Skip to main content

Blockage Detection in Pipeline

  • Chapter
  • First Online:
Flow Modelling and Control in Pipeline Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 321))

  • 776 Accesses

Abstract

Recently many techniques with different applicability have been developed for damage detection in the pipeline. Leaks and partial or complete blockages are common faults occurring in pipelines. The model-based leak, as well as block detection methods for the pipeline systems get more and more attention. Among these model-based methods, the state observer and state feedback based methods are usually used. While the observability, as well as controllability, are taken to be the prerequisites in utilizing these techniques. The pipeline system is designed as a distributed parameter system, where the state space of the distributed parameter system has infinite dimension. In this chapter, a new technique based on Extended Kalman Filter observer is proposed in order to detect and locate the blockage in the pipeline. Furthermore, the analysis of observability and controllability in the pipeline systems is studied. Some theorems are presented in order to test the observability and controllability of the system. Computing the rank of the controllability and observability matrix is carried out using Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, W., Jafari, R.: Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number. Wiley (2019)

    Google Scholar 

  2. Razvarz, S., Jafari, R.: ICA and ANN modeling for photocatalytic removal of pollution in wastewater. Math. Comput. Appl. 22(3), 38 (2017)

    Google Scholar 

  3. Jafari, R., Razvarz, S., Gegov, A.: Neural network approach to solving fuzzy nonlinear equations using Z-numbers. IEEE Trans. Fuzzy Syst. (2019)

    Google Scholar 

  4. Razvarz, S., Jafari, R.: Intelligent techniques for photocatalytic removal of pollution in wastewater. J. Electr. Eng. 5(1), 321–328 (2017)

    Google Scholar 

  5. Jafari, R., Razvarz, S., Gegov, A., Paul, S., Keshtkar, S.: Fuzzy Sumudu transform approach to solving fuzzy differential equations with Z-numbers. In: Advanced Fuzzy Logic Approaches in Engineering Science, pp. 18–48. IGI Global (2019)

    Google Scholar 

  6. Jafari, R., Razvarz, S., Gegov, A.: A novel technique to solve fully fuzzy nonlinear matrix equations. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, pp. 886–892. Springer (2018)

    Google Scholar 

  7. Jafari, R., Razvarz, S., Gegov, A.: Fuzzy differential equations for modeling and control of fuzzy systems. In: International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, pp. 732–740. Springer (2018)

    Google Scholar 

  8. Jafari, R., Yu, W., Razvarz, S., Gegov, A.: Numerical methods for solving fuzzy equations: a survey. Fuzzy Sets Syst. (2019)

    Google Scholar 

  9. Jafari, R., Razvarz, S., Gegov, A.: A new computational method for solving fully fuzzy nonlinear systems. In: International Conference on Computational Collective Intelligence, pp. 503–512. Springer (2018)

    Google Scholar 

  10. Jafari, R., Razvarz, S., Gegov, A., Paul, S.: Modeling and control of uncertain nonlinear systems. In: 2018 International Conference on Intelligent Systems (IS), pp. 168–173. IEEE (2018)

    Google Scholar 

  11. Jafari, R., Razvarz, S., Gegov, A.: A novel technique for solving fully fuzzy nonlinear systems based on neural networks. Vietnam J. Comput. Sci. 7(1), 93–107 (2020)

    Article  Google Scholar 

  12. Razvarz, S., Hernández-Rodríguez, F., Jafari, R., Gegov, A.: Foundation of Z-numbers and engineering applications. In: Latin American Symposium on Industrial and Robotic Systems, pp. 15–24. Springer (2019)

    Google Scholar 

  13. Jafari, R., Contreras, M.A., Yu, W., Gegov, A.: Applications of fuzzy logic, artificial neural network and neuro-fuzzy in industrial engineering. In: Latin American Symposium on Industrial and Robotic Systems, pp. 9–14. Springer (2019)

    Google Scholar 

  14. Jafari, R., Razvarz, S., Gegov, A., Yu, W.: Fuzzy control of uncertain nonlinear systems with numerical techniques: a survey. In: UK Workshop on Computational Intelligence, pp. 3–14. Springer (2019)

    Google Scholar 

  15. Jafari, R., Razvarz, S., Yu, W., Gegov, A., Goodwin, M., Adda, M.: Genetic algorithm modeling for photocatalytic elimination of impurity in wastewater. In: Proceedings of SAI Intelligent Systems Conference, pp. 228–236. Springer (2019)

    Google Scholar 

  16. Tatchum, M., Gegov, A., Jafari, R., Razvarz, S.: Parallel distributed compensation for voltage controlled active magnetic bearing system using integral fuzzy model. In: 2018 International Conference on Intelligent Systems (IS), pp. 190–198. IEEE (2018)

    Google Scholar 

  17. Razvarz, S., Jafari, R., Gegov, A.: Solving partial differential equations with Bernstein neural networks. In: UK Workshop on Computational Intelligence, pp. 57–70. Springer (2018)

    Google Scholar 

  18. Jafarian, A., Jafari, R.: New iterative approach for solving fully fuzzy polynomials. Int. J. Fuzzy Math. Syst. 3(2), 75–83

    Google Scholar 

  19. Jafarian, A., Jafari, R.: New method for solving fuzzy polynomials. Adv. Fuzzy Math. 8(1), 25–33 (2013)

    Google Scholar 

  20. Jafarian, A., Jafari, R.: An iterative method for solving fuzzy polynomials by fuzzy neural networks (2012)

    Google Scholar 

  21. Jafarian, A., Jafari, R.: Simulation and evaluation of fuzzy polynomials by feed-back neural networks (2012)

    Google Scholar 

  22. Jafari, R., Yu, W.: Fuzzy control for uncertainty nonlinear systems with dual fuzzy equations. J. Intell. Fuzzy Syst. 29(3), 1229–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jafari, R., Yu, W.: Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Math. Probl. Eng. (2017)

    Google Scholar 

  24. Verde, C.: Multi-leak detection and isolation in fluid pipelines. Control Eng. Pract. 9(6), 673–682 (2001)

    Article  Google Scholar 

  25. Kowalczuk, Z., Gunawickrama, K.: Leak detection and isolation for transmission pipelines via nonlinear state estimation. IFAC Proc. Vol. 33(11), 921–926 (2000)

    Article  Google Scholar 

  26. Verde, C., Visairo, N.: Multi-leak isolation in a pipeline by unsteady state test. In: 44th IEEE Conference on Decision and Control and European Control Conference ECC, pp. 1711–1721 (2005)

    Google Scholar 

  27. Ghazali, M., Beck, S., Shucksmith, J., Boxall, J., Staszewski, W.: Comparative study of instantaneous frequency based methods for leak detection in pipeline networks. Mech. Syst. Signal Process. 29, 187–200 (2012)

    Article  Google Scholar 

  28. Mpesha, W., Gassman, S.L., Chaudhry, M.H.: Leak detection in pipes by frequency response method. J. Hydraul. Eng. 127(2), 134–147 (2001). https://doi.org/10.1061/(ASCE)0733-9429(2001)127:2(134)

    Article  Google Scholar 

  29. Covas, D., Ramos, H., De Almeida, A.B.: Standing wave difference method for leak detection in pipeline systems. J. Hydraul. Eng. 131(12), 1106–1116 (2005)

    Article  Google Scholar 

  30. Billmann, L., Isermann, R.: Leak detection methods for pipelines. Automatica 23(3), 381–385 (1987)

    Article  MATH  Google Scholar 

  31. Verde, C., Torres, L., González, O.: Decentralized scheme for leaks’ location in a branched pipeline. J. Loss Prev. Process Ind. 43, 18–28 (2016)

    Article  Google Scholar 

  32. Verde, C., Visairo, N.: Identificability of multi-leaks in a pipeline. In: Proceedings of the 2004 American Control Conference, pp. 4378–4383. IEEE (2004)

    Google Scholar 

  33. Verde, C., Visairo, N., Gentil, S.: Two leaks isolation in a pipeline by transient response. Adv. Water Resour. 30(8), 1711–1721 (2007)

    Article  Google Scholar 

  34. Duan, H.F., Lee, P.J., Ghidaoui, M.S., Tung, Y.K.: Extended blockage detection in pipelines by using the system frequency response analysis. J. Water Resour. Plan. Manag. 138(1), 55–62 (2012)

    Article  Google Scholar 

  35. Mushiri, T., Ndlovu, S., Mbohwa, C.: Design of a mechanical cleaning device PIG (pipeline intervention gadget) connecting two transfer lines in Zimbabwe (2016)

    Google Scholar 

  36. Kanniga, E., Malik, M.: Survey on smart pig for inspection robot. Int. J. Psychosoc. Rehabil. 23(3) (2019)

    Google Scholar 

  37. Moore, D., Moore, G., Magnusson, J., Boase, C.: Pipeline pig. Google Patents (2002)

    Google Scholar 

  38. Hunt, H.E., Kopke, U.G.: Pipeline pig and method of pipeline inspection. Google Patents (1995)

    Google Scholar 

  39. Davis, G.W.: Method and a horizontal pipeline pig launching mechanism for sequentially launching pipeline pigs. Google Patents (1992)

    Google Scholar 

  40. Mirshamsi, M., Rafeeyan, M.: Speed control of pipeline pig using the QFT method. Oil Gas Sci. Technol. Revue d’IFP Energies Nouvelles 67(4), 693–701 (2012)

    Article  Google Scholar 

  41. Adewumi, M.A., Eltohami, E., Ahmed, W.: Pressure transients across constrictions. J. Energy Resour. Technol. 122(1), 34–41 (2000)

    Article  Google Scholar 

  42. Adewumi, M.A., Eltohami, E., Solaja, A.: Possible detection of multiple blockages using transients. J. Energy Resour. Technol. 125(2), 154–159 (2003)

    Article  Google Scholar 

  43. Vítkovsky, J.P., Lee, P.J., Stephens, M.L., Lambert, M.F., Simpson, A.R., Liggett, J.A., Cabrera, E.: Leak and blockage detection in pipelines via an impulse response method. In: Cabrera, E., Jr. (ed.) Pumps, Electromechanical Devices and Systems Applied to Urban Water Management, pp. 423–430 (2003)

    Google Scholar 

  44. Wang, X.J., Lambert, M.F., Simpson, A.R.: Detection and location of a partial blockage in a pipeline using damping of fluid transients. J. Water Resour. Plan. Manag. 131(3), 244–249 (2005)

    Article  Google Scholar 

  45. Sattar, A.M., Chaudhry, M.H., Kassem, A.A.: Partial blockage detection in pipelines by frequency response method. J. Hydraul. Eng. 134(1), 76–89 (2008)

    Article  Google Scholar 

  46. Razvarz, S., Vargas-Jarillo, C., Jafari, R.: Pipeline monitoring architecture based on observability and controllability analysis. In: 2019 IEEE International Conference on Mechatronics (ICM), 18–20 Mar 2019, pp. 420–423

    Google Scholar 

  47. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Yu, W.: Control of flow rate in pipeline using PID controller. In: 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), 9–11 May 2019, pp. 293–298

    Google Scholar 

  48. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Gegov, A.: Blockage detection in pipeline based on the extended Kalman filter observer. Electronics 9(1), 91–107 (2020)

    Article  Google Scholar 

  49. Razvarz, S., Jafari, R., Vargas-Jarillo, C.: Modelling and analysis of flow rate and pressure head in pipelines. In: 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE (2019)

    Google Scholar 

  50. Jafari, R., Razvarz, S., Vargas-Jarillo, C., Gegov, A.E.: The effect of baffles on heat transfer. In: ICINCO (2), pp. 607–612 (2019)

    Google Scholar 

  51. Razvarz, S., Jafari, R., Vargas-Jarillo, C., Gegov, A., Forooshani, M.: Leakage detection in pipeline based on second order extended Kalman filter observer. IFAC-PapersOnLine 52(29), 116–121 (2019)

    Article  Google Scholar 

  52. Razvarz, S., Vargas-Jarillo, C., Jafari, R., Gegov, A.: Flow control of fluid in pipelines using PID controller. IEEE Access 7, 25673–25680 (2019)

    Article  Google Scholar 

  53. Razvarz, S., Chavez, L.F.G., Vargas-Jarillo, C.: Nanotechnology applications in industry and heat transfer. In: Latin American Symposium on Industrial and Robotic Systems, pp. 1–8. Springer (2019)

    Google Scholar 

  54. Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. In: Environmental and Water Resources History, pp. 34–43 (2003)

    Google Scholar 

  55. Allen, R.: Relating the Hazen-Williams and Darcy-Weisbach friction loss equations for pressurized irrigation. Appl. Eng. Agric. 12(6), 685–693 (1996)

    Article  Google Scholar 

  56. Swanee, P., Jain, A.K.: Explicit equations for pipeflow problems. J. Hydraul. Div. 102(5) (1976)

    Google Scholar 

  57. Kiijarvi, J.: Darcy Friction Factor Formulae in Turbulent Pipe Flow. Lunowa Fluid Mechanics Paper 110727, pp. 1–11 (2011)

    Google Scholar 

  58. Wylie, E.B., Streeter, V.L., Suo, L.: Fluid Transients in Systems, vol. 1. Prentice Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  59. Wylie, E.B., Streeter, V.L.: Fluid Transients. MHI (1978)

    Google Scholar 

  60. Chaudhry, M.H.: Transient-flow equations. In: Applied Hydraulic Transients, pp. 35–64. Springer (2014)

    Google Scholar 

  61. Batchelor, C.K., Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press (2000)

    Google Scholar 

  62. Ragheb, M.: Fluid Mechanics, Euler and Bernoulli Equations (2013)

    Google Scholar 

  63. Besançon, G.: Nonlinear Observers and Applications, vol. 363. Springer (2007)

    Google Scholar 

  64. Golub, G.H., Ortega, J.M.: Scientific Computing and Differential Equations: An Introduction to Numerical Methods. Elsevier (2014)

    Google Scholar 

  65. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Jafari .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razvarz, S., Jafari, R., Gegov, A. (2021). Blockage Detection in Pipeline. In: Flow Modelling and Control in Pipeline Systems. Studies in Systems, Decision and Control, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-59246-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59246-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59245-5

  • Online ISBN: 978-3-030-59246-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics