Skip to main content

Regenerative Approaches in Oral and Maxillofacial Surgery

  • Chapter
  • First Online:
Regenerative Approaches in Dentistry

Abstract

The ultimate goal for an oral and maxillofacial surgeon is to recover normal function and reach satisfying aesthetic results. The nature of surgical procedures for the treatment of trauma, malignancy, and congenital defects requires grafts to recover the lost amount of the tissues. Each kind of graft from human or non-human sources may lead to specific complications. These complications can lead to unfavourable results of surgical procedures. Regenerative medicine aims to use the high capability of human tissues to regenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leucht P, Kim J-B, Amasha R, James AW, Girod S, Helms JA. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development. 2008;135(17):2845–54.

    Article  PubMed  Google Scholar 

  2. Bilezikian JP, Raisz LG, Martin TJ. Principles of bone biology. San Diego: Academic; 2008.

    Google Scholar 

  3. Ramaesh T, Bard JB. The growth and morphogenesis of the early mouse mandible: a quantitative analysis. J Anat. 2003;203(2):213–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tsutsui T, Riminucci M, Holmbeck K, Bianco P, Robey P. Development of craniofacial structures in transgenic mice with constitutively active PTH/PTHrP receptor. Bone. 2008;42(2):321–31.

    Article  PubMed  Google Scholar 

  5. Peer LA. The fate of autogenous human bone grafts. Plast Reconstr Surg. 1951;8(1):80.

    Article  Google Scholar 

  6. Sullivan WG, Szwajkun PR. Revascularization of cranial versus iliac crest bone grafts in the rat. Plast Reconstr Surg. 1991;87(6):1105–9.

    Article  PubMed  Google Scholar 

  7. Buchman SR, Ozaki W. The ultrastructure and resorptive pattern of cancellous onlay bone grafts in the craniofacial skeleton. Ann Plast Surg. 1999;43(1):49–56.

    Article  PubMed  Google Scholar 

  8. Mavropoulos A, Rizzoli R, Ammann P. Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res. 2007;22(3):403–10.

    Article  PubMed  Google Scholar 

  9. Price N, Lipton A, Jain VK, Ruggiero S. Prevention and management of osteonecrosis of the jaw associated with bisphosphonate therapy. Support Cancer Ther. 2004;2(1):14–7.

    Article  PubMed  Google Scholar 

  10. Simonds WF, James-Newton LA, Agarwal SK, Yang B, Skarulis MC, Hendy GN, et al. Familial isolated hyperparathyroidism: clinical and genetic characteristics of 36 kindreds. Medicine. 2002;81(1):1–26.

    Article  PubMed  Google Scholar 

  11. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  PubMed  Google Scholar 

  12. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71.

    Article  PubMed  Google Scholar 

  13. Nakashima M, Mizunuma K, Murakami T, Akamine A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther. 2002;9(12):814–8.

    Article  PubMed  Google Scholar 

  14. Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ. Regulation of skeletogenic differentiation in cranial dermal bone. Development. 2007;134(17):3133–44.

    Article  PubMed  Google Scholar 

  15. De Coster P, Mortier G, Marks L, Martens L. Cranial suture biology and dental development: genetic and clinical perspectives. J Oral Pathol Med. 2007;36(8):447–55.

    Article  PubMed  Google Scholar 

  16. Kimmel CB, Walker MB, Miller CT. Morphing the hyomandibular skeleton in development and evolution. J Exp Zool B Mol Dev Evol. 2007;308(5):609–24.

    Article  PubMed  Google Scholar 

  17. Frommelt H. Polymers for medical applications. Makromol Chem Macromol Symp. 1987;12:281–301.

    Article  Google Scholar 

  18. van Meekeren J. Observationes medico-chirurgicae. Amsterdam: Ex officina Henrici & viduae Theodori Boom; 1982.

    Google Scholar 

  19. Hokugo A, Kubo Y, Takahashi Y, Fukuda A, Horiuchi K, Mushimoto K, et al. Prefabrication of vascularized bone graft using guided bone regeneration. Tissue Eng. 2004;10(7–8):978–86.

    Article  PubMed  Google Scholar 

  20. Vögelin E, Jones N, Huang J, Brekke J, Lieberman J. Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. JBJS. 2005;87(6):1323–31.

    Google Scholar 

  21. Gimbel M, Ashley RK, Sisodia M, Gabbay JS, Wasson KL, Heller J, et al. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J Craniofac Surg. 2007;18(4):895–901.

    Article  PubMed  Google Scholar 

  22. Chen NT, Glowacki J, Bucky LP, Hong H-Z, Kim W-K, Yaremchuk MJ. The roles of revascularization and resorption on endurance of craniofacial onlay bone grafts in the rabbit. Plast Reconstr Surg. 1994;93(4):714–22. discussion 23-4

    Article  PubMed  Google Scholar 

  23. Ozaki W, Buchman SR. Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg. 1998;102(2):291–9.

    Article  PubMed  Google Scholar 

  24. Lukash FN, Zingaro EA, Salig J. The survival of free nonvascularized bone grafts in irradiated areas by wrapping in muscle flaps. Plast Reconstr Surg. 1984;74(6):783–8.

    Article  PubMed  Google Scholar 

  25. Pinholt EM, Solheim E, Talsnes O, Larsen TB, Bang G, Kirkeby OJ. Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats. Ann Plast Surg. 1994;33(2):193–7.

    Article  PubMed  Google Scholar 

  26. Teng M, Liang X, Yuan Q, Nie J, Ye J, Cheng Q, et al. The inlay osteotome sinus augmentation technique for placing short implants simultaneously with reduced crestal bone height. A short-term follow-up. Clin Implant Dent Relat Res. 2013;15(6):918–26.

    Article  PubMed  Google Scholar 

  27. Martuscelli R, Toti P, Sbordone L, Guidetti F, Ramaglia L, Sbordone C. Five-year outcome of bone remodelling around implants in the maxillary sinus: assessment of differences between implants placed in autogenous inlay bone blocks and in ungrafted maxilla. Int J Oral Maxillofac Surg. 2014;43(9):1117–26.

    Article  PubMed  Google Scholar 

  28. Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.

    Article  Google Scholar 

  29. Neu BR. Segmental bone and cartilage reconstruction of major nasal dorsal defects. Plast Reconstr Surg. 2000;106(1):160–70.

    Article  PubMed  Google Scholar 

  30. Uhm KI, Hwang SH, Choi BG. Cleft lip nose correction with onlay calvarial bone graft and suture suspension in oriental patients. Plast Reconstr Surg. 2000;105(2):499–503.

    Article  PubMed  Google Scholar 

  31. Mulliken JB, Kaban LB, Glowacki J. Induced osteogenesis—the biological principle and clinical applications. J Surg Res. 1984;37(6):487–96.

    Article  PubMed  Google Scholar 

  32. Oklund SA, Prolo DJ, Gutierrez RV, King S. Quantitative comparisons of healing in cranial fresh autografts, frozen autografts and processed autografts, and allografts in canine skull defects. Clin Orthop Relat Res. 1986;(205):269–91.

    Google Scholar 

  33. Eyre-Brook AL. The periosteum: its function reassessed. Clin Orthop Relat Res. 1984;(189):300–7.

    Google Scholar 

  34. Skawina A, Gorczyca W. The role of nutrient and periosteal blood vessels in the vascularization of the cortex of shafts of the long bones in human fetuses. Folia Morphol (Warsz). 1984;43(2):159–64.

    Google Scholar 

  35. Melcher A, Accursi G. Osteogenic capacity of periosteal and osteoperiosteal flaps elevated from the parietal bone of the rat. Arch Oral Biol. 1971;16(6):573–IN3.

    Article  PubMed  Google Scholar 

  36. Weng D, Hürzeler MB, Quiñones CR, Ohlms A, Caffesse RG. Contribution of the periosteum to bone formation in guided bone regeneration: a study in monkeys. Clin Oral Implants Res. 2000;11(6):546–54.

    Article  PubMed  Google Scholar 

  37. Warnke P, Springer I, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364(9436):766–70.

    Article  PubMed  Google Scholar 

  38. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38(3):201–9.

    Article  PubMed  Google Scholar 

  39. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47(327):59.

    Google Scholar 

  40. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  PubMed  Google Scholar 

  41. Owen M, Friedenstein A. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60.

    PubMed  Google Scholar 

  42. Nardi NB, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Stem cells. New York: Springer; 2008. p. 249–82.

    Google Scholar 

  43. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  PubMed  Google Scholar 

  44. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002;157(5):851–64.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Feisst V, Brooks AE, Chen C-JJ, Dunbar PR. Characterization of mesenchymal progenitor cell populations directly derived from human dermis. Stem Cells Dev. 2014;23(6):631–42.

    Article  PubMed  Google Scholar 

  46. Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015;11(3):140.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gruss JS, Mackinnon SE, Kassel EE, Cooper PW. The role of primary bone grafting in complex craniomaxillofacial trauma. Plast Reconstr Surg. 1985;75(1):17–24.

    Article  PubMed  Google Scholar 

  48. Manson PN, Crawley WA, Yaremchuk MJ, Rochman GM, Hoopes JE, French JJ. Midface fractures: advantages of immediate extended open reduction and bone grafting. Plast Reconstr Surg. 1985;76(1):1–12.

    Article  PubMed  Google Scholar 

  49. THOMPSON N, CASSON JA. Experimental onlay bone grafts to the jaws: a preliminary study in dogs. Plast Reconstr Surg. 1970;46(4):341–9.

    Article  PubMed  Google Scholar 

  50. KNIZE DM. The influence of periosteum and calcttonin on onlay bone graft survival a roentgenographic study. Plast Reconstr Surg. 1974;53(2):190–9.

    Article  PubMed  Google Scholar 

  51. Zins JE, Whitaker LA. Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg. 1983;72(6):778–85.

    Article  PubMed  Google Scholar 

  52. Ermis I, Poole M. The effects of soft tissue coverage on bone graft resorption in the craniofacial region. Br J Plast Surg. 1992;45(1):26–9.

    Article  PubMed  Google Scholar 

  53. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg. 1989;84(1):71–9.

    Article  PubMed  Google Scholar 

  54. Pogrel M, Podlesh S, Anthony JP, Alexander J. A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. J Oral Maxillofac Surg. 1997;55(11):1200–6.

    Article  PubMed  Google Scholar 

  55. Phillips JH, Rahn BA. Fixation effects on membranous and endochondral onlay bone-graft resorption. Plast Reconstr Surg. 1988;82(5):872–7.

    Article  PubMed  Google Scholar 

  56. Lin KY, Bartlett SP, Yaremchuk MJ, Fallon M, Grossman RF, Whitaker LA. The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. Plast Reconstr Surg. 1990;86(3):449–56.

    Article  PubMed  Google Scholar 

  57. Jackson I, Choi H, Clay R, Bevilacqua R, TerKonda S, Celik M, et al. Long-term follow-up of cranial bone graft in dorsal nasal augmentation. Plast Reconstr Surg. 1998;102(6):1869–73.

    Article  PubMed  Google Scholar 

  58. Pradel W, Tausche E, Gollogly J, Lauer G. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(4):440–4.

    Article  PubMed  Google Scholar 

  59. Vecchiatini R, Mobilio N, Raimondi F, Catapano S, Calura G. Implant-prosthetic rehabilitation for a patient with monolateral cleft lip and palate: a clinical report. Quintessence Int. 2009;40(6).

    Google Scholar 

  60. Luaces-Rey R, Arenaz-Búa J, López-Cedrún-Cembranos J-L, Herrero-Patiño S, Sironvalle-Soliva S, Iglesias-Candal E, et al. Is PRP useful in alveolar cleft reconstruction? Platelet-rich plasma in secondary alveoloplasty. Med Oral Patol Oral Cir Bucal. 2010;15(4):e619–23.

    Article  PubMed  Google Scholar 

  61. Le BT, Woo I. Alveolar cleft repair in adults using guided bone regeneration with mineralized allograft for dental implant site development: a report of 2 cases. J Oral Maxillofac Surg. 2009;67(8):1716–22.

    Article  PubMed  Google Scholar 

  62. Hibi H, Yamada Y, Ueda M, Endo Y. Alveolar cleft osteoplasty using tissue-engineered osteogenic material. Int J Oral Maxillofac Surg. 2006;35(6):551–5.

    Article  PubMed  Google Scholar 

  63. Marukawa E, Oshina H, Iino G, Morita K, Omura K. Reduction of bone resorption by the application of platelet-rich plasma (PRP) in bone grafting of the alveolar cleft. J Craniomaxillofac Surg. 2011;39(4):278–83.

    Article  PubMed  Google Scholar 

  64. Behnia H, Khoshzaban A, Zarinfar M, Khojasteh A. Histological evaluation of regeneration in rabbit calvarial bone defects using demineralized bone matrix, mesenchymal stem cells and platelet rich in growth factors. J Dent Sch. 2012;30(3):143–54.

    Google Scholar 

  65. Janssen NG, Weijs WL, Koole R, Rosenberg AJ, Meijer GJ. Tissue engineering strategies for alveolar cleft reconstruction: a systematic review of the literature. Clin Oral Investig. 2014;18(1):219–26.

    Article  PubMed  Google Scholar 

  66. Herford AS, Boyne PJ, Rawson R, Williams RP. Bone morphogenetic protein-induced repair of the premaxillary cleft. J Oral Maxillofac Surg. 2007;65(11):2136–41.

    Article  PubMed  Google Scholar 

  67. Lee C, Nishihara K, Okawachi T, Iwashita Y, Majima HJ, Nakamura N. A quantitative radiological assessment of outcomes of autogenous bone graft combined with platelet-rich plasma in the alveolar cleft. Int J Oral Maxillofac Surg. 2009;38(2):117–25.

    Article  PubMed  Google Scholar 

  68. Bykowski MR, Naran S, Winger DG, Losee JE. The rate of oronasal fistula following primary cleft palate surgery: a meta-analysis. Cleft Palate-Cran J. 2015;52(4):81–7.

    Article  Google Scholar 

  69. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Atashi A. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report. J Craniomaxillofac Surg. 2012;40(1):2–7.

    Article  PubMed  Google Scholar 

  70. Hosseinpour S, Ahsaie MG, Rad MR, taghi Baghani M, Motamedian SR, Khojasteh A. Application of selected scaffolds for bone tissue engineering: a systematic review. Oral Maxillofac Surg. 2017;21(2):109–29.

    Article  PubMed  Google Scholar 

  71. Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells. 2015;7(3):657.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Salih V. Biodegradable scaffolds for tissue engineering. Cellular response to biomaterials. Boca Raton: CRC Press; 2008. p. 185–211.

    Google Scholar 

  73. Mihaylova Z, Mitev V, Stanimirov P, Isaeva A, Gateva N, Ishkitiev N. Use of platelet concentrates in oral and maxillofacial surgery: an overview. Acta Odontol Scand. 2017;75(1):1–11.

    Article  PubMed  Google Scholar 

  74. Liu Y-f, Zhu F-d, Dong X-t, Peng W. Digital design of scaffold for mandibular defect repair based on tissue engineering. J Zhejiang Univ Sci B. 2011;12(9):769.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Seo S, Na K. Mesenchymal stem cell-based tissue engineering for chondrogenesis. Biomed Res Int. 2011.

    Google Scholar 

  76. Khojasteh A, Hosseinpour S, Dehghan M, Mashhadiabbas F, Rezai Rad M, Ansari S, et al. Antibody-mediated osseous regeneration for bone tissue engineering in canine segmental defects. Biomed Res Int. 2018.

    Google Scholar 

  77. Khojasteh A, Hosseinpour S, Nazeman P, Dehghan M. The effect of a platelet-rich fibrin conduit on neurosensory recovery following inferior alveolar nerve lateralization: a preliminary clinical study. Int J Oral Maxillofac Surg. 2016;45(10):1303–8.

    Article  PubMed  Google Scholar 

  78. Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH. Bone tissue engineering and repair by gene therapy. Front Biosci. 2008;13(13):833–41.

    Article  PubMed  Google Scholar 

  79. Depprich R, Handschel J, Wiesmann H-P, Jäsche-Meyer J, Meyer U. Use of bioreactors in maxillofacial tissue engineering. Br J Oral Maxillofac Surg. 2008;46(5):349–54.

    Article  PubMed  Google Scholar 

  80. Deb S, Mandegaran R, Di Silvio L. A porous scaffold for bone tissue engineering/45S5 bioglass® derived porous scaffolds for co-culturing osteoblasts and endothelial cells. J Mater Sci Mater Med. 2010;21(3):893–905.

    Article  PubMed  Google Scholar 

  81. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  PubMed  Google Scholar 

  82. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100(10):5807–12.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M. Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials. 2006;27(20):3766–81.

    Article  PubMed  Google Scholar 

  84. Jimi E, Hirata S, Shin M, Yamazaki M, Fukushima H. Molecular mechanisms of BMP-induced bone formation: cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis. Jpn Dent Sci Rev. 2010;46(1):33–42.

    Article  Google Scholar 

  85. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147–59.

    Article  PubMed  Google Scholar 

  86. Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8(6):a021899.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA, Fiebo J, et al. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res. 2007;67(17):8149–55.

    Article  PubMed  Google Scholar 

  88. Canalis E. Effects of tumor necrosis factor on bone formation in vitro. Endocrinology. 1987;121(5):1596–604.

    Article  PubMed  Google Scholar 

  89. Nakase T, Takaoka K, Masuhara K, Shimizu K, Yoshikawa H, Ochi T. Interleukin-1β enhance and tumor necrosis factor-α inhibits bone morphogenetic protein-2-induced alkaline phosphatase activity in MC3T3-E1 osteoblastic cells. Bone. 1997;21(1):17–21.

    Article  PubMed  Google Scholar 

  90. Nanes MS. Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321:1–15.

    Article  PubMed  Google Scholar 

  91. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, et al. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA. 1991;88(12):5134–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ranganathan P. An update on pharmacogenomics in rheumatoid arthritis with a focus on TNF-blocking agents. Curr Opin Mol Ther. 2008;10(6):562–7.

    PubMed  Google Scholar 

  93. Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, et al. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004;10(6):617–24.

    Article  PubMed  Google Scholar 

  94. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, et al. Inhibition of osteoblastic bone formation by nuclear factor-κB. Nat Med. 2009;15(6):682.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Eliseev RA, Schwarz EM, Zuscik MJ, O’Keefe RJ, Drissi H, Rosier RN. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFκB. Exp Cell Res. 2006;312(1):40–50.

    Article  PubMed  Google Scholar 

  96. Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κB. J Bone Miner Res. 2007;22(5):646–55.

    Article  PubMed  Google Scholar 

  97. Alles N, Soysa NS, Hayashi J, Khan M, Shimoda A, Shimokawa H, et al. Suppression of NF-κB increases bone formation and ameliorates osteopenia in ovariectomized mice. Endocrinology. 2010;151(10):4626–34.

    Article  PubMed  Google Scholar 

  98. Yamazaki M, Fukushima H, Shin M, Katagiri T, Doi T, Takahashi T, et al. Tumor necrosis factor α represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-κB. J Biol Chem. 2009;284(51):35987–95.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H. The current and future therapies of bone regeneration to repair bone defects. Int J Dent. 2012.

    Google Scholar 

  100. Nerem R. Tissue engineering in the USA. Med Biol Eng Comput. 1992;30(4):CE8–CE12.

    Article  PubMed  Google Scholar 

  101. Lanza R, Langer R, Vacanti JP. Principles of tissue engineering. San Diego: Academic; 2011.

    Google Scholar 

  102. Rheinwatd JG, Green H. Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell. 1975;6(3):331–43.

    Article  Google Scholar 

  103. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA. 1979;76(11):5665–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yannas I, Burke J, Huang C, Gordon P. Correlation of in vivo collagen degradation rate with in vitro measurements. J Biomed Mater Res. 1975;9(6):623–8.

    Article  PubMed  Google Scholar 

  105. Yannas I, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.

    Article  PubMed  Google Scholar 

  106. O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;317(8211):75–8.

    Article  Google Scholar 

  107. Green H. The birth of therapy with cultured cells. BioEssays. 2008;30(9):897–903.

    Article  PubMed  Google Scholar 

  108. Gallico GG III, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311(7):448–51.

    Article  PubMed  Google Scholar 

  109. Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg. 1988;208(3):313.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, et al. Multicenter postapproval clinical trial of Integra® dermal regeneration template for burn treatment. J Burn Care Res. 2003;24(1):42–8.

    Article  Google Scholar 

  112. Heitland A, Piatkowski A, Noah E, Pallua N. Update on the use of collagen/glycosaminoglycate skin substitute—six years of experiences with artificial skin in 15 German burn centers. Burns. 2004;30(5):471–5.

    Article  PubMed  Google Scholar 

  113. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2009:rsif20090403.

    Google Scholar 

  114. Izumi K, Neiva RF, Feinberg SE. Intraoral grafting of tissue-engineered human oral mucosa. Int J Oral Maxillofac Implants. 2013;28(5):e295.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wennström JL, Zucchelli G. Increased gingival dimensions. A significant factor for successful outcome of root coverage procedures? J Clin Periodontol. 1996;23(8):770–7.

    Article  PubMed  Google Scholar 

  116. Crisciani S. Efficacia Clinica Degli Innesti di Collagene Xenogeno Nella Terapia Chirurgica delle Recessioni Gengivali multiple: Clinical Trial Randomizzato. Graduate thesis LC5. Universita Di Pisa. 2012.

    Google Scholar 

  117. Nevins M. Attached gingiva—mucogingival therapy and restorative dentistry. Int J Periodontics Restorative Dent. 1985;6(4):9–27.

    Google Scholar 

  118. McGuire MK, Scheyer ET, Nunn ME, Lavin PT. A pilot study to evaluate a tissue-engineered bilayered cell therapy as an alternative to tissue from the palate. J Periodontol. 2008;79(10):1847–56.

    Article  PubMed  Google Scholar 

  119. Nevins ML. Tissue-engineered bilayered cell therapy for the treatment of oral mucosal defects: a case series. Int J Periodontics Restorative Dent. 2010;30(1):31–9.

    PubMed  Google Scholar 

  120. Prato GPP, Rotundo R, Mognoni C, Soranzo C. Tissue engineering technology for gingival augmentation procedures: a case report. Int J Periodontics Restorative Dent. 2000;20(6):552–9.

    Google Scholar 

  121. Pomahač B, Svensjö T, Yao F, Brown H, Eriksson E. Tissue engineering of skin. Crit Rev Oral Biol Med. 1998;9(3):333–44.

    Article  PubMed  Google Scholar 

  122. C-y T, Ueda M, K-i H, Horie K, Hibino Y, Sugimura Y, et al. Clinical results of cultured epithelial cell grafting in the oral and maxillofacial region. J Craniomaxillofac Surg. 1997;25(1):4–8.

    Article  Google Scholar 

  123. Yoshizawa M, Feinberg SE, Marcelo CL, Elner VM. Ex vivo produced human conjunctiva and oral mucosa equivalents grown in a serum-free culture system. J Oral Maxillofac Surg. 2004;62(8):980–8.

    Article  PubMed  Google Scholar 

  124. Lanman TH, Ingalls TH. Vitamin C deficiency and wound healing: an experimental and clinical study. Ann Surg. 1937;105(4):616.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lindholm C, Searle R. Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J. 2016;13:5–15.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Aitzetmüller MM, Brett EA, Sauter M, Duscher D. Basic principles and current approach for soft tissue regeneration. In: Duscher D, Shiffman MA, editors. Regenerative medicine and plastic surgery. Cham: Springer; 2019. p. 7–15.

    Chapter  Google Scholar 

  127. Tiesler V, Coppa A, Zabala P, Cucina A. Scurvy-related morbidity and death among Christopher Columbus’ Crew at La Isabela, the first European town in the New World (1494–1498): an assessment of the skeletal and historical information. Int J Osteoarchaeol. 2016;26(2):191–202.

    Article  Google Scholar 

  128. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5(3):79.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. 2014;4:7144.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hadjipanayi E, Schilling AF. Regeneration through autologous hypoxia preconditioned plasma. Organogenesis. 2014;10(2):164–9.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hadjipanayi E, Bauer A, Moog P, Salgin B, Kuekrek H, Fersch B, et al. Cell-free carrier system for localized delivery of peripheral blood cell-derived engineered factor signaling: towards development of a one-step device for autologous angiogenic therapy. J Control Release. 2013;169(1–2):91–102.

    Article  PubMed  Google Scholar 

  132. Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise review: salivary gland regeneration: therapeutic approaches from stem cells to tissue organoids. Stem Cells. 2017;35(1):97–105.

    Article  PubMed  Google Scholar 

  133. Neumann Y, David R, Stiubea-Cohen R, Orbach Y, Aframian DJ, Palmon A. Long-term cryopreservation model of rat salivary gland stem cells for future therapy in irradiated head and neck cancer patients. Tissue Eng Part C. 2012;18(9):710–8.

    Article  Google Scholar 

  134. Lombaert IM, Wierenga PK, Kok T, Kampinga HH, dehaan G, Coppes RP. Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res. 2006;12(6):1804–12.

    Article  PubMed  Google Scholar 

  135. Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43(1):80–7.

    Article  PubMed  Google Scholar 

  136. Lin C-Y, Chang F-H, Chen C-Y, Huang C-Y, Hu F-C, Huang W-K, et al. Cell therapy for salivary gland regeneration. J Dent Res. 2011;90(3):341–6.

    Article  PubMed  Google Scholar 

  137. Lim J-Y, Yi T, Choi J-S, Jang YH, Lee S, Kim HJ, et al. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol. 2013;49(2):136–43.

    Article  PubMed  Google Scholar 

  138. Kojima T, Si K, Hirano S, Tateya I, Ohno S, Nakamura T, et al. Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. Laryngoscope. 2011;121(9):1864–9.

    Article  PubMed  Google Scholar 

  139. Lee J, Park S, Roh S. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system. Exp Cell Res. 2015;334(1):160–72.

    Article  PubMed  Google Scholar 

  140. Lim J-Y, Ra JC, Shin IS, Jang YH, An H-Y, Choi J-S, et al. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One. 2013;8(8):e71167.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Xiong X, Shi X, Chen F. Human adipose tissue-derived stem cells alleviate radiation-induced xerostomia. Int J Mol Med. 2014;34(3):749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jeong J, Baek H, Kim Y-J, Choi Y, Lee H, Lee E, et al. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med. 2013;45(11):e58-e.

    Article  Google Scholar 

  143. Lim J-Y, Yi T, Lee S, Kim J, S-n K, Song SU, et al. Establishment and characterization of mesenchymal stem cell-like clonal stem cells from mouse salivary glands. Tissue Eng Part C. 2015;21(5):447–57.

    Article  Google Scholar 

  144. Zhang N-N, Huang G-L, Han Q-B, Hu X, Yi J, Yao L, et al. Functional regeneration of irradiated salivary glands with human amniotic epithelial cells transplantation. Int J Clin Exp Patho. 2013;6(10):2039.

    Google Scholar 

  145. Huang G-L, Zhang N-N, Wang J-S, Yao L, Zhao Y-J, Wang Y-Y. Transdifferentiation of human amniotic epithelial cells into acinar cells using a double-chamber system. Cell Reprogram. 2012;14(4):377–83.

    Article  PubMed  Google Scholar 

  146. Kawakami M, Ishikawa H, Tachibana T, Tanaka A, Mataga I. Functional transplantation of salivary gland cells differentiated from mouse early ES cells in vitro. Hum Cell. 2013;26(2):80–90.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ono H, Obana A, Usami Y, Sakai M, Nohara K, Egusa H, et al. Regenerating salivary glands in the microenvironment of induced pluripotent stem cells. Biomed Res Int. 2015;2015.

    Google Scholar 

  148. Pradhan-Bhatt S, Harrington DA, Duncan RL, Jia X, Witt RL, Farach-Carson MC. Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. Tissue Eng Part A. 2013;19(13–14):1610–20.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, et al. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4(1):1–10.

    Article  Google Scholar 

  150. Pradhan-Bhatt S, Harrington DA, Duncan RL, Farach-Carson MC, Jia X, Witt RL. A novel in vivo model for evaluating functional restoration of a tissue-engineered salivary gland. Laryngoscope. 2014;124(2):456–61.

    Article  PubMed  Google Scholar 

  151. Joraku A, Sullivan CA, Yoo J, Atala A. In-vitro reconstitution of three-dimensional human salivary gland tissue structures. Differentiation. 2007;75(4):318–24.

    Article  PubMed  Google Scholar 

  152. Feng J, van der Zwaag M, Stokman MA, van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92(3):466–71.

    Article  PubMed  Google Scholar 

  153. Maria OM, Zeitouni A, Gologan O, Tran SD. Matrigel improves functional properties of primary human salivary gland cells. Tissue Eng Part A. 2011;17(9–10):1229–38.

    Article  PubMed  Google Scholar 

  154. Pringle S, Maimets M, van der Zwaag M, Stokman MA, van Gosliga D, Zwart E, et al. Human salivary gland stem cells functionally restore radiation damaged salivary glands. Stem Cells. 2016;34(3):640–52.

    Article  PubMed  Google Scholar 

  155. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Khoshzaban A, Keshel SH, et al. Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):e1–6.

    Article  PubMed  Google Scholar 

  156. Khojasteh A, Behnia H, Dashti SG, Stevens M. Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature. J Oral Maxillofac Surg. 2012;70(4):972–82.

    Article  PubMed  Google Scholar 

  157. Keyhan SO, Fallahi H, Jahangirnia A, SMR M, Khosravi MH, Amirzade-Iranaq MH. Tissue engineering applications in maxillofacial surgery. Stem cells in clinical practice and tissue engineering. London: IntechOpen; 2017.

    Google Scholar 

  158. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e51–e5.

    Article  PubMed  Google Scholar 

  159. Khojasteh A, Eslaminejad MB, Nazarian H. Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(3):356–62.

    Article  PubMed  Google Scholar 

  160. Kirker-Head CA. Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev. 2000;43(1):65–92.

    Article  PubMed  Google Scholar 

  161. Khojasteh A, Dashti SG, Dehghan MM, Behnia H, Abbasnia P, Morad G. The osteoregenerative effects of platelet-derived growth factor BB cotransplanted with mesenchymal stem cells, loaded on freeze-dried mineral bone block: a pilot study in dog mandible. J Biomed Mater Res Part B. 2014;102(8):1771–8.

    Article  Google Scholar 

  162. Khojasteh A, Eslaminejad MB, Nazarian H, Morad G, Dashti SG, Behnia H, et al. Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: a preliminary study in rabbit. J Oral Implantol. 2013;39(1):3–13.

    Article  PubMed  Google Scholar 

  163. Cerruti HF, Kerkis I, Kerkis A, Tatsui NH, da Costa Neves A, Bueno DF, et al. Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports. Artif Organs. 2007;31(4):268–73.

    Article  Google Scholar 

  164. Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(2):203–9.

    Article  PubMed  Google Scholar 

  165. Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell based bone tissue engineering in jaw defects. Biomaterials. 2008;29(21):3053–61.

    Article  PubMed  Google Scholar 

  166. Yamada Y, Nakamura S, Ito K, Kohgo T, Hibi H, Nagasaka T, et al. Injectable tissue-engineered bone using autogenous bone marrow–derived stromal cells for maxillary sinus augmentation: clinical application report from a 2–6-year follow-up. Tissue Eng Part A. 2008;14(10):1699–707.

    Article  PubMed  Google Scholar 

  167. Ueda M, Yamada Y, Kagami H, Hibi H. Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent. 2008;17(1):82–90.

    Article  PubMed  Google Scholar 

  168. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar G. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res. 2011;22(3):251–8.

    Article  PubMed  Google Scholar 

  169. Lin Z-Y, Duan Z-X, Guo X-D, Li J-F, Lu H-W, Zheng Q-X, et al. Bone induction by biomimetic PLGA-(PEG-ASP) n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. J Control Release. 2010;144(2):190–5.

    Article  PubMed  Google Scholar 

  170. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013;22(5):767–77.

    Article  PubMed  Google Scholar 

  171. Rickert D, Vissink A, Slot W, Sauerbier S, Meijer H, Raghoebar G. Maxillary sinus floor elevation surgery with BioOss® mixed with a bone marrow concentrate or autogenous bone: test of principle on implant survival and clinical performance. Int J Oral Maxillofac Surg. 2014;43(2):243–7.

    Article  PubMed  Google Scholar 

  172. Wildburger A, Payer M, Jakse N, Strunk D, Etchard-Liechtenstein N, Sauerbier S. Impact of autogenous concentrated bone marrow aspirate on bone regeneration after sinus floor augmentation with a bovine bone substitute–a split-mouth pilot study. Clin Oral Implants Res. 2014;25(10):1175–81.

    Article  PubMed  Google Scholar 

  173. Bertolai R, Catelani C, Aversa A, Rossi A, Giannini D, Bani D. Bone graft and mesenchimal stem cells: clinical observations and histological analysis. Clin Cases Miner Bone Metab. 2015;12(2):183.

    PubMed  PubMed Central  Google Scholar 

  174. Kaigler D, Avila-Ortiz G, Travan S, Taut AD, Padial-Molina M, Rudek I, et al. Bone engineering of maxillary sinus bone deficiencies using enriched CD90+ stem cell therapy: a randomized clinical trial. J Bone Miner Res. 2015;30(7):1206–16.

    Article  PubMed  Google Scholar 

  175. Pelegrine AA, Da Costa CES, Correa MEP, Marques JFC Jr. Clinical and histomorphometric evaluation of extraction sockets treated with an autologous bone marrow graft. Clin Oral Implants Res. 2010;21(5):535–42.

    Article  PubMed  Google Scholar 

  176. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, et al. Stem cells associated with macroporous bioceramics for long bone repair: 6-to 7-year outcome of a pilot clinical study. Tissue Eng. 2007;13(5):947–55.

    Article  PubMed  Google Scholar 

  177. Soltan M, Smiler D, Soltan C, Prasad HS, Rohrer MD. Bone grafting by means of a tunnel dissection: predictable results using stem cells and matrix. Implant Dent. 2010;19(4):280–7.

    Article  PubMed  Google Scholar 

  178. Gastens MH, Goltry K, Prohaska W, Tschöpe D, Stratmann B, Lammers D, et al. Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy. Cell Trasplant. 2007;16(7):685–96.

    Article  Google Scholar 

  179. Kaigler D, Avila G, Wisner-Lynch L, Nevins ML, Nevins M, Rasperini G, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther. 2011;11(3):375–85.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM, Goltry KL. Clinical-scale expansion of a mixed population of bone marrow-derived stem and progenitor cells for potential use in bone tissue regeneration. Stem Cells. 2007;25(10):2575–82.

    Article  PubMed  Google Scholar 

  181. Cardaropoli G, Araújo M, Hayacibara R, Sukekava F, Lindhe J. Healing of extraction sockets and surgically produced–augmented and non-augmented–defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol. 2005;32(5):435–40.

    Article  PubMed  Google Scholar 

  182. Trombelli L, Farina R, Marzola A, Bozzi L, Liljenberg B, Lindhe J. Modeling and remodeling of human extraction sockets. J Clin Periodontol. 2008;35(7):630–9.

    Article  PubMed  Google Scholar 

  183. Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Database of abstracts of reviews of effects (DARE): quality-assessed reviews [Internet]. Centre for Reviews and Dissemination (UK); 2009.

    Google Scholar 

  184. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.

    Article  PubMed  Google Scholar 

  185. Gao G, Huang Y, Schilling AF, Hubbell K, Cui X. Organ bioprinting: are we there yet? Adv Healthc Mater. 2018;7(1):1701018.

    Article  Google Scholar 

  186. Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 2017;57:26–46.

    Article  PubMed  Google Scholar 

  187. Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine. 2016;12(1):69–79.

    Article  PubMed  Google Scholar 

  188. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–9.

    Article  PubMed  Google Scholar 

  189. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication. 2010;2(1):010201.

    Article  PubMed  Google Scholar 

  190. Keyhan SO, Fallahi H, Jahangirnia A, Amirzade-Iranaq MT, Amirzade-Iranaq MH. Application of 3-D printing for tissue regeneration in Oral and maxillofacial surgery: what is upcoming? Biomaterials in Regenerative Medicine. London: IntechOpen; 2017.

    Google Scholar 

  191. Keyhan SO, Amirzade-Iranaq MH. The use of 3D-printing technology in rhinoplasty: change horizons, change principles, change future. Glob J Otolaryngol. 2017;11(1).

    Google Scholar 

  192. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221–7.

    Article  PubMed  Google Scholar 

  193. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA. 2016;113(12):3179–84.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. Bioprinting: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):2966.

    Article  Google Scholar 

  196. Keyhan SO, Ghanean S, Navabazam A, Khojasteh A, Amirzade-Iranaq MH. Three-dimensional printing: a novel Technology for use in Oral and maxillofacial operations. A textbook of advanced oral and maxillofacial surgery. London: InTechOpen; 2016.

    Google Scholar 

  197. Cui X, Gao G, Yonezawa T, Dai G. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp. 2014;88:e51294.

    Google Scholar 

  198. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286–97.

    Article  PubMed  Google Scholar 

  199. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21.

    Article  PubMed  Google Scholar 

  200. Mertz L. Dream it, design it, print it in 3-D: what can 3-D printing do for you? IEEE Pulse. 2013;4(6):15–21.

    Article  PubMed  Google Scholar 

  201. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016;21(8):1257–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keyhan, S.O., Fallahi, H.R., Cheshmi, B., Ghasemi, S. (2021). Regenerative Approaches in Oral and Maxillofacial Surgery. In: Hosseinpour, S., Walsh, L.J., Moharamzadeh, K. (eds) Regenerative Approaches in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-59809-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59809-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59808-2

  • Online ISBN: 978-3-030-59809-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics