Skip to main content

Genetic Risk Factors in the Development of Hyperhomocysteinemia

  • Chapter
  • First Online:
Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia
  • 202 Accesses

Abstract

Homocysteine (HCY) is a serum-containing amino acid synthesized by its demethylation in a multi-stage process during metabolism of methionine, which is essential amino acid for humans. Through ATP, methionine is alkylated to S-adenosylmethionine (SAM). Subsequently, with the formation of S-adenosylhomocysteine (SAH), cytosine-5-methyltransferase catalyzes processes for the transfer of methyl residues from S-adenosylmethionine to cytosine residues in DNA. The following enzyme hydrolases S-adenosylhomocysteine, with the formation of homocysteine as illustrated in Fig. 8.1. S-adenosylmethionine tends to be the principal source of methyl groups for protein synthesis, purine or pyrimidine bases, nucleic acids, phospholipids, and other biologically active substances [1, 2]. The normal range of plasma homocysteine level is 5–15 μmol/L. Hyperhomocysteinemia is defined as a plasma homocysteine level >15 μmol/L and is classified as moderate (15–30 μmol/L), intermediate (30–100 μmol/L), or severe (>100 μmol/L) [3]. Hyperhomocysteinemia were first described by Carson and Neill in 1962 which is basically due to abnormal homocysteine metabolism [4]. The clinical manifestations associated with this inborn error of metabolism are mental retardation, lens dislocation, skeletal abnormalities, and early thrombotic events [5]. In 1969, it was proposed by McCully that this pathology can also be concluded as a vascular risk factor on the basis of autopsy evidence found in two children with hyperhomocysteinemia and homocystinuria with widespread arteriosclerotic changes [6]. This hypothesis was supported by successive studies [3, 7] which correlated hyperhomocysteinemia to other pathologies such as peripheral vascular, cerebrovascular, and coronary artery disease (CAD). Elevated levels of plasma homocysteine have also been shown to be concomitant with other common complications associated with aging, such as cognitive impairment, dementia, depression, osteoporotic fractures, and functional decline. It has been recently revealed in various literatures that the frequency of hyperhomocysteinemia in the overall population is between 5% and 10% [8]. However, in elderly population (older than 65 years), the rate may be noted as high as 30% according to the Framingham Study [9]. Diet supplementation with folic acid resulted in significant decline in the prevalence of the disease in United States since the beginning of 1996. Information fetched from the Framingham Offspring Study cohort showed that folate fortification has reduced the prevalence of hyperhomocysteinemia by approximately 50% [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shevchenko OP, Olefirenko GA, Chervyakova NV (2002) Gomotsistein (homocysteine). Moscow, Meditsina

    Google Scholar 

  2. Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10(1):281–288

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fallest-Strobl PC, Koch DD, Stein JH et al (1997) Homocysteine: a new risk factor for atherosclerosis. Am Fam Physician 56(6):1607–1612

    CAS  PubMed  Google Scholar 

  4. Selhub J, Jacques PF, Bostom AG et al (1995) Association between plasma homocysteine concentrations and extracranial carotid artery stenosis. N Engl J Med 332(5):286–291

    Article  CAS  PubMed  Google Scholar 

  5. McCully K (1993) Chemical pathology of homocysteine. I. Atherogenesis. Anal Clin Lab Sci 23(6):477–493

    CAS  Google Scholar 

  6. Mayer EL, Jacobsen D, Robinson K (1996) Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 27:517–527

    Article  CAS  PubMed  Google Scholar 

  7. Stampfer MJ, Malinow MR, Willett WC et al (1992) A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 268(7):877–882

    Article  CAS  PubMed  Google Scholar 

  8. Graham IM, Daly LE, Refsum HM et al (1997) Plasma homocysteine as a risk factor for vascular disease: the European concerted action project. JAMA 277(22):1775–1781

    Article  CAS  PubMed  Google Scholar 

  9. Stampfer MJ, Malinow MR (1995) Can lowering homocysteine levels reduce cardiovascular risk? N Engl J Med 332(5):328–329

    Article  CAS  PubMed  Google Scholar 

  10. Drown DJ (1995) Homocysteine: an independent risk factor associatedwith coronary disease and other arterial occlusive diseases in adults. Prog Cardiovasc Nurs 10(4):37–38

    CAS  PubMed  Google Scholar 

  11. Nygard O, Refsum H, Ueland PM et al (1997) Coffee consumption and plasma homocysteine: the Hordland homocysteine study. Am J Clin Nutr 65(1):136–143

    Article  CAS  PubMed  Google Scholar 

  12. Grubben MJ, Boers GH, Blom HJ et al (2000) Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: a randomized trial. Am J Clin Nutr 71(2):480–484

    Article  CAS  PubMed  Google Scholar 

  13. Ambrosi P, Barlatier A, Habib G et al (1994) Hyperhomocysteinaemiain heart transplant recipients. Eur Heart J 15(9):1191–1195

    Article  CAS  PubMed  Google Scholar 

  14. Bostom AG, Gohh RY, Tsai MY et al (1997) Excess prevalence of fasting and postmethionine-loading hyperhomocysteinemia in stable renal transplant recipients. Arterioscl Thromb Vasc Biol 17(10):1894–1900

    Article  CAS  PubMed  Google Scholar 

  15. Frishman WH (1998) Biologic markers as predictors of cardiovascular disease. Am J Med 104(6A):18S–27S

    Article  CAS  PubMed  Google Scholar 

  16. Hughes S, Robinson K (1998) Homocysteine: an emerging risk factor for coronary heart disease. Lipid Nurse Task Force 4(1):1–2

    Google Scholar 

  17. Hughes S, Berra K (1998) Emerging risk factors for coronary heart disease. Nurse practitioners’ prescribing reference: clinical management of dyslipidemia. Philips Healthcare Communications, New York, pp 65–72

    Google Scholar 

  18. Stein JH, Mc Bride PE (1998) Hyperhomocysteinemia and atherosclerotic vascular disease. Arch Intern Med 158:1301–1306

    Article  CAS  PubMed  Google Scholar 

  19. Phillips MD (1997) Interrelated risk factors for venous thromboembolism. Circulation 95:1749–1751

    Article  CAS  PubMed  Google Scholar 

  20. Brattström L, Lindgren A, Israelsson B, Andersson A, Hultberg B (1994) Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 236:633–641

    Article  PubMed  Google Scholar 

  21. Giles WH, Kittner SJ, Croft JB, Wozniak MA, Wityk RJ, Stern BJ, Sloan MA, Price TR, McCarter RJ, Macko RF, Johnson CJ, Feeser BR, Early CJ, Buchholz DW, Stolley PD (1999) Distribution and correlates of elevated total homocyst(e)ine: the stroke prevention in young women study. Ann Epidemiol 9:307–313

    Article  CAS  PubMed  Google Scholar 

  22. Koehler KM, Baumgartner RN, Garry PJ, Allen RH, Stabler SP, Rimm EB (2007) Association of folate intake and serum homocysteine in elderly persons according to vitamin supplementation and alcohol use. Am J Clin Nutr 73:628–637

    Article  Google Scholar 

  23. Hak AE, Polderman KH, Westendorp ICD, Jakobs C, Hofan A, Witteman JCM, Stehouwer CDA (2000) Increased plasma homocysteine after menopause. Atherosclerosis 149:163–168

    Article  CAS  PubMed  Google Scholar 

  24. Andersson A, Brattström L, Israelsson B, Isaksson A, Hamfelt A, Hultberg B (1992) Plasma homocysteine before and after methionine loading with regard to age, gender, and menopausal status. Eur J Clin Investig 22:79–87

    Article  CAS  Google Scholar 

  25. Selhub J, Jacques PF, Wilson P, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270:2693–2698

    Article  CAS  PubMed  Google Scholar 

  26. Saw SM, Yuan JM, Ong CN, Arakawa K, Lee HP, Coetzee GA (2001) Genetic, dietary, and other lifestyle determinants of plasma homocysteine concentrations in middle-aged and older Chinese men and women in Singapore. Am J Clin Nutr 73:232–239

    Article  CAS  PubMed  Google Scholar 

  27. Blundell EL, Matthews JH, Allen SM, Middleton AM, Morris JE, Wickramasinghe SN (1985) Importance of low serum vitamin B-12 and red cell folate concentrations in elderly hospital inpatients. J Clin Pathol 381:179–184

    Google Scholar 

  28. Marcus DL, Shadick N, Crantz J, Gray M, Hernandez F, Freedman ML (1987) Low serum B-12 levels in a hematologically normal elderly population. J Am Geriatr Soc 35:635–638

    Article  CAS  PubMed  Google Scholar 

  29. Pennypacker LC, Allen RH, Kelly JP, Matthews LM, Grigsby J, Kaye K, Lindenbaum J, Stabler SP (1992) High prevalence of cobalamin deficiency in elderly outpatients. J Am Geriatr Soc 40:1197–1204

    Article  CAS  PubMed  Google Scholar 

  30. Stolzenberg-Solomon RZ, Miller ER, Maguire MG, Selhub J, Appel LJ (1999) Association of dietary protein intake and coffee consumption with serum homocysteine concentrations in an older population. Am J Clin Nutr 69:467–475

    Article  CAS  PubMed  Google Scholar 

  31. Jacques PF, Bostom AG, Wilson PWF, Rich S, Rosenberg IH, Selhub J (2001) Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 73:613–621

    Article  CAS  PubMed  Google Scholar 

  32. Shimakawa T, Nieto FJ, Malinow MR, Chambless LE, Schreiner PJ, Szklo M (1997) Vitamin intake: a possible determinant of plasma homocyst(e)ine among middle-aged adults. Ann Epidemiol 7:285–293

    Article  CAS  PubMed  Google Scholar 

  33. Dawson DW, Waters HM (1994) Malnutrition: folate and cobalamin deficiency. Br J Biomed Sci 51:221–227

    CAS  PubMed  Google Scholar 

  34. Refsum H, Yajnik CS, Gadkari M et al (2001) Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamine deficiency in Asian Indians. Am J Clin Nutr 74:233–241

    Article  CAS  PubMed  Google Scholar 

  35. Abraham R, Brown MC, North WR, McFadyen IR (1987) Diets of Asian pregnant women in Harrow: iron and vitamins. Hum Nutr Appl Nutr 41:164–173

    CAS  PubMed  Google Scholar 

  36. Matthews JH, Wood JK (1984) Megaloblastic anaemia in vegetarian Asians. Clin Lab Haematol 6:1–7

    Article  CAS  PubMed  Google Scholar 

  37. Ness AR, Cappuccio FP, Atkinson RW, Khaw K-T, Cook DG (1999) Plasma vitamin C levels in men and women from different ethnic backgrounds living in England. Int J Epidemiol 28:450/5

    Article  Google Scholar 

  38. Sharma S, Cade J, Griffiths S, Cruickshank K (1998) Nutrient intakes among UK African-Caribbeans: changing risk of coronary heart disease. Lancet 352:114/5

    Google Scholar 

  39. Cappuccio FP, Bell R, Perry IJ et al (2002) Homocysteine levels in men and women of different ethnic and cultural background living in England. Atherosclerosis 164(1):95–102

    Article  CAS  PubMed  Google Scholar 

  40. Chandalia M, Abate N, Cabo-Chan AV Jr, Devaraj S, Jialal I, Grundy SM (2003) Hyperhomocysteinemia in Asian Indians living in the United States. J Clin Endocrinol Metab 88(3):1089–1095

    Article  CAS  PubMed  Google Scholar 

  41. Refsum H, Yajnik CS, Gadkari M, Schneede J, Vollset SE, Orning L, Guttormsen AB, Joglekar A, Sayyad MG, Ulvik A, Ueland PM (2001) Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am J Clin Nutr 74:233–241

    Article  CAS  PubMed  Google Scholar 

  42. De Pergola G, Pannacciulli N, Zamboni M, Minenna A, Brocco G, Sciaraffia M, Bosello GR (2001) Homocysteine plasma levels are independently associated with insulin resistance in normal weight, overweight and obese pre-menopausal women. Diabet Nutr Metab 14:253–258

    Google Scholar 

  43. Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM, Rifai N, D’AgostinoSr RB, Wilson PW (2001) Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabet Care 24:1403–1410

    Article  CAS  Google Scholar 

  44. Sanchez-Margalet V, Valle M, Ruz FJ, Gascon F, Mateo J, Goberna R (2002) Elevated plasma total homocysteine levels in hyperinsulinemic obese subjects. J Nutr Biochem 13:75–79

    Article  CAS  PubMed  Google Scholar 

  45. Chandalia M, Abate N, Garg A, Stray-Gundersen J, Grundy SM (1999) Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. J Clin Endocrinol Metab 84:2329–2335

    CAS  PubMed  Google Scholar 

  46. Hughes K, Aw TC, Kuperan P, Choo M (1997) Central obesity, insulin resistance, syndrome X, lipoprotein(a), and cardiovascular risk in Indians, Malays, and Chinese in Singapore. J Epidemiol Community Health 51:394–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Godsland IF, Rosankiewicz JR, Proudler AJ, Johnston DG (2001) Plasma total homocysteine concentrations are unrelated to insulin sensitivity and components of the metabolic syndrome in healthy men. J Clin Endocrinol Metab 86:719–723

    CAS  PubMed  Google Scholar 

  48. Abbasi F, Facchini F, Humphreys MH, Reaven GM (1999) Plasma homocysteine concentrations in healthy volunteers are not related to differences in insulin-mediated glucose disposal. Atherosclerosis 146:175–178

    Article  CAS  PubMed  Google Scholar 

  49. Folsom AR, Nieto FJ, McGovern PG, Tsai MY, Malinow MR, Eckfeldt JH, Hess DL, Davis CE (1998) Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 98:204–210

    Article  CAS  PubMed  Google Scholar 

  50. Robinson K, Arheart K, Refsum H, Brattstrom L, Boers G, Ueland P, Rubba P, Palma-Reis R, Meleady R, Daly L, Witteman J, Graham I (1998) Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. European COMAC Group. Circulation 97:437–443

    Article  CAS  PubMed  Google Scholar 

  51. Kalita J, Misra UK, Srivastava AK, Bindu IS (2007) A study of homocysteine level in North Indian subjects with special reference to their dietary habit. J Clin Nutr Metab 2:e116–e119

    Google Scholar 

  52. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuvel LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation at the methylenetetrahydrofolate reductase locus. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  53. Tonstad S, Refsum H, Ueland PM (1997) Association between plasma total homocysteine and parental history of cardiovascular disease in children with familial hypercholesterolemia. Cire 96(6):1803–1808

    CAS  Google Scholar 

  54. Hoogeveen EK, Kostense PJ, Jakobs C, Dekker JM, Nijpels G, Heine RJ et al (2000) Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes. 5-year follow-up of the Hoorn study. Circulation 101:1506–1511

    Article  CAS  PubMed  Google Scholar 

  55. Ambrosch A, Dierkes J, Lobmann R, Kuhne W, Konig W, Luley C et al (2001) Relation between homocysteinemia and diabetic neuropathy in patients with Type 2 diabetes mellitus. Diabet Med 18:185–192

    Article  CAS  PubMed  Google Scholar 

  56. Vaccaro O, Perna AF, Mancini FP, Iovine C, Cuomo V, Sacco M et al (2000) Plasma homocysteine and microvascular complications in type 1 diabetes. Nutr Metab Cardiovasc Dis 10:297–304

    CAS  PubMed  Google Scholar 

  57. Hoogeveen EK, Kostense PJ, Eysink PE, Polak BC, Beks PJ, Jakobs C et al (2000) Hyperhomocysteinemia is associated with the presence of retinopathy in type 2 diabetes mellitus: the Hoorn study. Arch Intern Med 160:2984–2990

    Article  CAS  PubMed  Google Scholar 

  58. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  59. Mansoor MA, Bergmark C, Svardal AM, Lonning PE, Ueland PM (1995) Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Homocysteine and peripheral vascular disease. Arterioscler Thromb Vasc Biol 15(2):232–240

    Article  CAS  PubMed  Google Scholar 

  60. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Mattews RG et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113

    Article  CAS  PubMed  Google Scholar 

  61. Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH et al (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93(1):7–9

    Article  CAS  PubMed  Google Scholar 

  62. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK et al (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62(5):1044–1051

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rozen R (1997) Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost 78(1):523–526

    Article  CAS  PubMed  Google Scholar 

  64. Metz J, Bell AH, Flicker L, Bottiglieri T, Ibrahim J, Seal E (1996) The significance of subnormal serum vitamin B12 concentration in older people: a case control study. J Am Geriatr Soc 44(11):1355–1361

    Article  CAS  PubMed  Google Scholar 

  65. Nurk E, Tell GS, Nygard O, Refsum H, Ueland PM, Vollset SE (2001) Plasma total homocysteine is influenced by prandial status in humans: the Hordaland homocysteine Study. J Nutr 131(4):1214–1216

    Article  CAS  PubMed  Google Scholar 

  66. Weiss N, Keller C, Hoffmann U, Loscalzo J (2002) Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 7(3):227–239

    Article  PubMed  Google Scholar 

  67. Födinger M, Wagner OF, Hörl WH, Sunder-Plassmann G (2001) Recent insights into the molecular genetics of the homocysteine metabolism. Kidney:S238–S242

    Google Scholar 

  68. Salbaum JM, Kappen C (2012) Genetic and epigenomic footprints of folate. Prog Mol Biol Transl Sci 108:129–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stone N, Pangilinan F, Molloy AM et al (2011) Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. PLoS 6(7):e21851

    Article  CAS  Google Scholar 

  70. Namour F, Olivier J, Abdelmouttaleb I et al (2001) Transcobalamin codon 259 polymorphism in HT-29 and Caco-2 cells and in Caucasians: relation to transcobalamin and homocysteine concentration in blood. Blood:1092–1098

    Google Scholar 

  71. Martin YN, Salavaggione OE, Eckloff BW et al (2006) Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenet Genomics 16(4):265–277

    Article  CAS  PubMed  Google Scholar 

  72. Izmirli M (2013) A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk. Mol Biol Rep 40(1):625–637

    Article  CAS  PubMed  Google Scholar 

  73. Stover PJ (2011) Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics 4(5):293–305

    CAS  PubMed  Google Scholar 

  74. Joachim E, Goldenberg NA, Bernard TJ et al (2013) The methylenetetrahydrofolate reductase polymorphism (MTHFR c.677C>T) and elevated plasma homocysteine levels in a U.S. pediatric population with incident thromboembolism. Thromb Res 132(2):170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martin DN, Boersma BJ, Howe TM et al (2006) Association of MTHFR gene polymorphisms with breast cancer survival. BMC Cancer 6:e257

    Article  CAS  Google Scholar 

  76. Marini NJ, Gin J, Ziegle J et al (2008) The prevalence of folate-remedial MTHFR enzyme variants in humans. Proc Natl Acad Sci U S A 105(23):8055–8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu Y, Zhu RX, He ZY et al (2015) Association of MTHFR C677T with total homocysteine plasma levels and susceptibility to Parkinson’s disease: a meta-analysis. Neurol Sci 36(6):945–951

    Article  PubMed  Google Scholar 

  78. Pangilinan F, Molloy AM, Mills JL et al (2012) Evaluation of common genetic variants in the role of molecular genetic alterations 537 genes as risk factors for neural tube defects. BMC Med Genet 13:e62

    Article  CAS  Google Scholar 

  79. Zhang D, Wen X, Wu W et al (2015) Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35758 individuals. PLoS One 10(5):e0123423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shiran A, Remer E, Asmer I et al (2015) Association of vitamin B12 deficiency with homozygosity of the TT MTHFR C677T genotype, hyperhomocysteinemia, and endothelial cell dysfunction. Isr Med Assoc J 17(5):288–292

    PubMed  Google Scholar 

  81. Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10

    Article  PubMed  Google Scholar 

  82. Ge J, Wang J, Zhang F et al (2015) Correlation between MTHFR gene methylation and pre-eclampsia, and its clinical significance. Genet Mol Res 14(3):8021–8028

    Article  CAS  PubMed  Google Scholar 

  83. Leclerc D, Wilson A, Dumas R et al (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A 95:3059–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Froese DS, Wu X, Zhang J et al (2008) Restricted role for methionine synthase reductase defined by subcellular localization. Mol Genet Metab 94(1):68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grechanina EYA, Lesovoi VN, Myasoedov VV et al (2010) The relationship between the development of some epigenetic diseases and disorders of DNA methylation due to deficiency of folate cycle enzymes. Ul’trazvukPerinatDiagn 29:27–59

    Google Scholar 

  86. Rai V, Yadav U, Kumar P, Yadav SK (2013) Analysis of methionine synthase reductase polymorphism (A66G) in Indian Muslim population. Indian J Hum Genet 19(2):183–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kumudini N, Uma A, Naushad SM et al (2014) Association of seven functional polymorphisms of one-carbon metabolic pathway with total plasma homocysteine levels and susceptibility to Parkinson’s disease among South Indians. Neurosci Lett 568:1–5

    Article  CAS  PubMed  Google Scholar 

  88. Hozyasz KK, Mostowska A, SzaflarskaPoplawska A et al (2012) Polymorphic variants of genes involved in homocysteine metabolism in celiac disease. Mol Biol Rep 39(3):3123–3130

    Article  CAS  PubMed  Google Scholar 

  89. Jiang Y, Xia X, Wang W et al (2012) Hyperhomocysteinemia and related genetic polymorphisms correlate with ulcerative colitis in Chinese Han population in Central China. Cell Biochem Biophys 62(1):203–210

    Article  CAS  PubMed  Google Scholar 

  90. Hosseini M (2013) Role of polymorphism of methyltetrahydrofolate – homocysteinemethyltransferase (MTR) A2756G and breast cancer risk. Pol J Pathol 64(3):191–195

    Google Scholar 

  91. Ding W, Zhou D, Jiang X, Lu LS (2013) Methionine synthase A2756G polymorphism and risk of colorectal adenoma and cancer: evidence based on 27 studies. PLoS One 8(4):e60508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen L, Liu L, Hong K et al (2012) Three genetic polymorphisms of homocysteine-metabolizing enzymes and risk of coronary heart disease: a meta-analysis based on 23 case-control studies. DNA Cell Biol 31(2):238–249

    Article  CAS  PubMed  Google Scholar 

  93. Naushad SM, Pavani A, Rupasree Y et al (2012) Association of aberrations in one-carbon metabolism with molecular phenotype and grade of breast cancer. Mol Carcinog 51(1):32–E41

    Article  CAS  Google Scholar 

  94. Feng Q, Kalari K, Fridley BL et al (2011) Betaine – homocysteinemethyltransferase: human liver genotype – phenotype correlation. Mol Genet Metab 102(2):126–133

    Google Scholar 

  95. Strakova J, Williams KT, Gupta S et al (2010) Dietary intake of S-(a-carboxybutyl)-DL-homocysteine induces hyperhomocysteinemia in rats. Nutr Res 30:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Teng YW, Mehedint MG, Garrow TA, Zeisel SH (2011) Deletion of betainehomocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286:36258–36267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li F, Feng Q, Lee C et al (2008) Human betaine – homocysteinemethyltransferase (BHMT) and BHMT2: common gene sequence variation and functional characterization. Mol Genet Metab 94(3):326–335

    Google Scholar 

  98. Liang S, Zhou Y, Wang H et al (2014) The effect of multiple single nucleotide polymorphisms in the folic acid pathway genes on homocysteine metabolism. Biomed Res Int 2014:e560183

    Article  Google Scholar 

  99. da Silva LM, Galbiatti AL, Ruiz MT et al (2012) MTHFD1 G1958A, BHMT G742A, TC2 C776G and TC2 A67G polymorphisms and head and neck squamous cell carcinoma risk. Mol Biol Rep 39(2):887–893

    Article  CAS  PubMed  Google Scholar 

  100. Zampieri BL, Biselli JM, Goloni-Bertollo EM, Pavarino EC (2012) BHMT G742A and MTHFD1 G1958A polymorphisms and Down syndrome risk in the Brazilian population. Genet Test Mol Biomarkers 16(6):628–631

    Article  CAS  PubMed  Google Scholar 

  101. Miller AL (2008) The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev 13:216–226

    PubMed  Google Scholar 

  102. Relton CL, Wilding CS, Laffling AJ et al (2004) Low erythrocyte folate status and polymorphic variation in folate-related genes are associated with risk of neural tube defect pregnancy. Mol Genet Metab 81:273–281

    Article  CAS  PubMed  Google Scholar 

  103. Fu TF, Hunt S, Schirch V, Safo MK, Chen BH (2005) Properties of human and rabbit cytosolic serine hydroxymethyltransferase are changed by single nucleotide polymorphic mutations. Arch Biochem Biophys 442(1):92–101

    Article  CAS  PubMed  Google Scholar 

  104. Niclot S, Pruvot Q, Besson C et al (2006) Implication of the folate – methionine metabolism pathways in susceptibility to follicular lymphomas. Blood 108(1):278–285

    Google Scholar 

  105. Vijayakrishnan J, Houlston RS (2010) Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Komlosi V, Hitre E, Pap E et al (2010) SHMT1 1420 and MTHFR 677 variants are associated with rectal but not colon cancer. BMC Cancer 10:e525

    Article  CAS  Google Scholar 

  107. Collin SM, Metcalfe C, Zuccolo L et al (2009) Association of folate-pathway gene polymorphisms with the risk of prostate cancer: a population-based nested case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomark Prev 18:2528–2539

    Article  CAS  Google Scholar 

  108. Wu X, Zou T, Cao N et al (2014) Plasma homocysteine levels and genetic polymorphisms in folate metabolism are associated with breast cancer risk in Chinese women. Hered Cancer Clin Pract 12(10):e2

    Article  CAS  Google Scholar 

  109. Dayal S, Lentz SR (2008) Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler Thromb Vasc Biol 28:1596–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Biswas A, Ranjan R, Meena A et al (2009) Homocystine levels, polymorphisms and the risk of ischemic stroke in young Asian Indians. J Stroke Cerebrovasc Dis 18:103–110

    Article  PubMed  Google Scholar 

  111. Gallegos-Arreola MP, Figuera-Villanueva LE, Ramos-Silva A et al (2014) The association between the 844ins68 polymorphism in the CBS gene and breast cancer. Arch Med Sci 10(6):1214–1224

    Article  PubMed  PubMed Central  Google Scholar 

  112. Johnson WG, Stenroos ES, Spychala JR et al (2004) New 19 bp deletion polymorphism in intron-1 of dihydrofolatereductase (DHFR): a risk factor for spina bifida acting in mothers during pregnancy? Am J Med Genet 124:339–345

    Article  Google Scholar 

  113. Xu X, Gammon MD, Wetmur JG et al (2007) A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. Am J Clin Nutr 85:1098–1102

    Article  CAS  PubMed  Google Scholar 

  114. Gellekink H, Blom HJ, van der Linden IJ, Heijer M (2007) Molecular genetic analysis of the human dihydrofolate reductase gene: relation with plasma total homocysteine, serum and red blood cell folate levels. Eur J Hum Genet 15(1):103–109

    Article  CAS  PubMed  Google Scholar 

  115. Cario H, Smith DE, Blom H et al (2011) Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet 88:226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Banka S, Blom HJ, Walter J et al (2011) Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency. Am J Hum Genet 88:216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, S.T. (2021). Genetic Risk Factors in the Development of Hyperhomocysteinemia. In: Waly, M.I. (eds) Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia. Springer, Cham. https://doi.org/10.1007/978-3-030-57839-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57839-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57838-1

  • Online ISBN: 978-3-030-57839-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics