Skip to main content

Nanomaterials for Diesel Engine Applications

  • Chapter
  • First Online:
Nanomaterials for Environmental Application

Abstract

This chapter presents the most widely used methods for the synthesis of various nanomaterials potentially usable as fuel additives. This is followed by an outline of techniques used for the characterization of nanomaterials. Finally, the synthesis methods and corresponding characterization techniques for nanomaterials, being most frequently tested as fuel additives, are discussed briefly and presented in compact tabular form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelhamid HN, Zou X (2018) Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption. Green Chem 20(5):1074–1084

    Google Scholar 

  2. Abdollahifar M, Hidaryan M, Jafari P (2018) The role anions on the synthesis of AlOOH nanoparticles using simple solvothermal method. Bol Soc Esp Cerám Vidrio 57:66–72

    Google Scholar 

  3. Accardo G, Frattini D, Ham HC, Han JH, Yoon SP (2018) Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceram Int 44:3800–3809

    Google Scholar 

  4. Ali A, Zafar H, Zia M, Haq I, Phuli AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotech Sci Appl 9:49–67

    Google Scholar 

  5. Alizadeh M, Sharifianjazi F, Haghshebasjazi E, Aghakhani M, Rajabi L (2015) Production of nanosized boron oxide powder by high-energy ball milling. Synth React Inorg Met-Org Nano-Met Chem 45(1):11–14

    Google Scholar 

  6. Ando Y, Zhao X, Sugai T, Kumar M (2004) Growing carbon nanotubes. Mater Today 7(10):22–29

    Google Scholar 

  7. Annamalai M, Dhinesh B, Nanthagopal K, Sivaramakrishnan P, Lalvani JIJ, Parthsarathy M, Annamalai K (2016) An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Convers Manag 123:372–380

    Google Scholar 

  8. Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150

    Google Scholar 

  9. Ashour RM, Abdel-Khalek AA, Ali MM, Abdel-Magied AF (2016) Adsorption of La3+ and Gd3+ using magnetic iron oxide nanoparticles: mechanistic and kinetic study. Chem Technol 11(3):100–108

    Google Scholar 

  10. Asim N, Ahmadi S, Alghoul MA, Hammadi FY, Saeedfar K, Sopian K (2014) Research and development aspects on chemical preparation techniques of photoanodes for dye sensitized solar cells. Int J Photoenergy 518156:1–21

    Google Scholar 

  11. Awel S, Kirian RA, Wiedorn MO, Beyerlein KR, Roth N, Horke DA, Oberthür D, Knoska J, Mariani V, Morgan A, Adriano L, Tolstikova A, Xavier PL, Yefanov O, Aquila A, Barty A, Roy-Chowdhury S, Hunter MS, James D, Robinson JS, Weierstall U, Rode AV, Bajt S, Küppera J, Chapmana HN (2018) Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. J Appl Crystallogr 51(1):133–139

    Google Scholar 

  12. Basha JS, Anand RB (2014) Performance, emission and combustion characteristics of a diesel engine using carbon nanotubes blended Jatropha methyl ester emulsions. Alex Eng J 53:259–273

    Google Scholar 

  13. Basualto C, Gaete J, Molina L, Valenzuela F, Yañez C, Marco JF (2015) Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants. Sci Technol Adv Mater 16:1–9

    Google Scholar 

  14. Bellardita M, Paola AD, Megna B, Palmisano L (2018) Determination of the crystallinity of TiO2 photocatalysts. J Photochem Photobiol A 367:312–320

    Google Scholar 

  15. Bhagyaraj SM, Oluwafeni OS, Kalarikkal N, Thomas S (2018) Characterization of nanomaterials. Advances and key technologies. Elsevier, Duxford

    Google Scholar 

  16. Bhavani P, Rajababu CH, Arif MD, Reddy IVS, Reddy NR (2017) Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. J Magn Magn Mater 426:459–466

    Google Scholar 

  17. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319–9345

    Google Scholar 

  18. Chen Y, Luo W, Wang J, Huang J (2017) Enhanced thermal conductivity and durability of a paraffin wax nanocomposite based on carbon-coated aluminum nanoparticles. J Phys Chem C 121:12603–12609

    Google Scholar 

  19. Chen AF, Adzmi MA, Adam A, Othman MF, Kamaruzzaman MK, Mrwan AG (2018) Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Convers Manag 171:461–477

    Google Scholar 

  20. Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112

    Google Scholar 

  21. Darr JA, Zhang J, Makwana NM, Weng X (2017) Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev 117:11125–11238

    Google Scholar 

  22. Dhand C, Dwiwedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037

    Google Scholar 

  23. Dharuman S, Venkata SBS, Kandasamy SK (2018) Effects on diesel engine characteristics and emission of nanofluids blends with diesel. Int J Chem Tech Res 11(2):418–426

    Google Scholar 

  24. Dhinesh B, Annamalai M (2018) A study on performance, combustion and emission behaviour of diesel engine powered by novel nano nerium oleander biofuel. J Clean Prod 196:74–83

    Google Scholar 

  25. Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Morańska M, Setkiewicz M (2018) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1):1–16

    Google Scholar 

  26. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792

    Google Scholar 

  27. El-Seesy AI, Hassan H, Ookawara S (2018) Performance, combustion, and emission characteristics of a diesel engine fueled with Jatropha methyl ester and graphene oxide additives. Energy Convers Manag 166:674–686

    Google Scholar 

  28. Ettefaghi E, Ghobadian B, Rashidi A, Najafi G, Khoshtaghaza MH, Rashtchi M, Sadeghian S (2018) A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renew Energy 125:64–72

    Google Scholar 

  29. Fardood ST, Ramazani A, Moradi S (2017) A novel green synthesis of nickel oxide nanoparticles using arabic gum. Chem J Moldova Gen Ind Ecol Chem 12(1):115–118

    Google Scholar 

  30. Ghandoor HE, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745

    Google Scholar 

  31. Gnanam S, Rajendran V (2011) Synthesis of CeO2 or α-Mn2O3 nanoparticles via sol-gel process and their optical properties. J Sol-Gel Sci Technol 58:62–69

    Google Scholar 

  32. Guo Q, Huang D, Kou X, Cao W, Li L, Ge L, Li J (2017) Synthesis of disperse amorphous SiO2 nanoparticles via sol-gel process. Ceram Int 43:192–196

    Google Scholar 

  33. Gupta DK, Rajaura RS, Sharma K (2015) Synthesis and characterization of graphene oxide nanoparticles and their antibacterial activity. SGVU Int J Env Sci Technol 1(1):16–24

    Google Scholar 

  34. Hinman JJ, Suslik KS (2017) Nanostructured materials synthesis using ultrasound. Top Curr Chem 375:12

    Google Scholar 

  35. Hübschen G, Altpeter I, Tschuncky R, Herrmann HG (2016) Materials characterization using nondestructive evaluation (NDE) methods. Elsevier, Duxford

    Google Scholar 

  36. Jama M, Singh T, Gamaleldin SM, Koc M, Samara A, Isaifan RJ, Atieh MA (2016) Critical review on nanofluids: preparation, characterization, and applications. J Nanomater 6717624:1–22

    Google Scholar 

  37. Jeryrajkumar L, Anbarasu G, Elangovan T (2016) Effects on nano additives on performance and emission characteristics of Calophyllim inophyllum biodiesel. Int J Chem Tech Res 9(4):210–219

    Google Scholar 

  38. John S, Mathew J (2019) Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles. J Magn Magn Mater 475:160–170

    Google Scholar 

  39. Kartick B, Srivastava SK (2011) Simple facile route for the preparation of graphite oxide and graphene. J Nanosci Nanotechnol 11:8586–8592

    Google Scholar 

  40. Kartick B, Srivastava SK, Srivastava I (2013) Green synthesis of graphene. J Nanosci Nanotechnol 13:4320–4324

    Google Scholar 

  41. Karuppuraja M, Murugesan S (2018) Template free solvothermal synthesis of single crystal magnetic Fe3O4 hollow spheres, their interaction with bovine serum albumin and antibacterial activities. J Saudi Chem Soc 22:569–580

    Google Scholar 

  42. Kegl T (2018) New nanomaterials for the adsorption of rare earth elements from aqueous solutions. University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor

    Google Scholar 

  43. Kegl T, Košak A, Lobnik A, Ban I (2019) Terbium ion adsorption from aqueous solution by using magnetic γ-Fe2O3-NH4OH@SiO2 nanoparticles functionalized with amino groups. Materials 12(8):1294

    Google Scholar 

  44. Kegl T, Ban I, Lobnik A, Košak A (2019) Synthesis and characterization of novel γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles for dysprosium adsorption. J Hazard Mater 121632:1–29

    Google Scholar 

  45. Kegl T, Košak A, Lobnik A, Novak Z, Kovač Kralj A, Ban I (2020) Adsorption of rare earth metals from wastewater by nanomaterials: a review. J Hazard Mater 386:121632

    Google Scholar 

  46. Khorrami SA, Mahmoudzadeh G, Madani SS, Gharib F (2011) Effect of calcination temperature on the particle sizes of zinc ferrite prepared by a combination of sol-gel auto combustion and ultrasonic irradiation techniques. J Ceram Process Res 12(5):504–508

    Google Scholar 

  47. Koo KN, Ismail AF, Othman MHD, Rahman MA, Sheng TZ (2019) Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: a short review. Malays J Fundam Appl Sci 15(1):23–31

    Google Scholar 

  48. Kumar H, Manisha K (2018) Synthesis and characterization of silver-oxide nanoparticles by sol-gel method. Int J Adv Res Sci Eng 7(3):632–637

    Google Scholar 

  49. Lenin MA, Swaminathan MR, Kumaresan G (2013) Performance and emission characteristics of a DI diesel engine with a nanofuel additive. Fuel 109:362–365

    Google Scholar 

  50. León V, Quintana M, Herrero MA, Fierro JLG, Hoz A, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melanine. Chem Commun 47:10936–10938

    Google Scholar 

  51. Łuczak J, Paszkiewicz M, Krukowska A, Malankowska A, Zaleska-Medynska A (2016) Ionic liquids for nano- and microstructures preparation. Part 1: properties and multifunctional role. Adv Coll Interface Sci 230:13–28

    Google Scholar 

  52. Łuczak J, Paszkiewicz M, Krukowska A, Malankowska A, Zaleska-Medynska A (2016) Ionic liquids for nano- and microstructures preparation. Part 2: application in synthesis. Adv Coll Interface Sci 227:1–52

    Google Scholar 

  53. Mahmoud AED, Stolle A, Stelter M (2018) Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain Chem Eng 6:6358–6369

    Google Scholar 

  54. Mirzajanzadeh M, Tabatabaei M, Ardjmand M, Rashidi A, Ghobadian B, Barkhi M, Pazouki M (2015) A novel soluble nano-catalysts in diesel-biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel 139:374–382

    Google Scholar 

  55. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Google Scholar 

  56. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementary upon studying nanoparticle properties. Nanoscale 10:12871–12934

    Google Scholar 

  57. Muthusamy S, Nallathambi SS, Ramasamy RK, Mohamed ST (2018) Effects of nanoparticles blended biodiesel on single cylinder CI engine. Mater Today Proc 5:6831–6838

    Google Scholar 

  58. Nabi G, Aain Q, Khalid NR, Tahir MB, Rafique M, Rizwan M, Hussain S, Iqbal T, Majid A (2018) A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. J Inorg Organomet Polym Mater 28:1552–1564

    Google Scholar 

  59. Nadimpalli NKV, Banyopadhyaya R, Runkana V (2018) Thermodynamic analysis of hydrothermal synthesis of nanoparticles. Fluid Phase Equilibra 456:33–45

    Google Scholar 

  60. Najafi A, Golestani-Fard F, Rezaie HR (2018) Sol-gel synthesis and characterization of B4C nanopowder. Ceram Int 44:21386–21394

    Google Scholar 

  61. Nassar MY, Mohamed TY, Ahmed IS, Samir I (2017) MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq 225:730–740

    Google Scholar 

  62. Nayak S, Shet VB, Rao CV, Joshi K (2018) Performance evaluation and emission characteristics of a 4 stroke diesel engine using green synthesized silver nanoparticles blended biodiesel. Mater Today Proc 5:7889–7897

    Google Scholar 

  63. Nersisyan HH, Lee JH, Ding JR, Kim KS, Manukyan KV, Mukasyan AS (2017) Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: current trends and future perspectives. Prog Energy Combust Sci 63:79–118

    Google Scholar 

  64. Ojha PK, Karmakar S (2014) Boron for liquid fuel engines—a review on synthesis, dispersion stability in liquid fuel, and combustion aspects. Prog Aerosp Sci 100:18–45

    Google Scholar 

  65. Ooi JB, Ismail HM, Tan BT, Wang X (2018) Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine. Energy 161:70–80

    Google Scholar 

  66. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 417305:1–12

    Google Scholar 

  67. Paulchamy B, Arthi G, Lignesh BD (2015) A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol 6(1):1000253

    Google Scholar 

  68. Perumal V, Ilangkumaran M (2018) The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232:791–802

    Google Scholar 

  69. Phiwdang K, Suphankij S, Mekprasart W, Pechrapa W (2013) Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Proc 34:740–745

    Google Scholar 

  70. Praveen A, Rao GLN, Balakrishna B (2018) Performance and emission characteristics of a diesel engine using Calophyllum Inophyllum biodiesel blends with TiO2 nanoadditives and EGR. Egypt J Petrol 27(4):731–748

    Google Scholar 

  71. Qiu S, Zhao Z, Sun X (2017) Development of magnetic silica hybrid material with P507 for rare earth adsorption. J Chem Eng Data 62:469–476

    Google Scholar 

  72. Radhakrishnan S, Munuswamy DB, Devarajan Y, Arunkumar T, Mahalingam A (2018) Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources A Recov Util Environ Eff 40(20):2485–2493

    Google Scholar 

  73. Rafienia M, Bigham A, Hassanzadeh-Tabrizi SA (2018) Solvothermal synthesis of magnetic spinel ferrites. J Med Sig Sens 8:108–118

    Google Scholar 

  74. Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artifi Cells Nanomed Biotechnol 45(7):1272–1291

    Google Scholar 

  75. Raju VD, Kishore PS, Nanthagopal K, Ashok B (2018) An experimental study on the effect of nanoparticles with novel tamarind seed methyl ester for diesel engine applications. Energy Convers Manag 164:655–666

    Google Scholar 

  76. Ramachandran R, Jung D, Bernier NA, Logan JK, Waddington MA, Spokoyny AM (2018) Sonochemical synthesis of small boron oxide nanoparticles. Inorg Chem 57:8037–8041

    Google Scholar 

  77. Ramanan MV, Yuvarajan D (2016) Emission analysis on the influence of magnetite nanofluid on methyl ester in diesel engine. Atmosp Pollut Res 7:477–481

    Google Scholar 

  78. Ramasami AK, Ravishankar TN, Nagaraju G, Ramakrishnappa T, Teixeira SR, Balakrishna RG (2017) Gel-combustion-synthesized ZnO nanoparticles for visible light-assisted photocatalytic hydrogen generation. Bull Mater Sci 40(2):345–354

    Google Scholar 

  79. Rani S, Varma GD (2015) Superparamagnetism and metamagnetic transition in Fe3O4 nano-particles synthesized via co-precipitation method at different pH. Phys B 472:66–77

    Google Scholar 

  80. Ranjan A, Dawn SS, Jayaprabakar J, Nirmala N, Saikiran K, Sriram SS (2018) Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel 220:780–791

    Google Scholar 

  81. Rao MS, Anand RB (2016) Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and AlO(OH) nanoparticles. Appl Therm Eng 98:636–645

    Google Scholar 

  82. Runowski M (2014) Nanotechnogy—nanomaterials, nanoparticles and multifunctional core/shell type nanostructures. Chemik 9:771–779

    Google Scholar 

  83. Sari AM, Khazali A, Parhizgar SS (2018) Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution. Int Nano Lett 8:19–23

    Google Scholar 

  84. Sharma CK, Sharma M, Verma O, Sharma V (2015) Green synthesis of different nanoparticles and their potential applications in different fields—a critical review. Int J Pharm Bio Sci 6(3):555–567

    Google Scholar 

  85. Sharma R, Sharma AK, Sharma V (2015) Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng 2:1094017

    Google Scholar 

  86. Socrates G (2005) Infrared and Raman characteristic group frequencies. Tables and charts. Wiley, Chichester

    Google Scholar 

  87. Somu C, Karthi A, Singh S, Karthikeyan R, Dinesh S, Ganesh N (2017) Synthesis of various forms of carbon nanotubes by arc discharge methods—comprehensive review. Int Res J Eng Technol 4(1):344–354

    Google Scholar 

  88. Souri M, Hoseinpour V, Shakeri A, Ghaemi N (2018) Optimisation of green synthesis of MnO nanoparticles via utilizing response surface methodology. IET Nanobiotechnol 12(6):822–827

    Google Scholar 

  89. Srinidhi C, Madhusudhan A (2017) A diesel engine performance investigation fuelled with nickel oxide nano fuel-methyl ester. Int J Renew Energy Res 7(2):676–681

    Google Scholar 

  90. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Sydney

    Google Scholar 

  91. Sundaram D, Yang V, Yetter RA (2017) Metal-based nanoenergetic materials: Synthesis, properties, and applications. Prog Energy Combust Sci 61:293–365

    Google Scholar 

  92. Sur UK, Ankamwar B, Karmakar S, Halder A, Das P (2018) Green synthesis of silver nanoparticles using plant extract of Shikakai and Reetha. Mater Today Proc 5:2321–2329

    Google Scholar 

  93. Suresh S, Pradheesh G, Ramani VA (2018) Biosynthesis and characterization of CuO, MgO and Ag2O nanoparticles, anti-inflammatory activity and phytochemical screening of the ethanolic extract of the medicinal plant Pavetta indica Linn. J Pharm Phytochem 7(4):1984–1990

    Google Scholar 

  94. Vairamuthu G, Sundarapandian S, Kailasasanathan C, Thangagiri B (2016) Experimental investigation on the effects of cerium oxide nanoparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry. J Energy Inst 89:668–682

    Google Scholar 

  95. Venu H, Madhavan V (2016) Effect of Al2O3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: performance, combustion and emission characteristics. Fuel 186:176–189

    Google Scholar 

  96. Vinukumar K, Azhagurajan A, Vettivel SC, Vedaraman N, Lenin AH (2018) Biodiesel with nano additives from coconut shell for decreasing emissions in diesel engines. Fuel 222:180–184

    Google Scholar 

  97. Vinukumar K, Azhagurajan A, Vettivel SC, Vedaraman N, Lenin AH (2018) Rice husk as nanoadditive in diesel-biodiesel fuel blends used in diesel engine. J Therm Anal Calorim 131:1333–1343

    Google Scholar 

  98. Wang J, Li L, He Y, Song H, Chen X, Guo J (2018) The effect of thermo-oxidative ageing on crystallization, dynamic and static mechanical properties of long glass fibre-reinforced polyamide 10T composites. R Soc Open Sci 5:172029

    Google Scholar 

  99. Wani I, Khatoon S, Ganguly A, Ahmed J, Ganguli AK, Ahmad T (2010) Silver nanoparticles: Large scale solvothermal synthesis and optical properties. Mater Res Bull 45:1033–1038

    Google Scholar 

  100. Wu Q, Xie X, Wang Y, Roskilly T (2018) Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine. Appl Energy 221:597–604

    Google Scholar 

  101. Xu R, Pang W, Huo Q (2011) Modern inorganic synthetic chemistry. Elsevier, Amsterdam

    Google Scholar 

  102. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Google Scholar 

  103. Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2(3):22–48

    Google Scholar 

  104. Yarestani M, Khalaji AD, Rohani A, Das D (2014) Hydrothermal synthesis of cobalt oxide nanoparticles: Its optical and magnetic properties. J Sci Islamic Repub Iran 25(4):339–343

    Google Scholar 

  105. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Proc Eng 184:469–477

    Google Scholar 

  106. Zhang H, Wu Q, Lin J, Chen J, Xu Z (2010) Thermal conductivity of polyethylene glycol nanofluids containing carbon coated metal nanoparticles. J Appl Phys 108(12):124304

    Google Scholar 

  107. Zimur SD, Kamble PD, Gaikwad PV, Mali AV (2018) Effect of Sn substitution on structural, electrical and magnetic properties of copper ferrites synthesized by sol-gel auto combustion method. Int J Res Anal Rev 5(4):139–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breda Kegl .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kegl, T., Kovač Kralj, A., Kegl, M., Kegl, B. (2020). Nanomaterials for Diesel Engine Applications. In: Nanomaterials for Environmental Application. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-54708-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54708-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54707-3

  • Online ISBN: 978-3-030-54708-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics