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sturma A, Goebel P, Herceg M, Gee N, Roche A, Fialka-Moser V, Aszmann O. Advanced rehabilitation for amputees after selective nerve transfers: EMG-guided training and testing. In: Jensen W, Andersen OK, Akay M, editors. Replace, repair, restore, relieve and bridging clinical and engineering solutions in neurorehabilitation. Cham: Springer; 2014. p. 169–77.

    Google Scholar 

  79. Sturma A, Hruby LA, Prahm C, Mayer JA, Aszmann OC. Rehabilitation of upper extremity nerve injuries using surface EMG biofeedback: protocols for clinical application. Front Neurosci. 2018;12:906. https://doi.org/10.3389/fnins.2018.00906.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sturma A, Roche AD, Goebel P, Herceg M, Ge N, Fialka-Moser V, Aszmann O. A surface EMG test tool to measure proportional prosthetic control. Biomed Tech. 2015;60:207–13. https://doi.org/10.1515/bmt-2014-0022.

    Article  Google Scholar 

  81. Tabor A, Bateman S, Scheme E, Flatla DR, Gerling K. Designing game-based myoelectric prosthesis training. In: CHI 2017, Denver, CO; 2017. p. 1–12.

    Google Scholar 

  82. Tatla SK, Shirzad N, Lohse KR, Virji-Babul N, Hoens AM, Holsti L, Li LC, Miller KJ, Lam MY, Van der Loos HFM. Therapists’ perceptions of social media and video game technologies in upper limb rehabilitation. JMIR Ser Games. 2015;3:e2. https://doi.org/10.2196/games.3401.

    Article  Google Scholar 

  83. Touch Bionics. Biosim-i. In: MA01178, Issue 2. 2014. http://www.touchbionics.com/sites/default/files/files/biosim-i_my i-limb datasheet June 2014.pdf. Accessed 1 Sept 2017.

  84. Össur, i-limb Mobile Apps by Össur. http://www.ossur.com/en-gb/professionals/apps/i-limb-mobile-apps. Accessed Nov. 2020.

  85. Touch Bionics Inc. my i-limb—Android Apps on Google Play. 2020. https://play.google.com/store/apps/details?id=com.touchbionics.myilimb.app. Accessed 22 May 2020.

  86. Treleaven J, Battershill J, Cole D, Fadelli C, Freestone S, Lang K, Sarig-Bahat H. Simulator sickness incidence and susceptibility during neck motion-controlled virtual reality tasks. Virtual Real. 2015;19:267–75. https://doi.org/10.1007/s10055-015-0266-4.

    Article  Google Scholar 

  87. Vujaklija I, Roche AD, Hasenoehrl T, Sturma A, Amsuess S, Farina D, Aszmann OC. Translating research on myoelectric control into clinics—are the performance assessment methods adequate? Front Neurorobot. 2017;11:1–7. https://doi.org/10.3389/fnbot.2017.00007.

    Article  Google Scholar 

  88. Wheaton LA. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation. J Neuroeng Rehabil. 2017;14(1):41.

    Article  Google Scholar 

  89. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798–804.

    Article  Google Scholar 

  90. Winslow BD, Ruble M, Huber Z. Mobile, game-based training for myoelectric prosthesis control. Front Bioeng Biotechnol. 2018;6:1–8. https://doi.org/10.3389/fbioe.2018.00094.

    Article  Google Scholar 

  91. Woodward RB, Hargrove LJ. Adapting myoelectric control in real-time using a virtual environment. J Neuroeng Rehabil. 2019;16:11. https://doi.org/10.1186/s12984-019-0480-5.

    Article  PubMed  PubMed Central  Google Scholar 

  92. American Occupational Therapy Association. Am J Occup Ther. 2018;72:7212410059p1. https://doi.org/10.5014/ajot.2018.72S219.

  93. Alan L, Karen F, Lesley H, Diane M, Chris P. World confederation of physical therapy. In: Report, WCPT/INPTRA Digit. Pract. Final; 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosima Prahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prahm, C., Vujaklija, I., Kayali, F., Sturma, A. (2021). Novel Technologies in Upper Extremity Rehabilitation. In: Aszmann, O.C., Farina, D. (eds) Bionic Limb Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-030-60746-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60746-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60745-6

  • Online ISBN: 978-3-030-60746-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics