Skip to main content

Structural and Functional Connectivity Changes Following Cognitive Remediation: A Systematic Review

  • Chapter
  • First Online:
Brain Network Dysfunction in Neuropsychiatric Illness
  • 754 Accesses

Abstract

Cognitive remediation (CR) is a learning-based intervention that aims to address the cognitive deficits in schizophrenia, which largely accounts for poor functional outcomes. Studies to understand the neurobiological adaptations after CR, especially on a network scale, have now emerged. We aim to provide an up-to-date review of neuroimaging studies of CR in schizophrenia, by conducting a systematic search of the electronic database till September 2018 to identify studies that included an active patient control group and a sample size of at least ten subjects per group. Eleven studies (four task-based fMRI, four resting-state fMRI, one diffusion tensor imaging, and one structural MRI) were identified, with a majority adopting a brain region-of-interest approach. The outcomes of the findings were largely positive, with most studies observing a group-by-time effect, and an association between brain changes and cognitive improvements. The synthesis of findings to identify common CR-evoked brain changes is hampered by the small number of studies till date and the high variability in CR approach, for instance, the domains of cognition targeted, presence of therapist, duration of CR, and environment in which CR is carried out. While the current findings demonstrate that CR can remodel the neurocircuitries in schizophrenia regardless of the phase of illness, the clinical utility of using neuroimaging markers to predict CR response will hinge on continued work to concurrently identify the active ingredients of CR and neuroimaging tools that can reliably detect subtle CR-led brain changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anticevic A, Hu X, Xiao Y, Hu J, Li F, Bi F, et al (2015). Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. J Neurosci 35(1): 267–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baddeley AD (1986). Working memory Clarendon Press; Oxford University Press: Oxford Oxfordshire; New York, xi, 289 pp.

    Google Scholar 

  • Barch DM (2013). Brain network interactions in health and disease. Trends Cogn Sci 17(12): 603–605.

    Article  PubMed  Google Scholar 

  • Cabeza R, Prince SE, Daselaar SM, Greenberg DL, Budde M, Dolcos F, et al (2004). Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm. J Cogn Neurosci 16(9): 1583-1594.

    Article  PubMed  Google Scholar 

  • Davidson M, Galderisi S, Weiser M, Werbeloff N, Fleischhacker WW, Keefe RS, et al (2009). Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). Am J Psychiatry 166(6): 675–682.

    Article  PubMed  Google Scholar 

  • Donohoe G, Dillon R, Hargreaves A, Mothersill O, Castorina M, Furey E, et al (2018). Effectiveness of a low support, remotely accessible, cognitive remediation training programme for chronic psychosis: cognitive, functional and cortical outcomes from a single blind randomised controlled trial. Psychol Med 48(5): 751–764.

    Article  CAS  PubMed  Google Scholar 

  • Eack SM, Newhill CE, Keshavan MS (2016). Cognitive Enhancement Therapy Improves Resting-State Functional Connectivity in Early Course Schizophrenia. J Soc Social Work Res 7(2): 211–230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan F, Zou Y, Tan Y, Hong LE, Tan S (2017). Computerized cognitive remediation therapy effects on resting state brain activity and cognition in schizophrenia. Sci Rep 7(1): 4758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox MD, Raichle ME (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9): 700–711.

    Article  CAS  PubMed  Google Scholar 

  • Green MF (1996). What Are the Functional Consequences of Neurocognitive Deficits in Schizophrenia? The American Journal of Psychiatry 153(3): 321.

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Horan WP, Lee J (2015). Social cognition in schizophrenia. Nat Rev Neurosci 16(10): 620–631.

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Kern RS, Braff DL, Mintz J (2000). Neurocognitive Deficits and Functional Outcome in Schizophrenia: Are We Measuring the “Right Stuff”? Schizophr Bulletin 26(1): 119–136.

    Article  CAS  Google Scholar 

  • Habel U, Koch K, Kellermann T, Reske M, Frommann N, Wölwer W, et al (2010). Training of affect recognition in schizophrenia: Neurobiological correlates. Social Neuroscience 5(1): 92–104.

    Article  PubMed  Google Scholar 

  • Haut KM, Lim KO, MacDonald A, 3rd (2010). Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology 35(9): 1850–1859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill SK, Schuepbach D, Herbener ES, Keshavan MS, Sweeney JA (2004). Pretreatment and longitudinal studies of neuropsychological deficits in antipsychotic-naive patients with schizophrenia. Schizophr Res 68(1): 49–63.

    Article  PubMed  Google Scholar 

  • Hogarty GE, Flesher S, Ulrich R, Carter M, Greenwald D, Pogue-Geile M, et al (2004). Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Arch Gen Psychiatry 61(9): 866–876.

    Article  PubMed  Google Scholar 

  • Hooker CI, Bruce L, Fisher M, Verosky SC, Miyakawa A, D'Esposito M, et al (2013). The influence of combined cognitive plus social-cognitive training on amygdala response during face emotion recognition in schizophrenia. Psychiatry Research: Neuroimaging 213(2): 99–107.

    Article  PubMed  Google Scholar 

  • Hooker CI, Bruce L, Fisher M, Verosky SC, Miyakawa A, Vinogradov S (2012). Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia. Schizophrenia Research 139(1-3): 53–59.

    Article  PubMed  Google Scholar 

  • Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115: 117–137.

    Article  PubMed  Google Scholar 

  • Isaac C, Januel D (2016). Neural correlates of cognitive improvements following cognitive remediation in schizophrenia: a systematic review of randomized trials. Socioaffect Neurosci Psychol 6: 30054.

    Article  PubMed  Google Scholar 

  • Keshavan MS, Eack SM, Prasad KM, Haller CS, Cho RY (2017). Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy. Neuroimage 151: 55–64.

    Article  PubMed  Google Scholar 

  • McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A (2017). Identification of Common Neural Circuit Disruptions in Cognitive Control Across Psychiatric Disorders. Am J Psychiatry 174(7): 676–685.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medaglia JD, Lynall ME, Bassett DS (2015). Cognitive network neuroscience. J Cogn Neurosci 27(8): 1471–1491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medalia A, Choi J (2009). Cognitive remediation in schizophrenia. Neuropsychol Rev 19(3): 353–364.

    Article  PubMed  Google Scholar 

  • Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, et al (2010). Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50(4): 1690–1701.

    Article  PubMed  Google Scholar 

  • Mothersill O, Tangney N, Morris DW, McCarthy H, Frodl T, Gill M, et al (2017). Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia. Schizophr Res 184: 52–58.

    Article  PubMed  Google Scholar 

  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004). Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1): 29–39.

    Article  PubMed  Google Scholar 

  • Penades R, Boget T, Lomena F, Bernardo M, Mateos JJ, Laterza C, et al (2000). Brain perfusion and neuropsychological changes in schizophrenic patients after cognitive rehabilitation. Psychiatry Res 98(2): 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Penades R, Gonzalez-Rodriguez A, Catalan R, Segura B, Bernardo M, Junque C (2017). Neuroimaging studies of cognitive remediation in schizophrenia: A systematic and critical review. World J Psychiatry 7(1): 34–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Penadés R, Pujol N, Catalán R, Massana G, Rametti G, García-Rizo C, et al (2013). Brain Effects of Cognitive Remediation Therapy in Schizophrenia: A Structural and Functional Neuroimaging Study. Biological Psychiatry 73(10): 1015–1023.

    Article  PubMed  Google Scholar 

  • Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 53(1): 25–38.

    Article  PubMed  Google Scholar 

  • Ramsay IS, Fryer S, Boos A, Roach BJ, Fisher M, Loewy R, et al (2018). Response to Targeted Cognitive Training Correlates with Change in Thalamic Volume in a Randomized Trial for Early Schizophrenia. Neuropsychopharmacology 43(3): 590–597.

    Article  PubMed  Google Scholar 

  • Ramsay IS, Nienow TM, MacDonald AW, 3rd (2017). Increases in Intrinsic Thalamocortical Connectivity and Overall Cognition Following Cognitive Remediation in Chronic Schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging 2(4): 355–362.

    PubMed  PubMed Central  Google Scholar 

  • Saperstein AM, Kurtz MM (2013). Current trends in the empirical study of cognitive remediation for schizophrenia. Can J Psychiatry 58(6): 311–318.

    Article  PubMed  Google Scholar 

  • Seidman LJ, Mirsky AF (2017). Evolving Notions of Schizophrenia as a Developmental Neurocognitive Disorder. J Int Neuropsychol Soc 23(9-10): 881–892.

    Article  PubMed  Google Scholar 

  • Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, et al (2016). Tractography Analysis of 5 White Matter Bundles and Their Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophr Bull 42(3): 762–771.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheffield JM, Kandala S, Tamminga CA, Pearlson GD, Keshavan MS, Sweeney JA, et al (2017). Transdiagnostic Associations Between Functional Brain Network Integrity and Cognition. JAMA Psychiatry 74(6): 605-613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramaniam K, Luks Tracy L, Fisher M, Simpson Gregory V, Nagarajan S, Vinogradov S (2012). Computerized Cognitive Training Restores Neural Activity within the Reality Monitoring Network in Schizophrenia. Neuron 73(4): 842–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam K, Luks TL, Garrett C, Chung C, Fisher M, Nagarajan S, et al (2014). Intensive cognitive training in schizophrenia enhances working memory and associated prefrontal cortical efficiency in a manner that drives long-term functional gains. NeuroImage 99: 281–292.

    Article  PubMed  Google Scholar 

  • Thorsen AL, Johansson K, Loberg EM (2014). Neurobiology of cognitive remediation therapy for schizophrenia: a systematic review. Front Psychiatry 5: 103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinogradov S, Fisher M, de Villers-Sidani E (2012). Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology 37(1): 43–76.

    Article  PubMed  Google Scholar 

  • Wexler BE, Anderson M, Fulbright RK, Gore JC (2000). Preliminary evidence of improved verbal working memory performance and normalization of task-related frontal lobe activation in schizophrenia following cognitive exercises. Am J Psychiatry 157(10): 1694–1697.

    Article  CAS  PubMed  Google Scholar 

  • Wykes T (1998). What are we changing with neurocognitive rehabilitation? Illustrations from two single cases of changes in neuropsychological performance and brain systems as measured by SPECT. Schizophr Res 34(1-2): 77–86.

    Google Scholar 

  • Wykes T, Brammer M, Mellers J, Bray P, Reeder C, Williams C, et al (2002). Effects on the brain of a psychological treatment: cognitive remediation therapy: functional magnetic resonance imaging in schizophrenia. Br J Psychiatry 181: 144–152.

    PubMed  Google Scholar 

  • Yarkoni T. Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power-Commentary on Vul et al. (2009). Perspect Psychol Sci. 2009 May;4. (3):294–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Sim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

New Fei, H., Tng, J.X.J., Tan, J.S., Sim, K. (2021). Structural and Functional Connectivity Changes Following Cognitive Remediation: A Systematic Review. In: Diwadkar, V.A., B. Eickhoff, S. (eds) Brain Network Dysfunction in Neuropsychiatric Illness. Springer, Cham. https://doi.org/10.1007/978-3-030-59797-9_18

Download citation

Publish with us

Policies and ethics