Skip to main content

Allelopathy: The Chemical Language of Plants

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 112

Abstract

In Nature, the oldest method of communication between living systems is the chemical language. Plants, due to their lack of mobility, have developed the most sophisticated way of chemical communication. Despite that many examples involve this chemical communication process—allelopathy, there is still a lack of information about specific allelochemicals released into the environment, their purpose, as well as in-depth studies on the chemistry underground. These findings are critical to gain a better understanding of the role of these compounds and open up a wide range of possibilities and applications, especially in agriculture and phytomedicine. The most relevant aspects regarding the chemical language of plants, namely kind of allelochemicals, have been investigated, as well as their releasing mechanisms and their purpose will be described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macías FA, Molinillo JMG, Galindo JCG, Varela RM, Simonet AM, Castellano D (2001) The use of allelopathic studies in the search for natural herbicides. J Crop Prod 4:237

    Article  Google Scholar 

  2. Macias FA, Galindo JLG, Galindo JCG (2007) Evolution and current status of ecological phytochemistry. Phytochemistry 68:2917

    Article  CAS  Google Scholar 

  3. Aslam F, Khaliq A, Matloob A, Tanveer A, Hussain S, Zahir ZA (2017) Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology 27:1

    Article  CAS  Google Scholar 

  4. Kumari S, Chander S, Ram K, Sajana S (2017) Allelopathy and its effect on fruit crop—a review. Int J Curr Microbiol Appl Sci 6:952

    Article  CAS  Google Scholar 

  5. Amb MK, Ahluwalia AS (2016) Allelopathy: potential role to achieve new milestones in rice cultivation. Rice Sci 23:165

    Article  Google Scholar 

  6. Chinchilla N, Durán AG, Carrera C, Ayuso J, Macías FA (2014) Operation allelopathy: an experiment investigating an alternative to synthetic agrochemicals. J Chem Educ 91:570

    Article  CAS  Google Scholar 

  7. Oliveros-Bastidas ADJ, Macías FA, Fernández CC, Marín D, Molinillo JMG (2009) Root exudates and their relevance to the allelopatic interactions. Quim Nova 32:198

    Article  CAS  Google Scholar 

  8. Macias FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy — a natural alternative for weed control. Pest Manag Sci 63:327

    Article  CAS  PubMed  Google Scholar 

  9. Candido LP, Varela RM, Torres A, Molinillo JMG, Gualtieri SCJ, Macías FA (2016) Evaluation of the allelopathic potential of leaf, stem, and root extracts of Ocotea pulchella Nees et Mart. Chem Biodivers 13:1058

    Article  CAS  PubMed  Google Scholar 

  10. Iqbal A, Shah F, Hamayun M, Khan ZH, Islam B, Rehmate G, Khan ZU, Shah S, Hussain A, Jamals Y (2019) Plants are the possible source of allelochemicals that can be useful in promoting sustainable agriculture. Fresenius Environ Bull 28:1052

    CAS  Google Scholar 

  11. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67

    Article  CAS  Google Scholar 

  12. Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561

    Article  Google Scholar 

  13. Norton AP, Blair AC, Hardin JG, Nissen SJ, Brunk GR (2008) Herbivory and novel weapons: no evidence for enhanced competitive ability or allelopathy induction of Centaurea diffusa by biological controls. Biol Invasions 10:79

    Article  Google Scholar 

  14. Quintana N, El Kassis EG, Stermitz FR, Vivanco JM (2009) Phytotoxic compounds from roots of Centaurea diffusa Lam. Plant Signal Behav 4:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM (2004) Biogeographical variation in community response to root allelochemistry: Novel weapons and exotic invasion. Ecol Lett 7:285

    Article  Google Scholar 

  16. Tharayil N, Bhowmik P, Alpert P, Walker E, Amarasiriwardena D, Xing B (2009) Dual purpose secondary compounds: Phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol 181:424

    Article  CAS  PubMed  Google Scholar 

  17. Tewari RK, Bachmann G, Hadacek F (2015) Iron in complex with the alleged phytosiderophore 8-hydroxyquinoline induces functional iron deficiency and non-autolytic programmed cell death in rapeseed plants. Environ Exp Bot 109:151

    Article  CAS  Google Scholar 

  18. Inderjit BD, Rajeswari MS (2010) Interaction of 8-hydroxyquinoline with soil environment mediates its ecological function. PLoS One 5:e12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu J, Xu W, Yang Y, Tao B, Zhang J (2008) The allelopathy of Flaveria bidentis (L.) Kuntze, an invasive weed species. Front Agric China 2:446

    Google Scholar 

  20. Xing Y, Zhang L-H, Shi C-P, Shang Y, Zhang J-L, Han J-M, Dong J-G (2014) The extraction, isolation and identification of exudates from the roots of Flaveria bidentis. J Integr Agric 13:105

    Article  CAS  Google Scholar 

  21. Anaya AL, Hernández-Bautista BE, Torres-Barragán A, León-Cantero J, Jiménez-Estrada M (1996) Phytotoxicity of cacalol and some derivatives obtained from the roots of Psacalium decompositum (A. Gray) H. Rob. and Brettell (Asteraceae), matarique or maturin. J Chem Ecol 22:393

    Google Scholar 

  22. Jimenez-Estrada M, Reyes Chilpa R, Ramirez Apan T, Lledias F, Hansberg W, Arrieta D, Alarcon-Aguilar FJ (2006) Anti-inflammatory activity of cacalol and cacalone sesquiterpenes isolated from Psacalium decompositum. J Ethnopharmacol 105:34

    Article  CAS  PubMed  Google Scholar 

  23. Alarcon-Aguilar FJ, Roman-Ramos R, Jimenez-estrada M, Reyes-Chilpa R, Gonzalez-Paredes B, Flores-Saenz JL (1997) Effects of three Mexican medicinal plants (Asteraceae) on blood glucose levels in healthy mice and rabbits. J Ethnopharmacol 55:171

    Article  CAS  PubMed  Google Scholar 

  24. Lotina-Hennsen B, Roque-Reséndiz JL, Aguilar M (1991) Inhibition of oxygen evolution by cacalol and its derivatives. Z Naturforsch Sect C J Biosci 46:777

    Article  CAS  Google Scholar 

  25. Anaya AL (2006) Allelopathic organisms and molecules: promising bioregulators for the control of plant diseases, weeds and other pests. In: Inderjit, Mukerji KG (eds) Allelochemicals: biological control of plant pathogens and diseases. Springer Dordrecht, The Netherlands, p 31

    Google Scholar 

  26. Asaduzzaman M, Pratley J, Lemerle D (2011) Allelopathy in canola: potential for weed management. In: 17th Australian Research Assembly on Brassicas. Wagga Wagga, 9

    Google Scholar 

  27. Asaduzzaman M, Pratley JE, An M, Luckett DJ, Lemerle D (2015) Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals. Front Plant Sci 5:1

    Article  Google Scholar 

  28. Uremis I, Arslan M, Sangun MK, Uygur V, Isler N (2009) Allelopathic potential of rapeseed cultivars on germination and seedling growth of weeds. Asian J Chem 21:2170

    CAS  Google Scholar 

  29. Assimopoulou AN, Karapanagiotis I, Vasiliou A, Kokkini S, Papageorgiou VP (2006) Analysis of alkannin derivatives from Alkanna species by high-performance liquid chromatography/photodiode array/mass spectrometry. Biomed Chromatogr 20:1359

    Article  CAS  PubMed  Google Scholar 

  30. Albreht A, Vovk I, Simonovska B, Srbinoska M (2009) Identification of shikonin and its ester derivatives from the roots of Echium italicum L. J Chromatogr A 1216:3156

    Article  CAS  PubMed  Google Scholar 

  31. Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445

    Article  CAS  PubMed  Google Scholar 

  32. Weston LA, Weston PA, McCully M (2012) Production of bioactive napthoquinones by roots of Paterson′s curse (Echium plantagineum)—implications for invasion success? J Weed Sci Res 18:677

    Google Scholar 

  33. Durán AG, Gutiérrez MT, Rial C, Torres A, Varela RM, Valdivia MM, Molinillo JMG, Skoneczny D, Weston LA, Macías FA (2017) Bioactivity and quantitative analysis of isohexenylnaphthazarins in root periderm of two Echium spp.: E. plantagineum and E. gaditanum. Phytochemistry 141:162

    Google Scholar 

  34. Zhu X, Skoneczny D, Weidenhamer JD, Mwendwa JM, Weston PA, Gurr GM, Callaway RM, Weston LA (2016) Identification and localization of bioactive naphthoquinones in the roots and rhizosphere of Paterson′s curse (Echium plantagineum), a noxious invader. J Exp Bot 67:377

    Google Scholar 

  35. Eberle CA, Forcella F, Gesch R, Weyers S, Peterson D, Eklund J (2014) Flowering dynamics and pollinator visitation of oilseed Echium (Echium plantagineum). PLoS One 9:e113556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu Q, Lu D, Jin H, Yan Z, Li X, Yang X, Guo H, Qin B (2014) Allelochemicals in the rhizosphere soil of Euphorbia himalayensis. J Agric Food Chem 62:8555

    Article  CAS  PubMed  Google Scholar 

  37. Raina AP, Tomar JB, Dutta M (2012) Variability in Mucuna pruriens L. germplasm for l-DOPA, an anti-Parkinsonian agent. Genet Resour Crop Evol 59:1207

    Google Scholar 

  38. Soares AR, de Siqueira-Soares RC, Salvador VH, de Lucio Ferrarese ML, Ferrarese-Filho O (2012) The effects of l-DOPA on root growth, lignification and enzyme activity in soybean seedlings. Acta Physiol Plant 34:1811

    Article  CAS  Google Scholar 

  39. De Cássia Siqueira-Soares R, Soares AR, Parizotto AV, Ferrarese De Lourdes Lucio, Ferrarese-Filho O (2013) Root growth and enzymes related to the lignification of maize seedlings exposed to the allelochemical l-DOPA. Sci World J 2013:12

    Google Scholar 

  40. Nishihara E, Parvez MM, Araya H, Kawashima S, Fujii Y (2005) l-3-(3,4-Dihydroxyphenyl)alanine (l-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul 45:113

    Article  CAS  Google Scholar 

  41. Soares AR, Marchiosi R, de Cássia Siqueira-Soares R, Barbosa de Lima R, Dantas dos Santos W, Ferrarese-Filho O (2014) The role of l-DOPA in plants. Plant Signal Behav 9:e28275

    Google Scholar 

  42. Wichers HJ, Visser JF, Huiziing HJ, Pras N, (1993) Occurrence of l-DOPA and dopamine in plants and cell cultures of Mucuna pruriens and effects of 2,4-D and NaCl on these compounds. Plant Cell Tis Org Cult 33:259

    Google Scholar 

  43. Matsumoto H (2011) The mechanisms of phytotoxic action and selectivity of non-protein aromatic amino acids l-DOPA and m-tyrosine. J Pestic Sci 36:1

    Article  CAS  Google Scholar 

  44. Yue M-E, Jiang T-F, Shi Y-P (2005) Simultaneous determination of noradrenaline and dopamine in Portulaca oleracea L. by capillary zone electrophoresis. J Sep Sci 28:360

    Google Scholar 

  45. Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433

    Article  CAS  Google Scholar 

  46. Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in Cavendish. J Agric Food Chem 48:844

    Article  CAS  PubMed  Google Scholar 

  47. Guidotti BB, Gomes BR, Siqueira-Soares RDC, Soares AR, Ferrarese-Filho O (2013) The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signal Behav 8:e25477

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin LZ, He XG, Lindenmaier M, Yang J, Cleary M, Qiu SX, Cordell GA (2000) LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J Agric Food Chem 48:354

    Article  CAS  PubMed  Google Scholar 

  49. Nissan HP, Lu J, Booth NL, Yamamura HI, Farnsworth NR, Wang ZJ (2007) A red clover (Trifolium pratense) phase II clinical extract possesses opiate activity. J Ethnopharmacol 112:207

    Article  PubMed  Google Scholar 

  50. Liu Q, Xu R, Yan Z, Jin H, Cui H, Lu L, Zhang D, Qin B (2013) Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense. J Agric Food Chem 61:6321

    Article  CAS  PubMed  Google Scholar 

  51. Durán AG, Chinchilla N, Molinillo JM, Macías FA (2019) Structure ‐ activity relationship studies on naphthoquinone analogs. The search for new herbicides based on natural products. Pest Manag Sci 75:2517

    Google Scholar 

  52. Rietveld WJ (1983) Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. J Chem Ecol 9:295

    Article  CAS  PubMed  Google Scholar 

  53. Terzi I, Kocaçalişkan I, Benlioğlu O, Solak K (2003) Effects of juglone on growth of cucumber seedlings with respect to physiological and anatomical parameters. Acta Physiol Plant 25:353

    Article  CAS  Google Scholar 

  54. Babula P, Vaverkova V, Poborilova Z, Ballova L, Masarik M, Provaznik I (2014) Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol Biochem 84:78

    Article  CAS  PubMed  Google Scholar 

  55. Durán AG, Chinchilla N, Molinillo JM, Macías FA (2018) Influence of lipophilicity in O-acyl and O-alkyl derivatives of juglone and lawsone: a structure-activity relationship study in the search for natural herbicide models. Pest Manag Sci 74:682

    Article  PubMed  CAS  Google Scholar 

  56. Pérez FJ, Ormeño-Nuñez J (1991) Root exudates of wild oats: allelopathic effect on spring wheat. Phytochemistry 30:2199

    Article  Google Scholar 

  57. Iannucci A, Fragasso M, Platani C, Narducci A, Miullo V, Papa R (2012) Dynamics of release of allelochemical compounds from roots of wild oat (Avena fatua L.). Agrochimica 56:185

    Google Scholar 

  58. Zheng X, Chen S, Li Q, Lin R, Lin W (2014) Determination of phenolic acids in root exudates of allelopathic rice by solid phase extraction-ion chromatography with conductivity detection. Anal Lett 47:2156

    Article  CAS  Google Scholar 

  59. Yang XF, Kong CH, Yang X, Li YF (2017) Interference of allelopathic rice with penoxsulam-resistant barnyard grass. Pest Manag Sci 73:2310

    Article  CAS  PubMed  Google Scholar 

  60. Olofsdotter M, Rebulanan M, Madrid A, Dali W, Navarez D, Olk DC (2002) Why phenolic acids are unlikely primary allelochemicals in rice. J Chem Ecol 28:229

    Article  CAS  PubMed  Google Scholar 

  61. Kato-Noguchi H, Peters RJ (2013) The role of momilactones in rice allelopathy. J Chem Ecol 39:175

    Article  CAS  PubMed  Google Scholar 

  62. Kato-Noguchi H, Ino T, Kujime H (2010) The relation between growth inhibition and secretion level of momilactone B from rice root. J Plant Interact 5:87

    Article  CAS  Google Scholar 

  63. Heidarzade A, Pirdashti H, Esmaeili M (2010) Quantification of allelopathic substances and inhibitory potential in root exudates of rice (Oryza sativa) varieties on barnyard grass (Echinochloa crus-galli L.). Plant Omics 3:204

    Google Scholar 

  64. Khanh TD, Anh LH, Nghia LT, Trung KH, Hien PB, Trung DM, Xuan TD (2018) Allelopathic responses of rice seedlings under some different stresses. Plants 7:1

    Article  CAS  Google Scholar 

  65. Kato-Noguchi H (2011) The chemical cross talk between rice and barnyardgrass. Plant Signal Behav 6:1207–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li J, Lin S, Zhang Q, Zhang Q, Hu W, He H (2019) Fine-root traits of allelopathic rice at the seedling stage and their relationship with allelopathic potential. PeerJ 7:e7006

    Article  PubMed  PubMed Central  Google Scholar 

  67. You LX, Wang P (2010) Rice-barnyard grass allelopathic interaction: A role of jasmonic acid and salicylic acid. Adv Mater Res 113–116:1782

    Article  CAS  Google Scholar 

  68. You LX, Wang P, Kong CH (2011) The levels of jasmonic acid and salicylic acid in a rice-barnyard grass coexistence system and their relation to rice allelochemicals. Biochem Syst Ecol 39:491

    Article  CAS  Google Scholar 

  69. Uddin MN, Robinson RW (2017) Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities. Bot Stud 58:29

    Article  PubMed  PubMed Central  Google Scholar 

  70. Uddin MN, Caridi D, Robinson RW (2012) Phytotoxic evaluation of Phragmites australis: An investigation of aqueous extracts of different organs. Mar Freshw Res 63:777

    Article  CAS  Google Scholar 

  71. Uddin MN, Robinson RW, Caridi D (2014) Phytotoxicity induced by Phragmites australis: An assessment of phenotypic and physiological parameters involved in germination process and growth of receptor plant. J Plant Interact 9:338

    Article  CAS  Google Scholar 

  72. Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JMG (2013) Benzoxazinoids in rye allelopathy — from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154

    Article  CAS  PubMed  Google Scholar 

  73. Macías FA, Oliveros-Bastidas A, Marín D, Chinchilla N, Castellano D, Molinillo JMG (2014) Evidence for an allelopathic interaction between rye and wild oats. J Agric Food Chem 62:9450

    Article  PubMed  CAS  Google Scholar 

  74. Macías FA, Marín D, Oliveros-Bastidas A, Molinillo JMG (2009) Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. Nat Prod Rep 26:478

    Article  PubMed  CAS  Google Scholar 

  75. Adhikari KB, Laursen BB, Gregersen PL, Schnoor HJ, Witten M, Poulsen LK, Jensen BM, Fomsgaard IS (2013) Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans. Mol Nutr Food Res 57:1847

    Article  CAS  PubMed  Google Scholar 

  76. Adhikari KB, Laursen BB, Lærke HN, Fomsgaard IS (2012) Bioactive benzoxazinoids in rye bread are absorbed and metabolized in pigs. J Agric Food Chem 60:2497

    Article  CAS  PubMed  Google Scholar 

  77. Pan Z, Baerson SR, Wang M, Bajsa-Hirschel J, Rimando AM, Wang X, Nanayakkara NPD, Noonan BP, Fromm ME, Dayan FE, Khan IA, Duke SO (2018) A cytochrome P450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytol 218:616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing AL, Duke SO (2010) Sorgoleone. Phytochemistry 71:1032

    Article  CAS  PubMed  Google Scholar 

  79. Dayan FE, Howell J, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weston LA, Alsaadawi IS, Baerson SR (2013) Sorghum allelopathy—from ecosystem to molecule. J Chem Ecol 39:142–153

    Article  CAS  PubMed  Google Scholar 

  81. Jesudas AP, Kingsley JS (2014) Sorgoleone from Sorghum bicolor as a potent bioherbicide. Res J Recent Sci 3:32

    CAS  Google Scholar 

  82. Uddin MR, Park SU, Dayan FE, Pyon JY (2014) Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Manag Sci 70:252

    Article  CAS  PubMed  Google Scholar 

  83. Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Coll Surf B Biointerfac 54:143

    Google Scholar 

  84. Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P (2018) Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun 9:3867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Li YH, Xia ZC, Kong CH (2016) Allelobiosis in the interference of allelopathic wheat with weeds. Pest Manag Sci 72:2146

    Article  CAS  PubMed  Google Scholar 

  86. Lu CH, Liu XG, Xu J, Dong FS, Zhang CP, Tian YY, Zheng YQ (2012) Enhanced exudation of DIMBOA and MBOA by wheat seedlings alone and in proximity to wild oat (Avena fatua) and flixweed (Descurainia sophia). Weed Sci 60:360

    Article  CAS  Google Scholar 

  87. Zhang S-Z, Li Y-H, Kong C-H, Xu X-H (2016) Interference of allelopathic wheat with different weeds. Pest Manag Sci 72:172

    Article  PubMed  CAS  Google Scholar 

  88. Xia Z-C, Kong C-H, Chen L-C, Wang P, Wang S-L (2016) A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology 97:2283

    Article  PubMed  Google Scholar 

  89. Rial C, Gómez E, Varela RM, Molinillo JMG, Macías FA (2018) Ecological relevance of the major allelochemicals in Lycopersicon esculentum roots and exudates. J Agric Food Chem 66:4638

    Article  CAS  PubMed  Google Scholar 

  90. Bi J, Blanco JA, Seely B, Kimmins JP, Ding Y, Welham C (2007) Yield decline in Chinese-fir plantations: a simulation investigation with implications for model complexity. Can J For Res 37:1615

    Article  Google Scholar 

  91. Chen LC, Wang SL, Wang P, Kong CH (2014) Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata) plantations. Plant Soil 374:793

    Article  CAS  Google Scholar 

  92. Xia Z, Yu L, He Y, Korpelainen H, Li C (2019) Broadleaf trees mediate chemically the growth of Chinese fir through root exudates. Biol Fertil Soils 737

    Google Scholar 

  93. Ye J-H, Wang H-B, Yang X-Y, Zhang Q, Li J-Y, Jia X-L, Kong X-H, He H-B (2016) Autotoxicity of the soil of consecutively cultured tea plantations on tea (Camellia sinensis) seedlings. Acta Physiol Plant 38:195

    Article  CAS  Google Scholar 

  94. Cao P, Liu C, Li D (2011) Effects of different autotoxins on antioxidant enzymes and chemical compounds in tea (Camellia sinensis L.) Kuntze. Afr J Biotechnol 10:7480

    Google Scholar 

  95. Liu YH, Zeng RS, Chen S, Liu DL, Luo SM, Wu H, An M (2007) Plant autotoxicity research in southern China. Allelopathy J 19:61

    CAS  Google Scholar 

  96. Cao PR, Liu CY, Li D (2011) Autointoxication of tea (Camellia sinensis) and identification of its autotoxins. Allelopath J 28:155

    Google Scholar 

  97. Joel DM (2009) The new nomenclature of Orobanche and Phelipanche. Weed Res 49:6

    Article  Google Scholar 

  98. Fernández-Aparicio M, Reboud X, Gibot-Leclerc S (2016) Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front Plant Sci 7:135

    Google Scholar 

  99. Mauromicale G, Monaco A Lo, Longo AMG (2008) Effect of branched broomrape (Orobanche ramosa). Infection on the growth and photosynthesis of tomato. Weed Sci 56:574

    Google Scholar 

  100. Cimmino A, Fernández-Aparicio M, Avolio F, Yoneyama K, Rubiales D, Evidente A (2015) Ryecyanatines A and B and ryecarbonitrilines A and B, substituted cyanatophenol, cyanatobenzo[1,3]dioxole, and benzo[1,3]dioxolecarbonitriles from rye (Secale cereale L.) root exudates: novel metabolites with allelopathic activity on Orobanche seed germination and radical growth. Phytochemistry 109:57

    Google Scholar 

  101. Rial C, Varela RM, Molinillo JMG, López-Ráez JA, Macías FA (2019) A new UHPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem Anal 30:110

    Article  CAS  PubMed  Google Scholar 

  102. Mejías FJR, López-Haro M, Gontard LC, Cala A, Fernández-Aparicio M, Molinillo JMG, Calvino JJ, Macías FA (2018) A novel electron microscopic characterization of core/shell nanobiostimulator against parasitic plants. ACS Appl Mater Interfaces 10:2354

    Article  PubMed  CAS  Google Scholar 

  103. Fernández-Aparicio M, Yoneyama K, Rubiales D (2011) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:55

    Article  Google Scholar 

  104. Fernández-Aparicio M, Kisugi T, Xie X, Rubiales D, Yoneyama K (2014) Low strigolactone root exudation: A novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J Agric Food Chem 62:7063

    Google Scholar 

  105. Evidente A, Fernández-Aparicio M, Cimmino A, Rubiales D, Andolfi A, Motta A (2009) Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955

    Article  CAS  Google Scholar 

  106. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones: host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484

    Article  CAS  PubMed  Google Scholar 

  107. Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824

    Article  CAS  PubMed  Google Scholar 

  108. Wigchert SCM, Zwanenburg B (1999) A critical account on the inception of Striga seed germination. J Agric Food Chem 47:1320

    Google Scholar 

  109. Albrecht H, Yoder JI, Phillips DA (1999) Flavonoids promote haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol 119:585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358

    Article  CAS  PubMed  Google Scholar 

  111. Raupp FM, Spring O (2013) New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J Agric Food Chem 61:10481

    Article  CAS  PubMed  Google Scholar 

  112. Pouvreau JB, Gaudin Z, Auger B, Lechat MM, Gauthier M, Delavault P, Simier P (2013) A high-throughput seed germination assay for root parasitic plants. Plant Methods 9:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Butler LG (1994) Chemical communication between the parasitic weed Striga and its crop host. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy. Organisms, processes, and applications. American Chemical Society Books, Washington, DC, p 158

    Google Scholar 

  114. Rich PJ, Ejeta G (2007) Biology of host-parasite interactions in Striga species. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control. World Scientific Publishing Co. Pte. Ltd., Singapore, p 19

    Google Scholar 

  115. Eltayeb AH, Hassan MM, Yagoub SO, Babiker AAE (2016) Induction of Striga hermonthica germination and haustorium initiation by allelochemicals produced by millet cultivars. Int J Biosci 8:1

    CAS  Google Scholar 

  116. Serghini K, Pérez De Luque A, Castejón-Muñoz M, García-Torres L, Jorrín J V. (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 52:2227

    Google Scholar 

  117. Gutiérrez-Mellado M-C, Edwards R, Tena M, Cabello F, Serghini K, Jorrín J (1996) The production of coumarin phytoalexins in different plant organs of sunflower (Helianthus annuus L.). J Plant Physiol 149:261

    Google Scholar 

  118. Hamilton ML, Kuate SP, Brazier-Hicks M, Caulfield JC, Rose R, Edwards R, Torto B, Pickett JA, Hooper AM (2012) Elucidation of the biosynthesis of the di-C-glycosylflavone isoschaftoside, an allelopathic component from Desmodium spp. that inhibits Striga spp. development. Phytochemistry 84:169

    Google Scholar 

  119. Midega CAO, Pittchar J, Salifu D, Pickett JA, Khan ZR (2013) Effects of mulching, N-fertilization and intercropping with Desmodium uncinatum on Striga hermonthica infestation in maize. Crop Prot 44:44

    Article  CAS  Google Scholar 

  120. Khan ZR, Hassanali A, Overholt W, Khamis TM, Hooper AM, Pickett JA, Wadhams LJ, Woodcock CM (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28:1871

    Google Scholar 

  121. Hao B, Caulfield JC, Hamilton ML, Pickett JA, Midega CAO, Khan ZR, Wang JR, Hooper AM (2015) The biosynthesis of allelopathic di-C-glycosylflavones from the roots of Desmodium incanum (G. Mey.) DC. Org Biomol Chem 13:11663

    Google Scholar 

  122. Hooper AM, Tsanuo MK, Chamberlain K, Tittcomb K, Scholes J, Hassanali A, Khan ZR, Pickett JA (2010) Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71:904

    Article  CAS  PubMed  Google Scholar 

  123. Wu X, Wu H, Chen J, Ye J (2013) Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environ Sci Pollut Res 20:8192

    Google Scholar 

  124. Yu JQ, Matsui Y (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J Chem Ecol 20:21

    Google Scholar 

  125. Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653

    Article  CAS  PubMed  Google Scholar 

  126. Bokern M, Wray V, Strack D (1991) Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L. Planta 184:261

    Article  CAS  PubMed  Google Scholar 

  127. Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade update on bacterial lignin catabolism. Environ Microbiol Rep 9:679

    Article  CAS  PubMed  Google Scholar 

  128. Wu HS, Raza W, Liu D-Y, Wu C-L, Mao Z-S, Xu Y-C, Shen Q-R (2008) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f. sp. niveum. World J Microbiol Biotechnol 24:1297

    Google Scholar 

  129. Wu HS, Wang Y, Zhang CY, Gu M, Liu YX, Chen G, Wang JH, Tang Z, Mao ZS, Shen QR (2009) Physiological and biochemical responses of in vitro Fusarium oxysporum f. sp. niveum to benzoic acid. Folia Microbiol (Prague) 54:115

    Google Scholar 

  130. Aguyoh JN, Masiunas JB (2003) Interference of large crabgrass (Digitaria sanguinalis) with snap beans. Weed Sci 51:171

    Article  CAS  Google Scholar 

  131. Zhou B, Kong CH, Li YH, Wang P, Xu XH (2013) Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. J Agric Food Chem 61:5310

    Article  CAS  PubMed  Google Scholar 

  132. Li S, Xu C, Wang J, Guo B, Yang L, Chen J, Ding W (2017) Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum. Plant Soil 412:381

    Article  CAS  Google Scholar 

  133. Zohaib A, Abbas T, Tabassum T (2016) Weeds cause losses in field crops through allelopathy. Not Sci Biol 8:47

    Article  CAS  Google Scholar 

  134. Al Harun MAY, Johnson J, Uddin MN, Robinson RW (2015) Identification and phytotoxicity assessment of phenolic compounds in Chrysanthemoides monilifera subsp. monilifera (boneseed). PLoS One 10:e13922

    Google Scholar 

  135. Mishyna M, Laman K, Prokhorov V, Fujii Y (2015) Angelicin as the principal allelochemical in Heracleum sosnowskyi fruit. Nat Prod Commun 10:767

    PubMed  Google Scholar 

  136. Al Harun MAY, Robinson RW, Johnson J, Uddin MN (2014) Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): A novel weapon in the invasion processes. S Afr J Bot 93:157

    Google Scholar 

  137. Silva MP, Piazza LA, López D, López Rivilli MJ, Turco MD, Cantero JJ, Tourn MG, Scopel AL (2012) Phytotoxic activity in Flourensia campestris and isolation of (–)-hamanasic acid A as its active principle compound. Phytochemistry 77:140

    Article  CAS  PubMed  Google Scholar 

  138. Gontova TM, Sokolova OO, Kotov AG, Kutsenko SA, Mashtaler VV (2018) Determination of essential oil component composition of common sunflower marginal flowers. Res J Pharm Technol 11:1971

    Article  Google Scholar 

  139. Macías FA, García-Díaz MD, Pérez-De-Luque A, Rubiales D, Galindo JCG (2009) New chemical clues for broomrape-sunflower host-parasite interactions: synthesis of guaianestrigolactones. J Agric Food Chem 57:5853

    Article  PubMed  CAS  Google Scholar 

  140. Sarkar D, Ghosh MK (2018) Story of helianane and heliannuols— unique structurally diverse benzoxacycles, interesting intrigues and structural anomaly. Curr Org Chem 22:18

    Article  CAS  Google Scholar 

  141. Macias FA, Torres A, Galindo JLG, Varela RM, Alvarez JA, Molinillo JMG (2002) Bioactive terpenoids from sunflower leaves cv. Peredovick. Phytochemistry 61:687

    Article  CAS  Google Scholar 

  142. El Marsni Z, Casas L, Mantell C, Rodríguez M, Torres A, MacIas FA, Martínez De La Ossa EJ, Molinillo JMG, Varela RM (2011) Potential allelopathic of the fractions obtained from sunflower leaves using supercritical carbon dioxide. J Supercrit Fluids 60:28

    Article  CAS  Google Scholar 

  143. Macías FA, Varela RM, Torres A, Molinillo JMG (1993) Potential allelopathic guaianolides from cultivar sunflower leaves, var. SH-222. Phytochemistry 34:669

    Google Scholar 

  144. Macias FA, Torres A, Molinillo JMG, Varela RM, Castellano D (1996) Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry 43:1205

    Article  CAS  Google Scholar 

  145. Macias FA, Varela RM, Torres A, Molinillo JMG (2000) Potential allelopathic activity of natural plant heliannanes: a proposal of absolute configuration and nomenclature. J Chem Ecol 26:2173

    Article  CAS  Google Scholar 

  146. Macias FA, Molinillo JMG, Varela RM, Torres A, Fronczek FR (1994) Structural elucidation and chemistry of a novel family of bioactive sesquiterpenes: heliannuols. J Org Chem 59:8261

    Article  CAS  Google Scholar 

  147. Macías FA, Galindo JLG, Varela RM, Torres A, Molinillo JMG, Fronczek FR (2006) Heliespirones B and C: two new plant heliespiranes with a novel spiro heterocyclic sesquiterpene skeleton. Org Lett 8:4513

    Article  PubMed  CAS  Google Scholar 

  148. Fuentes-Gandara F, Torres A, Fernández-Ponce MT, Casas L, Mantell C, Varela R, Martínez de la Ossa-Fernández EJ, Macías FA (2019) Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. J Supercrit Fluids 143:32

    Google Scholar 

  149. Torres A, Molinillo JMG, Varela RM, Casas L, Mantell C, Martínez De La Ossa EJ, Macías FA (2015) Helikaurolides A–D with a diterpene-sesquiterpene skeleton from supercritical fluid extracts of Helianthus annuus L. var. Arianna. Org Lett 17:4730

    Google Scholar 

  150. Ullah R, Aslam Z, Khaliq A, Zahir ZA (2018) Sunflower residue incorporation suppresses weeds, enhances soil properties and seed yield of spring-planted mung bean. Planta Daninha 36:1

    Google Scholar 

  151. Chauhan BS, Johnson DE (2009) Seed germination and seedling emergence of Synedrella (Synedrella nodiflora) in a tropical environment. Weed Sci 57:36

    Article  CAS  Google Scholar 

  152. Wijaya S, Nee TK, Jin KT, Hon LK, San LH, Wiart C (2011) Antibacterial and antioxidant activities of Synedrella nodiflora (L.) Gaertn. (Asteraceae). J Compl Integr Med 2011:8

    Google Scholar 

  153. Ghayal NA, Dhumal KN, Deshpande NR, Shah SM, Ruikar AD (2008) Studies on allelochemicals in Synedrella nodiflora and impact of its leaf leachates on germination and seedling growth of radish (Raphanus sativus) and mustard (Brassica juncea). Asian J Chem 20:6114

    CAS  Google Scholar 

  154. Ghayal N, Dhumal K, Deshpande N, Ruikar A, Phalgune U (2013) Phytotoxic effects of leaf leachates of an invasive weed Synedrella nodiflora and characterization of its allelochemical. Int J Pharm Sci Rev Res 19:79

    CAS  Google Scholar 

  155. Dietz H, Winterhalter P (1996) Phytotoxic constituents from Bunias orientalis leaves. Phytochemistry 42:1005

    Article  CAS  Google Scholar 

  156. Frazão DF, Raimundo JR, Domingues JL, Quintela-Sabarís C, Gonçalves JC, Delgado F (2018) Cistus ladanifer (Cistaceae): a natural resource in Mediterranean-type ecosystems. Planta 247:289–300

    Article  PubMed  CAS  Google Scholar 

  157. Chaves N, Sosa T, Escudero JC (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J Chem Ecol 27:623

    Article  CAS  PubMed  Google Scholar 

  158. Chaves N, Sosa T, Alias JC, Escudero JC (2003) Germination inhibition of herbs in Cistus ladanifer L. soils: Possible involvement of allelochemicals. Allelopath J 11:31

    Google Scholar 

  159. Sosa T, Valares C, Alías JC, Lobón NC (2010) Persistence of flavonoids in Cistus ladanifer soils. Plant Soil 337:51

    Article  CAS  Google Scholar 

  160. Rokeya UK, Hossain MA, Ali MR, Paul SP (2010) Physical and mechanical properties of (Acacia auriculiformis x A. mandium) hybrid Acacia. J Bangladesh Acad Sci 34:181

    Google Scholar 

  161. Dash N, Rath I, Adhikary SP, Padhy SK, Panda S (2012) Allelopathic impact of phyllode of Acacia auriculaeformis A. Cunn. On photosynthetic apparatus of rice leaves during seedling growth. Asian J Microbiol Biotechnol Environ Sci 14:513

    Google Scholar 

  162. Díaz-Maroto MC, Castillo N, Castro-Vázquez L, Ángel González-Viñas M, Pérez-Coello MS (2007) Volatile composition and olfactory profile of pennyroyal (Mentha pulegium L.) plants. Flav Fragr J 22:114

    Google Scholar 

  163. Benlarbi KH, Elmtili N, Macías FA, Galindo JCG (2014) Influence of in vitro growth conditions in the production of defence compounds in Mentha pulegium L. Phytochem Lett 8:233

    Article  CAS  Google Scholar 

  164. Popovici J, Bertrand C, Jacquemoud D, Bellvert F, Fernandez MP, Comte G, Piola F (2011) An allelochemical from Myrica gale with strong phytotoxic activity against highly invasive Fallopia x bohemica taxa. Molecules 16:2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mathiesen L, Malterud KE, Sund RB (1995) Antioxidant activity of fruit exudate and C-methylated dihydrochalcones from Myrica gale. Planta Med 61:515

    Article  CAS  PubMed  Google Scholar 

  166. Malterud KE, Diep OH, Sund RB (1996) C-Methylated dihydrochalcones from Myrica gale L: Effects as antioxidants and as scavengers of 1,1-diphenyl-2-picrylhydrazyl. Pharmacol Toxicol 78:111

    Article  CAS  PubMed  Google Scholar 

  167. Khaled A, Sleiman M, Darras E, Trivella A, Bertrand C, Inguimbert N, Goupil P, Richard C (2019) Photodegradation of myrigalone A, an allelochemical from Myrica gale: photoproducts and effect of terpenes. J Agric Food Chem 67:7258

    Article  CAS  PubMed  Google Scholar 

  168. Oracz K, Voegele A, Tarkowská D, Jacquemoud D, Tureková V, Urbanová T, Strnad M, Sliwinska E, Leubner-Metzger G (2012) Myrigalone a inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol 53:81

    Article  CAS  PubMed  Google Scholar 

  169. Voegele A, Graeber K, Oracz K, Tarkowská D, Jacquemoud D, Turečková V, Urbanová T, Strnad M, Leubner-Metzger G (2012) Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. J Exp Bot 63:5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Singh HP, Kohli RK, Batish DR, Kaushal PS (1999) Allelopathy of gymnospermous trees. J For Res 4:245

    Article  Google Scholar 

  171. Lee K Il, Monsi M (1963) Ecological studies on Pinus densiflora forest 1. Effects of plant substances on the floristic composition of the undergrowth. Bot Mag Tokyo 76:400

    Google Scholar 

  172. Taylor RJ, Shaw DC (1983) Allelopathic effects of Engelmann spruce bark stilbenes and tannin–stilbene combinations on seed germination and seedling growth of selected conifers. Can J Bot 61:279

    Article  CAS  Google Scholar 

  173. Lodhi MAK, Killingbeck KT (1982) Effects of pine-produced chemicals on selected understory species in a Pinus ponderosa community. J Chem Ecol 8:275

    Article  CAS  PubMed  Google Scholar 

  174. Lodhi MAK, Killingbeck KT (1980) Allelopathic inhibition of nitrification and nitrifying bacteria in a Ponderosa pine (Pinus ponderosa Dougl.) community. Am J Bot 67:1423

    Google Scholar 

  175. Steinsiek JW, Oliver LR, Collins FC (1982) Allelopathic potential of wheat (Triticum aestivum) straw on selected weed species. Weed Sci 30:495

    Article  Google Scholar 

  176. Nakano H, Morita S, Shigemori H, Hasegawa K (2006) Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regul 48:215

    CAS  Google Scholar 

  177. Sanon A, Martin P, Thioulouse J, Plenchette C, Spichiger R, Lepage M, Duponnois R (2006) Displacement of an herbaceous plant species community by mycorrhizal and non-mycorrhizal Gmelina arborea, an exotic tree, grown in a microcosm experiment. Mycorrhiza 16:125

    Article  PubMed  Google Scholar 

  178. Bolstad P V., Bawa KS (1982) Self-incompatibility in Gmelina arborea L. (Verbenaceae). Silvae Genet 31:19

    Google Scholar 

  179. Rao MR, Nair PKR, Ong CK (1997) Biophysical interactions in tropical agroforestry systems. In: Nair PKR, Latt CR (eds) Directions in tropical agroforestry research, Forestry Sciences, vol 53. Springer, Dordrecht, The Netherlands, p 3

    Chapter  Google Scholar 

  180. Fisher RF (1995) Amelioration of degraded rain forest soils by plantations of native trees. Soil Sci Soc Am J 59:544

    Article  CAS  Google Scholar 

  181. Madhan Shankar R, Veeralakshmi S, Sirajunnisa AR, Rajendran R (2014) Effect of allelochemicals from leaf leachates of Gmelina arborea on inhibition of some essential seed germination enzymes in green gram, red gram, black gram, and chickpea. Int Sch Res Not 2014:1

    Article  Google Scholar 

  182. Zhu X, Zhang J, Ma K (2011) Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One 6:25393

    Google Scholar 

  183. Simpson MJA, MacIntosh DF, Cloughley JB, Stuart AE (1996) Past, present and future utilization of Myrica gale (Myricaceae). Econ Bot 50:122

    Article  Google Scholar 

  184. Popovici J, Comte G, Bagnarol É, Alloisio N, Fournier P, Bellvert F, Bertrand C, Fernandez MP (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76:2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247

    Article  CAS  PubMed  Google Scholar 

  186. Weston LA, Duke SO (2003) Weed and crop allelopathy. CRC Crit Rev Plant Sci 22:367

    Article  CAS  Google Scholar 

  187. Young GP, Bush JK (2009) Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. J Chem Ecol 35:74

    Article  CAS  PubMed  Google Scholar 

  188. Adams RP (2000) The serrate leaf margined Juniperus (Section Sabina) of the western hemisphere: Systematics and evolution based on leaf essential oils and random amplified polymorphic DNAs (RAPDs). Biochem Syst Ecol 28:975

    Article  CAS  PubMed  Google Scholar 

  189. Müller CH, Müller WH, Haines BL (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143:471

    Article  PubMed  Google Scholar 

  190. Müller CH (1965) Inhibitory terpenes volatilized from Salvia shrubs. Bull Torrey Bot Club 92:38

    Article  Google Scholar 

  191. Penuelas J, Ribas-Cardo M, Giles L (1996) Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J Chem Ecol 22:801

    Article  CAS  PubMed  Google Scholar 

  192. Abraham D, Braguini WL, Kelmer-Bracht AM, Ishii-Iwamoto EL (2000) Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J Chem Ecol 26:611

    Article  Google Scholar 

  193. Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187

    Article  CAS  PubMed  Google Scholar 

  194. Qasem JR (2001) Allelopathic potential of white top and Syrian sage on vegetable crops. Agron J 93:64

    Article  Google Scholar 

  195. Obaid KA, Qasem JR (2005) Allelopathic activity of common weed species on vegetable crops grown in Jordan. Allelopath J 15:221

    Google Scholar 

  196. Iqbal Z, Nasir H, Hiradate S, Fujii Y (2006) Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biol Manag 6:221

    Google Scholar 

  197. Ng TB (2006) Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 58:1007

    Article  CAS  PubMed  Google Scholar 

  198. Christensen LP (2008) Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1

    Article  CAS  Google Scholar 

  199. Guo HB, Cui XM, An N, Cai GP (2010) Sanchi ginseng (Panax notoginseng (Burkill) F. H. Chen) in China: distribution, cultivation and variations. Genet Resour Crop Evol 57:453

    Google Scholar 

  200. Ren X, Yan Z, He X, Li X, Qin B (2017) Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: discovery of the autotoxic compounds of a traditional herbal medicine. Ind Crops Prod 97:302

    Article  CAS  Google Scholar 

  201. Yang M, Zhang X, Xu Y, Mei X, Jiang B, Liao J, Yin Z, Zheng J, Zhao Z, Fan L, He X, Zhu Y, Zhu S (2015) Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS One 10:e0118555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Jiao XL, Bi W, Li M, Luo Y, Gao WW (2011) Dynamic response of ginsenosides in American ginseng to root fungal pathogens. Plant Soil 339:317

    Article  CAS  Google Scholar 

  203. Zhao J, Li Y, Wang B, Huang X, Yang L, Lan T, Zhang J, Cai Z (2017) Comparative soil microbial communities and activities in adjacent Sanqi ginseng monoculture and maize-Sanqi ginseng systems. Appl Soil Ecol 120:89

    Article  Google Scholar 

  204. Li Y, Wang B, Chang Y, Yang Y, Yao C, Huang X, Zhang J, Cai Z, Zhao J (2019) Reductive soil disinfestation effectively alleviates the replant failure of Sanqi ginseng through allelochemical degradation and pathogen suppression. Appl Microbiol Biotechnol 103:3581

    Article  CAS  PubMed  Google Scholar 

  205. Tharayil N, Bhowmik PC, Xing B (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J Agric Food Chem 56:3706

    Article  CAS  PubMed  Google Scholar 

  206. Harun MAY Al, Robinson RW, Johnson J, Uddin MN (2014) Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): A novel weapon in the invasion processes. S Afr J Bot 93:157

    Google Scholar 

  207. Huang Z, Liao L, Wang S, Cao G (2000) Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland. J Chem Ecol 26:2211

    Article  CAS  Google Scholar 

  208. Tseng MH, Kuo YH, Chen YM, Chou CH (2003) Allelopathic potential of Macaranga tanarius (L.) Muell.-Arg. J Chem Ecol 29:1269

    Google Scholar 

  209. Xie X-G, Zhang F-M, Wang X-X, Li X-G, Dai C-C (2019) Phomopsis liquidambari colonization promotes continuous cropping peanut growth by improving the rhizosphere microenvironment, nutrient uptake and disease incidence. J Sci Food Agric 99:1898

    Article  CAS  PubMed  Google Scholar 

  210. Wang H-W, Tang M-J, Su C-L, Zhang W, Xu R-S, Guan Y-X, Dai C-C (2018) The alleopathic compound luteolin from peanut litter affects peanut nodule formation and the rhizosphere microbial community. Agron J 110:2587

    Article  CAS  Google Scholar 

  211. Sobolev VS, Horn BW, Potter TL, Deyrup ST, Gloer JB (2006) Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth. J Agric Food Chem 54:3505

    Article  CAS  PubMed  Google Scholar 

  212. Wang HW, Sun K, Guan YX, Qiu MH, Zhang L, Dai CC (2019) Fungal endophyte Phomopsis liquidambari biodegrades soil resveratrol: a potential allelochemical in peanut monocropping systems. J Sci Food Agric 99:5899

    Article  CAS  PubMed  Google Scholar 

  213. Abdul-Rahman AA, Habib SA (1989) Allelopathic effect of alfalfa (Medicago sativa) on bladygrass (Imperata cylindrica). J Chem Ecol 15:2289

    Article  CAS  PubMed  Google Scholar 

  214. Wang Q, Xu Z, Hu T, Rehman H, Chen H, Li Z, Ding B, Hu H (2014) Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut—winter vegetable agroforestry system. Nat Prod Res 28:2017

    Article  CAS  PubMed  Google Scholar 

  215. Huang W, Hu T, Chen H, Wang Q, Hu H, Tu L, Jing L (2013) Impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings. Plant Physiol Biochem 70:411

    Article  CAS  PubMed  Google Scholar 

  216. Lin K, Yeh S, Lin M, Shih M, Yang K, Hwang S (2007) Major chemotypes and antioxidative activity of the leaf essential oils of Cinnamomum osmophloeum Kaneh. from a clonal orchard. Food Chem 105:133

    Google Scholar 

  217. Liu CH, Mishra AK, Tan RX, Tang C, Yang H, Shen YF (2006) Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Biores Technol 97:1969

    Article  CAS  Google Scholar 

  218. Tworkoski T (2002) Herbicide effects of essential oils. Weed Sci 50:425

    Article  CAS  Google Scholar 

  219. Adams JB, Bate GC (1999) Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental evaluation. Aquat Bot 64:359

    Article  Google Scholar 

  220. Uddin MN, Robinson RW, Caridi D, Harun MAY (2014) Is phytotoxicity of Phragmites australis residue influenced by decomposition condition, time and density? Mar Freshw Res 65:505

    Article  CAS  Google Scholar 

  221. Levine JM, Vilà M, Antonio CMD, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc London Ser B Biol Sci 270:775

    Article  Google Scholar 

  222. Park MG, Blossey B (2008) Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). Am J Bot 95:1557

    Article  PubMed  Google Scholar 

  223. Cheema ZA, Khaliq A, Farooq M (2007) Allelopathic potential of sorghum (Sorghum bicolor L. Moench) cultivars for weed management. Allelopath J 20:167

    Google Scholar 

  224. Khaliq A, Matloob A, Aslam F, Khan MB (2011) Influence of wheat straw and rhizosphere on seed germination, early seedling growth and bio-chemical attributes of Trianthema portulacastrum. Planta Daninha 29:523

    Article  Google Scholar 

  225. Wang Q, Cui J (2011) Perspectives and utilization technologies of chicory (Cichorium intybus L.): a review. Afr J Biotechnol 10:1966

    Google Scholar 

  226. Sharma P, Abrol V, Sharma RK (2011) Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols. India. Eur J Agron 34:46

    Article  Google Scholar 

  227. Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 225:263

    Article  CAS  Google Scholar 

  228. Qi YZ, Zhen WC, Li HY (2015) Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS. J Integr Agric 14:88

    Article  CAS  Google Scholar 

  229. Politycka B, Adamska D (2003) Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Pol J Environ Stud 12:95

    CAS  Google Scholar 

  230. Anaya AL, Macías-Rubalcava M, Cruz-Ortega R, García-Santana C, Sánchez-Monterrubio PN, Hernández-Bautista BE, Mata R (2005) Allelochemicals from Stauranthus perforatus, a Rutaceous tree of the Yucatan Peninsula. Mexico. Phytochemistry 66:487

    Article  CAS  PubMed  Google Scholar 

  231. Popa VI, Dumitru M, Volf I, Anghel N (2008) Lignin and polyphenols as allelochemicals. Ind Crops Prod 27:144

    Article  CAS  Google Scholar 

  232. Widiastuti A, Yoshino M, Saito H, Maejima K, Zhou S, Odani H, Narisawa K, Hasegawa M, Nitta Y, Sato T (2013) Heat shock-induced resistance in strawberry against crown rot fungus Colletotrichum gloeosporioides. Physiol Mol Plant Pathol 84:86

    Article  CAS  Google Scholar 

  233. Tian G, Bi Y, Sun Z, Zhang L (2015) Phenolic acids in the plow layer soil of strawberry fields and their effects on the occurrence of strawberry anthracnose. Eur J Plant Pathol 143:581

    Article  CAS  Google Scholar 

  234. Locher R, Martin HV, Grison R, Pilet P-E (1994) Cell wall-bound trans- and cis-ferulic acids in growing maize roots. Physiol Plant 90:734

    Article  CAS  Google Scholar 

  235. Durigan G, de Siqueira MF, Franco GADC (2007) Threats to the cerrado remnants of the state of Sao Paulo. Brazil. Sci Agric 64:355

    Article  Google Scholar 

  236. Caspersen S, Alsanius BW, Sundin P, Jensén P (2000) Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biol Biochem 32:1063

    Google Scholar 

  237. Siqueira JO, Nair MG, Hammerschmidt R, Safir GR, Putnam AR (1991) Significance of phenolic compounds in plant-soil-microbial systems. CRC Crit Rev Plant Sci 10:63

    Article  CAS  Google Scholar 

  238. Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493

    Article  CAS  PubMed  Google Scholar 

  239. Sunulahpašić A, Čekić S, Golijan J, Hamidović S (2017) The ecological role of interactions between plants in agroecosystems. Agro-knowledge J 18:293

    Article  Google Scholar 

  240. Lim JC, Lim KC, Ee GCL (2019) Allelopathic invasive plants as phytoinhibitor bioresource material in weed control: a review. Agric Nat Resour 53:439

    Google Scholar 

  241. Walker GW, Kookana RS, Smith NE, Kah M, Doolette CL, Reeves PT, Lovell W, Anderson DJ, Turney TW, Navarro DA (2018) Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. J Agric Food Chem 66:6480

    Article  CAS  PubMed  Google Scholar 

  242. Macías FA, Mejías FJR, Molinillo JMG (2019) Recent advances in allelopathy for weed control: from knowledge to applications. Pest Manag Sci 75:2413

    Article  PubMed  CAS  Google Scholar 

  243. Macías FA, Oliveros-Bastidas A, Marín D, Carrera C, Chinchilla N, Molinillo JMG (2008) Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem Rev 7:179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the “Ministerio de Economía y Competitividad” (Project AGL2017-88083-R), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Macías .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macías, F.A., Durán, A.G., Molinillo, J.M.G. (2020). Allelopathy: The Chemical Language of Plants. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 112. Progress in the Chemistry of Organic Natural Products, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-52966-6_1

Download citation

Publish with us

Policies and ethics