Skip to main content

Pectin Degrading Enzymes

  • Chapter
  • First Online:
Pectin: Technological and Physiological Properties

Abstract

The properties of pectinolytic enzymes have drawn a great attention from many research teams as potential biological catalysts in diverse industrial processes for plant transformation. Pectin-related enzymes are ubiquitous, produced by plants, fungi and bacteria. Due to the highly complex structure described in Chap. 2, pectin is the substrate for many modifying and degrading enzymes belonging to three families of Carbohydrate Active enZymes (CAZy): glycoside hydrolases, polysaccharide lyases and carbohydrate esterases. They are distinguished by their different mechanisms (hydrolysis or β-elimination), action patterns (endo/exo) and specificities (homogalacturonan, rhamnogalacturonan, neutral side-chains, oligogalacturonates). In the 90s, literature dealt with their biochemical characterisation while more recently, progress in protein biotechnologies allowed investigating the production of recombinant and mutated enzymes to study the role of key amino acids. This chapter reviews the state of knowledge of pectin-processing enzymes to illustrate their structural and functional diversities. Their physico-chemical and biological properties are presented, as well as the occurrence of inhibiting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DW, Boraston AB (2007) The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J Mol Biol 368:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y (2011) A new family of Carbohydrate Esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 286:41993–42001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andres-Robin A, Reymond MC, Dupire A, Battu V et al (2018) Evidence for the regulation of Gynoecium morphogenesis by ETTIN via cell wall dynamics. Plant Physiol 178:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnal G, Bastien G, Monties N et al (2015) Investigating the function of an arabinan utilization locus isolated from a termite gut community. Appl Environ Microbiol 81:31–39

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RG, Sutherland PW, Johnston SL et al (2012) Down-regulation of POLYGALACTURONASE 1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol 12:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azadi P, O’Neill MA, Bergmann C, Darvill AG, Albersheim P (1995) The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase. Glycobiology 5:783–789

    Article  CAS  PubMed  Google Scholar 

  • Beldman G, Schols HA, Pitson SM, Searle-van Leeuwen MJF, Voragen AGJ (1997) Arabinans and arabinan degrading enzymes. Adv Macromol Carbohydr Res 1:1–64

    Article  CAS  Google Scholar 

  • Benoit I, Danchin EGJ, Bleichrodt R-J, de Vries RP (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396

    Article  CAS  PubMed  Google Scholar 

  • Beylot M-H, McKie V, Voragen AGJ, Doeswijk-Voragen CHL, Gilbert HJ (2001) The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem J 358:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böger M, Hekelaar J, van Leeuwen SS, Dijkhuizen L, Lammerts van Bueren A (2019) Structural and functional characterization of a family GH53 β-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. J Struct Biol 205:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bonivento D, Pontiggia D, Di Matteo A et al (2008) Crystal structure of the endopolygalacturonase from the phytopathogenic fungus Colletotrichum lupini and its interaction with polygalacturonase-inhibiting proteins. Proteins 70:294–299

    Article  CAS  PubMed  Google Scholar 

  • Bonnin E, Thibault J-F (1996) Galactooligosaccharide production by transfer reaction of an exogalactanase. Enzym Microb Technol 19:99–106

    Article  CAS  Google Scholar 

  • Bonnin E, Le Goff A, van Alebeek GJWM, Voragen AGJ, Thibault J-F (2003) Mode of action of Fusarium moniliforme endopolygalacturonase towards acetylated pectin. Carbohydr Polym 52:381–388

    Article  CAS  Google Scholar 

  • Bonnin E, Clavurier K, Daniel S, Kauppinen S, Mikkelsen JD, Thibault J-F (2008) Pectin acetylesterases from Aspergillus are able to deacetylate homogalacturonan as well as rhamnogalacturonan. Carbohydr Polym 74:411–418

    Article  CAS  Google Scholar 

  • Bordenave M (1996) Analysis of pectin methyl esterases. Plant Cell Wall Anal 17:165–180

    Article  CAS  Google Scholar 

  • Brummell DA, Cin VD, Crisosto C, Labavitch J (2004) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55:2029–2039

    Article  CAS  PubMed  Google Scholar 

  • Cao J (2012) The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS ONE 7:e46944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen JL, Lin TY (1997) Purification and characterization of a xylanase from Trichoderma longibrachiatum for xylooligosaccharide production. Enzym Microb Technol 21:91–96

    Article  CAS  Google Scholar 

  • Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC (2017) Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS ONE 12:e0172545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chotigeat W, Duangchu S, Wititsuwannakun R, Phongdara A (2009) Cloning and characterization of pectate lyase from Hevea brasiliensis. Plant Physiol Biochem 47:243–247

    Article  CAS  PubMed  Google Scholar 

  • Chourasia A, Sane VA, Nath P (2006) Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari). Physiol Plant 128:546–555

    Article  CAS  Google Scholar 

  • Crepin VF, Faulds CB, Connerton I (2004) Functional classification of the microbial feruloylesterases. Appl Microbiol Biotechnol 63:647–652

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Maruyama Y, Mikami B, Hashimoto W, Murata K (2007) Crystal structure of glycoside hydrolase family 78 α-L-rhamnosidase from Bacillus sp GL1. J Mol Biol 374:384–398

    Article  CAS  PubMed  Google Scholar 

  • De Freitas ST, Handa AK, Wu Q, Park S, Mitcham EJ (2012) Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J 71:824–835

    Article  PubMed  CAS  Google Scholar 

  • De Souza AJ, Pauly M (2015) Comparative genomics of pectin acetylesterases: insight on function and biology. Plant Signal Behav 10:e1055434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vries RP, Parenicova L, Hinz SWA, Kester H, Beldman G, Benen JAE, Visser J (2002) The β-1,4-endogalactanase A gene from Aspergillus niger is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions. Eur J Biochem 269:4985–4993

    Article  PubMed  CAS  Google Scholar 

  • Denès J-M, Baron A, Renard CMGC, Péan C, Drilleau J-F (2000) Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydr Res 327:385–393

    Article  PubMed  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:1–12

    Article  CAS  Google Scholar 

  • Despres J, Forano E, Lepercq P et al (2016) Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics 17:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Matteo A, Giovane A, Raiola A et al (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV et al (2016) Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnol Biofuels 9:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit S, Upadhyay S, Singh H, Pandey B, Chandrashekar K, Verma P (2013) Pectin Methylesterase of Datura species, purification, and characterization from Datura stramonium and its application. Plant Signal Behav 8:e25681

    Article  PubMed Central  CAS  Google Scholar 

  • Domingo C, Roberts K, Stacey NJ, Connerton I, Ruíz-Teran F, McCann MC (1998) A pectate lyase from Zinnia elegans is auxin inducible. Plant J 13:17–28

    Article  CAS  PubMed  Google Scholar 

  • Dorokhov YL, Komarova TV, Petrunia I (2012) Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathol 8:e1002640

    Article  CAS  Google Scholar 

  • Expert D, Patrit O, Shevchik VE, Perino C, Boucher V, Creze C, Wenes E, Fagard M (2018) Dickeya dadantii pectic enzymes necessary for virulence are also responsible for activation of the Arabidopsis thaliana innate immune system. Mol Plant Pathol 19:313–327

    Article  CAS  PubMed  Google Scholar 

  • Federici L, Caprari C, Mattei B et al (2001) Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci U S A 98:13425–13430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  PubMed  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel C, Peters JS, Tieman DM, Tiznado ME, Handa AK (1998) Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J Biol Chem 273:4293–4295

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Steele-King CG, Jones L, Foster JM, Vuttipongchaikij S, McQueen-Mason SJ (2009) Arabinan metabolism during seed development and germination in Arabidopsis. Mol Plant 2:966–976

    Article  CAS  PubMed  Google Scholar 

  • Gou J, Miller LM, Hou G, Yu X, Chen X, Liu C (2012) Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guénin S, Mareck A, Rayon C et al (2011) Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana. New Phytol 192:114–126

    Article  PubMed  CAS  Google Scholar 

  • Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak F (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci U S A 97:8762–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewezi T, Howe P, Maier TR, Hussey RS et al (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocq L, Pelloux J, Lefebvre V (2017a) Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci 22:20–29

    Article  CAS  PubMed  Google Scholar 

  • Hocq L, Sénéchal F, Lefebvre V, Lehner A, Domon JM et al (2017b) Combined experimental and computational approaches reveal distinct pH dependence of pectin methylesterase inhibitors. Plant Physiol 173:1075–1109

    Article  CAS  PubMed  Google Scholar 

  • Hongo S, Sato K, Yokoyama R, Nishitani K (2012) Demethylesterification of the primary wall by pectin methylesterase 35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Kawakami T, Ikemoto T et al (2015) Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins. Appl Microbiol Biotechnol 99:8515–8525

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JA, Mayans O, Smith D, Worboys K, Pickersgill R (2001) Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol 305:951–960

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Yang SL, Xie LF, San Puah CH, Zhang XQ et al (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovic O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514:243–249

    Article  CAS  PubMed  Google Scholar 

  • Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Kaji A, Shimokawa K (1984) New exo-type arabinase from Erwinia carotovora IAM 1024. Agric Biol Chem 48:67–72

    CAS  Google Scholar 

  • Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D’Ovidio R (2015) An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Front Plant Sci 6:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauppinen S, Christgau S, Kofod LV, Halkier T, Dörreich K, Dalbøge H (1995) Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. J Biol Chem 270:27172–27178

    Article  CAS  PubMed  Google Scholar 

  • Kent LM, Loo TS, Melton LD, Mercadante D, Williams MA et al (2016) Structure and properties of a non-processive, salt-requiring, and acidophilic pectin methylesterase from Aspergillus niger provide insights into the key determinants of processivity control. J Biol Chem 291:1289–1306

    Article  CAS  PubMed  Google Scholar 

  • Kirsh R, Heckel DG, Pauchet Y (2016) How the rice we evil breaks down the pectin network: enzymatic synergism and sub-functionalization. Insect Biochem Mol Biol 71:72–82

    Article  CAS  Google Scholar 

  • Kofod LV, Kauppinen S, Christgau S, Andersen LN, Heldt-Hansen H-P, Dörreich K, Dalbøge H (1994) Cloning and characterization of two structurally and functionally divergent rhamnogalacturonases from Aspergillus aculeatus. J Biol Chem 269:29182–29189

    CAS  PubMed  Google Scholar 

  • Kotake T, Hirata N, Degi Y et al (2011) Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J Biol Chem 286:27848–27854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunishige Y, Iwai M, Nakazawa M, Ueda M, Tada T, Nishimura S, Sakamoto T (2018) Crystal structure of exo-rhamnogalacturonan lyase from Penicillium chrysogenum as a member of polysaccharide lyase family 26. FEBS Lett 592:1378–1388

    Article  CAS  PubMed  Google Scholar 

  • L’Enfant M, Domon JM, Rayon C, Desnos T, Ralet MC, Bonnin E, Pelloux J, Pau-Roblot C (2015) Substrate specificity of plant and fungi pectin methylesterases: identification of novel inhibitors of PMEs. Int J Biol Macromol 81:681–691

    Article  PubMed  CAS  Google Scholar 

  • L’Enfant M, Kutudila P, Rayon C, Domon JM, Shin WH, Kihara D, Wadouachi A, Pelloux J, Pourceau G, Pau-Roblot C (2019) Lactose derivatives as potential inhibitors of pectin methylesterases. Int J Biol Macromol 132:1140–1146

    Article  PubMed  CAS  Google Scholar 

  • Leroux C, Bouton S, Kiefer-Meyer MC, Fabrice TN et al (2015) Pectin methylesterase48 is involved in Arabidopsis pollen grain germination. Plant Physiol 167:367–380

    Article  CAS  PubMed  Google Scholar 

  • Lewis KC, Selzer T, Shahar C, Udi Y, Tworowski D, Sagi I (2008) Inhibition of pectin methyl esterase activity by green tea catechins. Phytochemistry 69:2586–2592

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M et al (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luis AS, Briggs J, Zhang X et al (2018) Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol 3:210–219

    Article  CAS  PubMed  Google Scholar 

  • Mardones W, Callegari E, Eyzaguirre J (2015) Heterologous expression of a Penicillium purpurogenum exo-arabinanase in Pichia pastoris and its biochemical characterization. Fungal Biol 119:1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Zandleven JS, Benen JAE et al (2006) A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 400:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Yamada H, Kunishige Y, Takenaka S, Nakazawa M, Ueda M, Sakamoto T (2017) Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene. Enzym Microb Technol 98:76–85

    Article  CAS  Google Scholar 

  • Mayans O, Scott M, Connerton I, Gravesen T, Benen J et al (1997) Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5:677–689

    Article  CAS  PubMed  Google Scholar 

  • McCarthy TW, Der JP, Honaas LA, de Pamphilis CW, Anderson CT (2014) Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC Plant Biol 14:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Mølgaard A, Kauppinen S, Larsen S (2000) Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373–383

    Article  PubMed  Google Scholar 

  • Müller K, Levesque-Tremblay G, Bartels S, Weitbrecht K et al (2013) Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiol 161:305–316

    Article  PubMed  CAS  Google Scholar 

  • Mutter M, Beldman G, Schols HA, Voragen AGJ (1994) Rhamnogalacturonan a-L-rhamnopyranohydrolase: a novel enzyme specific for the terminal non reducing rhamnosyl unit in rhamnogalacturonan region of pectins. Plant Physiol 106:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutter M, Colquhoun IJ, Schols HA, Beldman G, Voragen AGJ (1996) Rhamnogalacturonase B from Aspergillus aculeatus is a rhamnogalacturonan α -L-rhamnosyl-(1,4)-α-D-galactopyranosyluronide lyase. Plant Physiol 110:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutter M, Renard CMGC, Beldman G, Schols HA, Voragen AGJ (1998a) Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 311:155–164

    Article  CAS  PubMed  Google Scholar 

  • Mutter M, Beldman G, Pitson SM, Schols HA, Voragen AGJ (1998b) Rhamnogalacturonan α-D-galactopyranosyluronohydrolase, an enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol 117:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y (2014) The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Mol Plant Microbe Interact 27:781–792

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Kitahata H, Watanabe Y, Fujimoto H, Ajisaka K, Takenishi S (1991) Transfer reaction catalysed by exo-β-1,4-galactanase from Bacillus subtilis. Agric Biol Chem 55:2075–2082

    CAS  PubMed  Google Scholar 

  • Naran R, Pierce ML, Mort AJ (2007) Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. Plant J 50:95–107

    Article  CAS  PubMed  Google Scholar 

  • Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O’Neill MA, Urbanowicz B, York WS, Davies GJ, Abbott DW, Ralet M-C, Martens EC, Henrissat B, Gilbert HJ (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544:65–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normand J, Ralet M-C, Thibault J-F, Rogniaux H, Delavault P, Bonnin E (2010) Purification, characterization and mode of action of a rhamnogalacturonan-hydrolase from Irpex lacteus, tolerant to an acetylated substrate. Appl Microbiol Biotechnol 86:577–588

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Jiménez V-A, Berumen-Valera G, Fernandez-Valle R, Tiznado M-E (2018) Rhamnogalacturonan lyase: a pectin modification enzyme of higher plants. Emirate J Food Agric 30:910–917

    Google Scholar 

  • Ogawa M, Kay P, Wilson S, Swain SM (2009) Arabidopsis dehiscence zone polygalacturonase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh C, Ryu BH, An DR, Nguyen DD, Yoo W, Kim T et al (2016) Structural and biochemical characterization of an octameric carbohydrate acetylesterase from Sinorhizobium meliloti. FEBS Lett 2016(590):1242–1252

    Article  CAS  Google Scholar 

  • Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, Ferrarese-Filho O, Faulds CB, dos Santos WD (2019) Feruloyl esterases: biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresour Technol 278:408–423

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Degan FD, Jørgensen B, Scheller HV, Ray PM, Ulvskov P (2012) Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties. Planta 236:185–196

    Article  CAS  PubMed  Google Scholar 

  • Pages S, Valette O, Abdou L, Belaich A, Belaich J-P (2003) A rhamnogalacturonan lyase on the Clostridium cellulolyticum cellulosome. J Bacteriol 185:4727–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E et al (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Pelletier S, Van Orden J, Wolf S et al (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–739

    Article  CAS  PubMed  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Tr Plant Sci 12:267–277

    Article  CAS  Google Scholar 

  • Petersen TN, Christgau S, Kofod LV, Kauppinen MS, Dalbøge H, Johnson AH (1997) Crystallization and preliminary X-ray studies of rhamnogalacturonase A from Aspergillus aculeatus. Acta Crystallogr D 53:105–107

    Article  CAS  PubMed  Google Scholar 

  • Philippe F, Pelloux J, Rayon C (2017) Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics 18:456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pickersgill R, Jenkins J, Harris G, Nasser W, Robert-Baudouy J (1994) The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Biol 1:717–723

    Article  CAS  PubMed  Google Scholar 

  • Posé S, Kirby AR, Paniagua C, Waldron KW, Morris VJ, Quesada MA, Mercado JA (2013) The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Carbohydr Polym 132:134–145

    Article  CAS  Google Scholar 

  • Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz E et al (2011) Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant Microbe Interact 24:432–440

    Article  CAS  PubMed  Google Scholar 

  • Ralet M-C, Cabrera J-C, Bonnin E, Quemener B, Hellin P, Thibault J-F (2005) Mapping sugar beet pectin acetylation pattern. Phytochemistry 66:1832–1843

    Article  CAS  PubMed  Google Scholar 

  • Ravanal MC, Eyzaguirre J (2015) Heterologous expression and characterization of α-L-arabinofuranosidase 4 from Penicillium purpurogenum and comparison with the other isoenzymes produced by the fungus. Fungal Biol 119:641–647

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Osborne E, Poindexter P, Somerville C (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133:1170–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross HA, Wright KM, McDougall GJ, Roberts AG et al (2011) Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture. J Exp Bot 62:371–381

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ, Puri VM, Anderson CT (2017) Polygalacturonase involved in expansion3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. Plant Cell 29:2413–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Ishimaru M (2013) Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Appl Microbiol Biotechnol 97:5201–5213

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Thibault J-F (2001) Exo-arabinanase of Penicillium chrysogenum able to release arabinobiose from α-1,5-L-arabinan. Appl Environ Microbiol 67:3319–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto M, Shirane Y, Naribayashi I, Kimura K, Morishita N, Sakamoto T, Sakai T (1994) Purification and characterization of a rhamnogalacturonase with protopectinase activity from Trametes sanguinea. Eur J Biochem 226:285–291

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Bonnin E, Thibault J-F (2002) Purification and characterisation of two exo-polygalacturonases from Aspergillus niger able to degrade xylogalacturonan and acetylated homogalacturonan. Biochim Biophys Acta 1572:10–18

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H, Kasai N (2011a) Identification of a GH62 α-L-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl Microbiol Biotechnol 90:137–146

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Tanaka H, Nishimura Y, Ishimaru M, Kasai N (2011b) Characterization of an exo-β-1,3-D-galactanase from Sphingomonas sp. 24T and its application to structural analysis of larch wood arabinogalactan. Appl Microbiol Biotechnol 90:1701–1710

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Inui M, Yasui K, Hosokawa S, Idhara H (2013a) Substrate specificity and gene expression of two Penicillium chrysogenum α-L-arabinofuranosidases (AFQ1 and AFS1) belonging to glycoside hydrolase families 51 and 54. Appl Microbiol Biotechnol 97:1121–1130

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Nishimura Y, Makino Y, Sunagawa Y, Harada N (2013b) Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum. Appl Microbiol Biotechnol 97:2895–2906

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Doménech N, Jiménez-Bemúdez S, Matas AJ, Rose JK, Muñoz-Blanco J, Mercado JA, Quesada MA (2008) Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. J Exp Bot 59:2769–2779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schols HA, Geraeds CCJM, Searle-van Leeuwen MJF, Kormelink FJM, Voragen AGJ (1990) Rhamnogalacturonase : a novel enzyme that degrades the hairy regions of pectins. Carbohydr Res 206:105–115

    Article  CAS  Google Scholar 

  • Searle-van Leeuwen MJF, van der Broek LAM, Schols HA, Beldman G, Voragen AGJ (1992) Rhamnogalacturonan acetylesterase: a novel enzyme from Aspergillus aculeatus, specific for the deacetylation of hairy regions of pectins. Appl Microbiol Biotechnol 38:347–349

    Article  CAS  Google Scholar 

  • Searle-van Leeuwen MJF, Vincken J-P, Schipper D, Voragen AGJ, Beldman G (1996) Acetyl esterases of Aspergillus niger: purification and mode of action on pectins. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier, Amsterdam, pp 793–798

    Chapter  Google Scholar 

  • Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sénéchal F, L’Enfant M, Domon JM, Rosiau E, Crépeau MJ et al (2015) Tuning of pectin methylesterification: Pectin methylesterase inhibitor 7 modulates the processive activity of co-expressed pectin methylesterase 3 in a pH-dependent manner. J Biol Chem 290:23320–22335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sénéchal F, Habrylo O, Hocq L, Domon JM, Marcelo P, Lefebvre V, Pelloux J, Mercadante D (2017) Structural and dynamical characterization of the pH-dependence of the pectin methylesterase-pectin methylesterase inhibitor complex. J Biol Chem 292:21538–21547

    Article  PubMed  PubMed Central  Google Scholar 

  • Shevchik VE, Hugouvieux-Cotte-Pattat N (2003) PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937. J Bacteriol 185:3091–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H (2002) Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemist 41:6651–6659

    Article  CAS  Google Scholar 

  • Shinozaki A, Hosokawa S, Nakazawa M, Ueda M, Sakamoto T (2015) Identification and characterization of three Penicillium chrysogenum α-L-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzym Microb Technol 73-74:65–71

    Article  CAS  Google Scholar 

  • Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lesniewska J et al (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranne M, Sakuragi Y (2016) Arabinan: biosynthesis and a role in host-pathogen interactions. In: Collinge DB (ed) Plant pathogen resistance biotechnology. Wiley, Hoboken, pp 91–103

    Chapter  Google Scholar 

  • Stratilova E, Markovic O, Dzurova M, Malovikava A, Capek P, Omelkova J (1998) The pectolytic enzymes of carrots. Biologia 53:731–738

    CAS  Google Scholar 

  • Sun L, Van Nocker S (2010) Analysis of promoter activity of members of the pectate lyase-like (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 10:1–13

    Article  CAS  Google Scholar 

  • Suykerbuyk MEG, Kester HCM, Schaap PJ, Stam H, Musters W, Visser J (1997) Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger. Appl Environ Microbiol 63:2507–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabachnikov O, Shoham Y (2013) Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J 280:950–964

    CAS  PubMed  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768

    Article  CAS  Google Scholar 

  • Turbant A, Fournet F, Lequart M, Zabijak L, Pageau K, Bouton S, Van Wuytswinkel O (2016) PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification. J Exp Bot 67:2177–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udatha DBRKG, Kouskoumvekaki I, Olsson L, Panagiotou G (2011) The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol Adv 29:94–110

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk C, Boeriu C, Stolle-Smits T, Tijskens LMM (2006) The firmness of stored tomatoes (cv. Tradiro). 2. Kinetic and near infrared models to describe pectin degrading enzymes and firmness loss. J Food Eng 77:585–593

    Article  CAS  Google Scholar 

  • Vilches F, Ravanal MC, Bravo-Moraga F, Gonzalez-Nilo D, Eyzaguirre J (2018) Penicillium purpurogenum produces a novel endo-1,5-arabinanase, active on debranched arabinan, short arabinooligosaccharides and on the artificial substrate p-nitrophenyl arabinofuranoside. Carbohydr Res 455:106–113

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Raab T, Schiff C, Somerville S (2002) PMR6, a pectate lyase–like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voxeur A, Habrylo O, Guénin S, Miart F, Soulié M-C, Rihouey C, Pau-Roblot C, Domon J-M, Gutierrez L, Pelloux J, Mouille G, Fagard M, Höfte H, Vernhettes S (2019) Oligogalacturonide production upon Arabidopsis thaliana–Botrytis cinerea interaction. Proc Natl Acad Sci U S A 116(39):19743–19752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakasa Y, Kudo H, Ishikawa R, Akada S, Senda M, Niizeki M, Harada T (2006) Low expression of an ENDOPOLYGALACTURONASE gene in apple fruit with long-term storage potential. Postharvest Biol Technol 39:193–198

    Article  CAS  Google Scholar 

  • Wang D, Yeats TH, Uluisik S, Rose JKC, Seymour GB (2018) Fruit softening: revisiting the role of pectin. Trends Plant Sci 23:302–310

    Article  CAS  PubMed  Google Scholar 

  • Wefers D, Dong J, Abdel-Hamid A, Paul HM, Pereira GV, Han Y, Dodd D, Baskaran R, Mayer B, Mackie RI, Cann IKO (2017) Enzymatic mechanism for arabinan degradation and transport in the thermophilic bacterium Caldanaerobius polysaccharolyticus. Appl Environ Microbiol 83:e00794–e00717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen B, Ström A, Tasker A, West G, Tucker GA (2013) Effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism. Plant Biol 15:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Williamson G (1991) Purification and characterization of pectin acetylesterase from orange peel. Phytochemistry 30:445–449

    Article  CAS  Google Scholar 

  • Wolf S, Rausch T, Greiner S (2009) The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus. Plant J 58:361–375

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Mravec J, Greiner S, Mouille G, Höfte H (2012) Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 22:1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Somerville C, Anderson CT (2014) Polygalacturonase involved in expansion1 functions in cell elongation and flower development in Arabidopsis. Plant Cell 26:1018–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT (2017) Activation tagging of Arabidopsis polygalacturonase involved in expansion2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant J 89:1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang L, Guo M, Sun J, Matsukawa S, Xie J, Wei D (2015) Novel α-L-Arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer. J Agric Food Chem 63:3725–3733

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Huang W, Xiong F, Xian Z, Su D, Ren M, Li Z (2017) Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol J 12:1544–1555

    Article  CAS  Google Scholar 

  • Yang Y, Yu Y, Liang Y, Anderson CT, Cao J (2018) A profusion of molecular scissors for pectins: classification, expression, and functions of plant polygalacturonases. Front Plant Sci 9:1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimi Y, Yaguchi K, Kaneko S, Tsumuraya Y, Kotake T (2017) Properties of two fungal endo-β-1,3-galactanases and their synergistic action with an exo-β-1,3-galactanase in degrading arabinogalactan-proteins. Carbohydr Res 453-454:26–35

    Article  CAS  PubMed  Google Scholar 

  • Zandleven JS, Beldman G, Bosveld M, Benen JAE, Voragen AGJ (2005) Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides. Biochem J 387:719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandleven JS, Beldman G, Bosveld M, Schols HA, Voragen AGJ (2006) Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase. Carbohydr Polym 65:495–503

    Article  CAS  Google Scholar 

  • Zhang L, Wang P, Chen F, Lai S, Yu H, Yang H (2019) Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage. Food Chem 289:40–48

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Bonnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonnin, E., Pelloux, J. (2020). Pectin Degrading Enzymes. In: Kontogiorgos, V. (eds) Pectin: Technological and Physiological Properties. Springer, Cham. https://doi.org/10.1007/978-3-030-53421-9_3

Download citation

Publish with us

Policies and ethics