Skip to main content

Medical Aspects of Hyperhomocystinemia and Neurological Disorders

  • Chapter
  • First Online:
Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia

Abstract

Homocysteine (Hcy) is a sulfur containing amino acid and is generated during methionine metabolism. Homocysteine has vital influences in DNA metabolism through the methylation process, which in turn is affected by the levels of vitamin B12, folate, and vitamin B6. Physiologically, Hcy levels are determined primarily by dietary intake and the vitamin status in the body. Hence, an increase in Hcy can be nutritional and is also attributable to deficiency of either vitamin B12 or folate, or even its combination. In the past few years of research, studies have observed association [1] between elevated homocysteine levels (eHcy) and conditions like stroke, cardiovascular diseases, ectopia lentis, vascular dementia, Parkinson’s disease, Alzheimer’s disease, and neuropsychiatric illnesses like schizophrenia [2, 3]. Early identification of hyper-homocysteinemia may be useful during the initial workup of common neurologic disorders. The strategy of attempting to normalize homocysteine levels using a simple and potentially non-toxic multivitamin regimen and nutraceutical care can be of use in addition to the usual treatment for many neurological disorders. Hence, it is of high value to explore the role of elevated homocysteine levels in neurological disease and nutraceutical approach in its normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M (2019) Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies [Internet], vol 6. Front Nutr 49. Available from: https://www.frontiersin.org/article/10.3389/fnut.2019.00049

  2. Zaric B, Obradovic M, Bajic V, Haidara M, Jovanovic M, Isenovic E (2018) Homocysteine and hyperhomocysteinaemia. Curr Med Chem 13:25

    Google Scholar 

  3. Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10(4):281–288

    Article  Google Scholar 

  4. McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56(1):111–128

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN (2017) The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond) [Internet] 14(1):78. Available from: https://doi.org/10.1186/s12986-017-0233-z

  6. Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60(1):39–54

    Article  CAS  Google Scholar 

  7. Williams RH, Maggiore JA (1999). Hyperhomocysteinemia: pathogenesis, clinical significance, laboratory assessment, and treatment. Lab Med [Internet] 30(7):468–475. Available from: https://doi.org/10.1093/labmed/30.7.468

  8. Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57(10):1422–1428

    Article  CAS  Google Scholar 

  9. Lindenbaum J, Healton EB, Savage DG, Brust JC, Garrett TJ, Podell ER et al (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318(26):1720–1728

    Article  CAS  Google Scholar 

  10. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270(22):2693–2698

    Article  CAS  Google Scholar 

  11. Nygård O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE et al (1995) Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 274(19):1526–1533

    Article  Google Scholar 

  12. Stolzenberg-Solomon RZ, Miller ER 3rd, Maguire MG, Selhub J, Appel LJ (1999) Association of dietary protein intake and coffee consumption with serum homocysteine concentrations in an older population. Am J Clin Nutr 69(3):467–475

    Article  CAS  Google Scholar 

  13. Markišić M, Pavlović AM, Pavlović DM (2017) The impact of homocysteine, vitamin B12, and vitamin D levels on functional outcome after first-ever ischaemic stroke. Biomed Res Int 2017:5489057

    Article  Google Scholar 

  14. Kang SS, Wong PW, Zhou JMCH (1986) Total homocysteine in plasma and amniotic fluid of pregnant women. Metabolism 35:889–891

    Article  CAS  Google Scholar 

  15. van Baal WM, Smolders RG, van der Mooren MJ, Teerlink T, Kenemans P (1999) Hormone replacement therapy and plasma homocysteine levels. Obstet Gynecol 94(4):485–491

    Article  Google Scholar 

  16. Brustolin S, Giugliani R, Félix TM (2010) Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 43(1):1–7

    Article  CAS  Google Scholar 

  17. Kruger WD (2017) Cystathionine β-synthase deficiency: of mice and men. Mol Genet Metab 121(3):199–205

    Article  CAS  Google Scholar 

  18. Hoss GRW, Poloni S, Blom HJ, Schwartz IVD (2019) Three main causes of homocystinuria: CBS, cblC and MTHFR Deficiency. What do they have in common? J Inborn Errors Metab Screen 7

    Google Scholar 

  19. Morris AAM, Kožich V, Santra S, Andria G, Ben-Omran TIM, Chakrapani AB et al (2017) Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis 40(1):49–74

    Article  CAS  Google Scholar 

  20. Martinelli D, Deodato F, Dionisi-Vici C (2011) Cobalamin C defect: natural history, pathophysiology, and treatment. J Inherit Metab Dis 34(1):127–135

    Article  CAS  Google Scholar 

  21. monitoring health for the SDGs, sustainable development goals G (2019) World Health Statistics overview 2019. World Health Organization, pp 1–28

    Google Scholar 

  22. Lehotský J, Tothová B, Kovalská M, Dobrota D, Beňová A, Kalenská D et al (2016) Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci 10:538

    Article  Google Scholar 

  23. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A et al (2018) Homocysteine and dementia: an international consensus statement. J Alzheimers Dis 62(2):561–570

    Article  Google Scholar 

  24. Alzheimer’s Society (2017) What is dementia? Factsheet 400LP (January). Available from: https://www.alzheimers.org.uk/sites/default/files/migrate/downloads/what_is_dementia.pdf

  25. Chinthapalli K (2014) Alzheimer’s disease: still a perplexing problem. BMJ [Internet] 349:g443. Available from: https://www.bmj.com/content/349/bmj.g4433

  26. Berganzo K, Tijero B, González-Eizaguirre A, Somme J, Lezcano E, Gabilondo I et al (2016) Motor and non-motor symptoms of Parkinson’s disease and their impact on quality of life and on different clinical subgroups. Neurol (English Ed) [Internet] 31(9):585–591. Available from: https://doi.org/10.1016/j.nrleng.2014.10.016

  27. Filograna R, Beltramini M, Bubacco L, Bisaglia M (2016) Anti-Oxidants in Parkinson’s Disease Therapy: A Critical Point of View. Curr Neuropharmacol 14(3):260–271

    Article  CAS  Google Scholar 

  28. Mischley LK, Lau RC, Bennett RD (2017) Role of diet and nutritional supplements in Parkinson’s disease progression. Oxidative Med Cell Longev 2017:1–9

    Article  Google Scholar 

  29. Bochyńska A, Lipczyńska-ŁOjkowska W, Gugała-Iwaniuk M, Lechowicz W, Restel M, Graban A et al (2012) The effect of vitamin B supplementation on homocysteine metabolism and clinical state of patients with chronic epilepsy treated with carbamazepine and valproic acid. Seizure 21(4):276–281

    Article  Google Scholar 

  30. Kanner AM (2002) Antiepileptic Drugs and Homocysteine Levels. Epilepsy Curr 2(2):41–42

    Article  Google Scholar 

  31. Eldeen O, Eldayem S, Shatla R, Omara N, Elgammal S (2012) Homocysteine, folic acid and vitamin B12 levels in serum of epileptic children. Egypt J Med Hum Genet 13:275–280

    Article  CAS  Google Scholar 

  32. Russo C, Morabito F, Luise F, Piromalli A, Battaglia L, Vinci A et al (2008) Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. J Neurol 255(1):64–69

    Article  CAS  Google Scholar 

  33. Ramsaransing GSM, Fokkema MR, Teelken A, Arutjunyan AV, Koch M, De Keyser J (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77(2):189–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabhakar, P., Punnaveetil, S. (2021). Medical Aspects of Hyperhomocystinemia and Neurological Disorders. In: Waly, M.I. (eds) Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia. Springer, Cham. https://doi.org/10.1007/978-3-030-57839-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57839-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57838-1

  • Online ISBN: 978-3-030-57839-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics