Skip to main content

Halophytes and the Future of Agriculture

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Climate changes along with the natural- and human-oriented problems in agricultural areas resulted in increases in drought and salinity problems in various regions of the world. Increases in abiotic stress issues particularly salinity and drought problems led to an increased level of stress on already stressed crop plants arising from various abiotic and biotic stress factors. Molecular and biochemical approaches, as well as physiological improvements on crop plants, have been suggested as possible optimistic solutions for improving the conditions of crop plants under such conditions. However, these approaches have not always been found to be cost-effective due to technological limitations and the complexity of stress issues. The certain limit of antioxidant capacity of crop plants under these circumstances led to limited success in which the crop plants cannot handle further stress. In recent years, halophyte plants have been used which enabled the crop plants better environment and better performance under stress conditions via reducing the abiotic stress in soil biota of crop plants. Halophytes, when used alone in marginal soils, have reduced the level of abiotic stresses such as salinity and heavy metal pollution as well as contributing to an increase of soil fertility. Halophytes, on the other hand, when used as companion plants with glycophytes, have also improved the productivity of crop plants. Most halophytes could tolerate high levels of salinity and drought stresses when compared to those of most the glycophytes and crop plants. Therefore, any molecular or biochemical improvements on such halophytes would be more meaningful and cost-effective than spending more time and energy on crop plants. It is important to evaluate the halophytes for the future of agriculture as they could improve the conditions of crop plants and could be used as cash crops and phytoremediation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, R., & Malik, K. A. (2002). Prospects of saline agriculture (pp. 75–86). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Al-Khalifah, N. S. (2004). The role of biotechnology in developing plant resources in deserts environment. In Proceedings of international conference on water resources and arid environment WRAE04 (pp. 1–16). King Abdulatziz City: KSA.

    Google Scholar 

  • Al-Khayri, J. M. (2007). Date palm Phoenix dactylifera L. micropropagation. In S. M. Jain & H. Haggman (Eds.), Protocols for micropropagation of woody trees and fruits (pp. 509–526). Berlin: Springer.

    Chapter  Google Scholar 

  • Al-Khayri, J. M. (2010). Somatic embryogenesis of date palm Phoenix dactylifera L. improved by coconut water. Biotech, 9(4), 477–484.

    Article  Google Scholar 

  • Ashraf, M. (2010) Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28, 169–183.

    Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  • Aslam, R., Bostan, N., Amen, N., Maria, M., & Safdar, W. (2011). A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 5(33), 7108–7118.

    CAS  Google Scholar 

  • Balnokin, Y. V., Myasoedov, N. A., Shamsutdinov, Z. S., & Shamsutdinov, N. Z. (2005). Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae. Russian Journal of Plant Physiology, 52, 779–787.

    Article  CAS  Google Scholar 

  • Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management, 53, 213–226.

    Article  Google Scholar 

  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58.

    Article  CAS  Google Scholar 

  • Boestfleisch, C., & Papenbrock, J. (2017). Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum L., Triglochin maritima L. and Halimione portulacoides L. Aellen as reaction to mild salinity. PLoS One, 12(4), 1–18.

    Article  CAS  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241–1257.

    Article  CAS  PubMed  Google Scholar 

  • Carillo, P., Grazia Annunziata, M., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In A. K. Shanker & B. Venkateswarlu (Eds.), Abiotic stress in plants – Mechanisms and adaptations (pp. 21–38). Rijeka: InTech.

    Google Scholar 

  • Chen, M., Yang, Z., Liu, J., Zhu, T., Wei, X., Fan, H., & Wang, B. (2018). Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19, 36–68.

    Article  Google Scholar 

  • Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448.

    Article  CAS  Google Scholar 

  • Clipson, N. J. W., & Flowers, T. J. (1987). Salt tolerance in the halophyte Suaeda maritima L. Dum – The effect of salinity on the concentration of sodium in the xylem. New Phytologist, 105, 359–366.

    Article  CAS  Google Scholar 

  • Cuin, T. A., Tian, Y., Betts, S. A., Chalmandrier, R., & Shabala, S. (2009). Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Functional Plant Biology, 36, 1110–1119.

    Article  CAS  Google Scholar 

  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137(3), 807–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dracup, M. N. H., & Greenway, H. (1985). A procedure for isolating vacuoles from leaves of the halophyte Suaeda maritime. Plant, Cell and Environment, 8, 149–154.

    Article  Google Scholar 

  • Eshel, A., Zilberstein, A., & Alekparov, C. (2010). Biomass production by desert halophytes, alleviating the pressure on food production. In EE'10 proceedings of the 5th IASME/WSEAS international conference on energy and environment. Recent advances in energy and environment. Cambridge, UK, pp. 362–367.

    Google Scholar 

  • Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61, 313–337.

    Article  Google Scholar 

  • Gairola S, Khawla I. Al, Shaer, Eman K. Al, Harthi, Kareem A. Mosa, (2018). Strengthening desert plant biotechnology research in the United Arab Emirates: a viewpoint. Physiol Mol Biol Plants (July–August 2018) 24(4):521–533, https://doi.org/10.1007/s12298-018-0551-2.

  • Garg, R., Shankar, R., Thakkar, B., Kudapa, H., Krishnamurthy, L., Mantri, N., Varshney, R. K., Bhatia, S., & Jain, M. (2016). Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6(1), 192–228.

    Article  Google Scholar 

  • Ghnaya, T., Nouairi, I., & Slama, I. (2005). Cadmium effects on growth and mineral nutrition of two halophytes, Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology, 162, 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  • Gilliham, M., Able, J. A., & Roy, S. J. (2016). Translating knowledge in abiotic stress tolerance to breeding programs. The Plant Journal, 90, 898–917.

    Article  CAS  Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227–255.

    Article  Google Scholar 

  • Grigore, M.-N., & Toma, C. (2017). Anatomical adaptations of halophytes. A review of classic literature and recent findings. Cham: Springer International Publishing.

    Google Scholar 

  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants, physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1–18.

    Article  CAS  Google Scholar 

  • Hahn, A., Kilian, J., Mohrholz, A., Ladwig, F., Peschke, F., Dautel, R., Harter, K., Berendzen, K. W., & Wanke, D. (2013). Plant core environmental stress response genes are systemically coordinated during abiotic stresses. International Journal of Molecular Sciences, 14(4), 7617–7641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajibagheri, M. A., Hall, J. L., & Flowers, T. J. (1984). Stereological analysis of leaf cells of the halophyte Suaeda maritima L. Dum. Journal of Experimental Botany, 35(10), 1547–1557.

    Article  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., Teixeira da Silva, J. A., & Fujita, M. (2012). Plant responses and tolerance to abiotic oxidative stress, antioxidant defense is a key factor. In V. Bandi, A. K. Shanker, C. Shanker, & M. Mandapaka (Eds.), Crop stress and its management, perspectives and strategies (pp. 261–316). Berlin: Springer.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M., Bhowmik, P. C., Hossain, A., Rahman, M. M., Narasimha, M., Prasad, V., Ozturk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 1–12. Article ID 589341. https://doi.org/10.1155/2014/589341. Hindawi Publishing Corporation.

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  PubMed  Google Scholar 

  • http://www.fao.org/faostat/en/#home

  • Huchzermeyer, B., & Flowers, T. J. (2013). Putting halophytes to work-genetics, biochemistry and physiology. Functional Plant Biology, 40, 5–10.

    Article  CAS  Google Scholar 

  • Jacobsen S.E., Mujica A, Ortiz R. (2003). Theglobal potential for quinoa and other Andean crops. Food Reviews International 19: 139–148.

    Google Scholar 

  • Karakas, S., Dikilitas, M., & Tipirdamaz, R. (2019). Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high level of NaCl stress. Harran Tarım ve Gıda Bilimleri Dergisi, 23(1), 99–107.

    Article  Google Scholar 

  • Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraithand, D., & Bohnert, H. J. (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13, 889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M. A., Ansari, R., Ali, H., Gul, B., & Nielsen, B. L. (2009). Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agriculture, Ecosystems and Environment, 129(4), 542–546.

    Article  Google Scholar 

  • Koyro, H. W., & Eisa, S. S. (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil, 302, 79–90.

    Article  CAS  Google Scholar 

  • Koyro, H.W., Khan, M.A., Lieth, H., (2011). Halophytic crops: a resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23 (1)1–16.

    Google Scholar 

  • Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A., & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 63(1), 19–27.

    Article  CAS  Google Scholar 

  • Liu, W., Yuan, J. S., & Stewart, C. N. (2013). Advanced genetic tools for plant biotechnology. Nature Reviews. Genetics, 14, 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Loconsole, D., Cristiano, G., & De Lucia, B. (2019). Review, Glassworts, from wild salt marsh species to sustainable edible crops. Agriculture, 9, 14.

    Article  CAS  Google Scholar 

  • Long, X. H., Liu, L. P., Shao, T. Y., Shao, H. B., & Liu, Z. P. (2016). Developing and sustainably utilize the coastal mudflat areas in China. Science of Total Environment, 569, 1077–1086.

    Article  CAS  Google Scholar 

  • Lutts, S., Lefevre, I., & Delperee, C. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158.

    Article  CAS  PubMed  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush Atriplex halimus L., metal uptake in relation to salinity. Environmental Science and Pollution Research, 16, 844–854.

    Article  CAS  PubMed  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011a). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.

    Article  CAS  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011b). Halophytes – An emerging trend in phytoremediation. International Journal of Phytoremediation, 13, 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Mateos, R. A., Heiss, C., Borges, G., & Crozier, A. (2014). Berry polyphenols and cardiovascular health. Journal of Agriculture and Food Chemistry, 62, 3842–3851.

    Article  CAS  Google Scholar 

  • Messerer, M., Lang, D., & Mayer, K. F. X. (2018). Analysis of stress resistance using next generation techniques. Agronomy, 8, 130–135.

    Article  CAS  Google Scholar 

  • Mosa, K. A., Ismail, A., & Helmy, M. (2017). Functional genomics combined with other omics approaches for better understanding abiotic stress tolerance in plants. In K. A. Mosa, A. Ismail, & M. Helmy (Eds.), Plant stress tolerance, an integrated omics approach (pp. 55–73). Basel: Springer.

    Chapter  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Nikalje, G. C., Srivastava, A. K., Pandey, K., & Suprasanna, P. (2018). Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degradation & Development, 29, 1081–1095.

    Article  Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324–349.

    Article  CAS  PubMed  Google Scholar 

  • Ramadan, T., & Flowers, T. J. (2004). Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L. Planta, 219, 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Raman, A. (2017). Plants in remediating salinity-affected agricultural landscapes. Proceedings of the Indian National Science Academy, 83(1), 51–66.

    Google Scholar 

  • Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa Chenopodium quinoa and kaniwa Chenopodium pallidicaule. Food Reviews International, 19, 179–189.

    Article  Google Scholar 

  • Rozema, J., & Flowers, T. (2008). Ecology. Crops salinized world. Science, 322, 1478–1480.

    Article  CAS  PubMed  Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115, 433–447.

    Google Scholar 

  • Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., & Bennett, J. (2002). Aproteomic approach to analyzing drought and salt responsiveness in rice. Field Crops Research, 76, 199–219.

    Article  Google Scholar 

  • Santi, G., D’Annibale, A., & Eshel, A. (2014). Bioethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass and Bioenergy, 61, 73–81.

    Article  CAS  Google Scholar 

  • Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala, S. N., & Mackay, A. S. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–187. https://doi.org/10.1016/B978-0-12-387692-8.00005-9.

    Article  CAS  Google Scholar 

  • Shabala, S., Hariadi, Y., & Jacobsen, S.-E. (2013). Genotypic difference in salinity tolerance in quinoa Chenopodium quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology, 170, 906–914.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Kulkarni, J., & Jha, B. (2016a). Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology, 7, 1–11.

    Article  CAS  Google Scholar 

  • Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016b). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: Hope or hype? Trends in Plant Science, 16, 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Von Sengbusch, P. (2003). Halophytes. Botanik Online (pp. 56–65). University of Hamburg.

    Google Scholar 

  • Waisel, Y. (1972). Biology of halophytes. eBook. ISBN 9780323151580. Imprint, Academic, Published Date, 1st January 1972. pp. 200–210.

    Google Scholar 

  • World Bank. (2007). World development report 2008, agriculture for development. Washington, DC: © World Bank.

    Book  Google Scholar 

  • Zerai, D. B., Glenn, E. P., Chatervedi, R., Lu, Z., Mamood, A. N., Nelson, S. G., & Ray, D. T. (2010). Potential for the improvement of Salicornia bigelovii through selective breeding. Ecological Engineering, 36, 730–739.

    Article  Google Scholar 

  • Zhao, K. F. (1991). Desalinization of saline soils by Suaeda salsa. Plant and Soil, 135, 303–305.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124, 941–948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukiye Tıpırdamaz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tıpırdamaz, R., Karakas, S., Dikilitas, M. (2021). Halophytes and the Future of Agriculture. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_91

Download citation

Publish with us

Policies and ethics