Skip to main content

Genetic Improvement of Perennial Forage Plants for Salt Tolerance

  • Chapter
  • First Online:
Saline and Alkaline Soils in Latin America

Abstract

The difficulties of genetic improvement of forage species are further complicated by the intricacies of salinity stress. Multiple evidence of the effects of salinity on germination and establishment highlight some of the limitations that must be overcome in order to carry out successful breeding programs for pastures. Different sources of variation feasible to be used in such breeding programs are analyzed. The application of morpho-physiological selection criteria such as “salt glands” or “Na exclusion,” simulation of the saline environment to assess germination behavior, initial growth or production before defoliation are considered. Methodological advances in sequencing and bioinformatics allow us to predict a prominent role in the application of “Genomic Selection”. On the other hand, the advances in gene technologies have allowed direct the changes to specific sites by “Gene Edition” techniques, which are also very promising. The different methodologies of population management are largely dependent on reproductive systems, and it is a field where knowledge and “art” combine for successful results in plant breeding. Conclusions are drawn from the experiences carried out, and future perspectives for the improvement of perennial forage are analyzed. Both classical and molecular breeding come together not as alternatives but as complements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghili H, Shinozuka H, Baillie R, Drayton M, Shinozuka M, Bain M, Ran Y, Wijesinghe N, Spangenberg G, Slater A, Cogan N, Forster J (2015) Genetics and genomics of self-incompatibility in forage grasses. In: International symposium of forage breeding. Buenos Aires, Argentina

    Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS ONE 8:e77869

    Article  CAS  Google Scholar 

  • Alonso Nogara F, Zabala JM, Rush P, Schrauf GE (2016) Comparación de caracteres productivos relacionados a la tolerancia a la salinidad en dos filiales (F2 y F7) conducidas mediante SSD. In: IV Reunión de la RAS (Red Argentina de Salinidad). Reconquista, Santa Fe, Argentina

    Google Scholar 

  • Aneja B, Yadav NR, Chawla V, Yadav RC (2012) Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol Breed 30:1635–1648

    Article  CAS  Google Scholar 

  • Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  Google Scholar 

  • Ashraf MP, Harris PJ (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Berdahl JD, Barker RE (1978) Genetic improvement of forage grasses. North Dakota Farm Res 36:31–34

    Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta Biomembr 1465:140–151

    Article  CAS  Google Scholar 

  • Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2015) Overexpression of a miR393-resistant form of Transport Inhibitor Response Protein 1 (MTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56:73–83

    Article  CAS  Google Scholar 

  • Chunthaburee S, Dongsansuk A, Sanitchon J, Pattanagul W, Theerakulpisut P (2016) Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 23:467–477

    Article  CAS  Google Scholar 

  • Covas G (1978) Forrajeras indígenas. Especies que requieren un plan de conservación de germoplasma. Cienc Invest 34:209–213

    Google Scholar 

  • da Silva S, Sbrissia A, Pereira L (2015) Ecophysiology of C4 forage grasses—understanding plant growth for optimising their use and management. Agriculture 5:598–625

    Article  Google Scholar 

  • Daetwyler HD, Bansal UK, Bariana HS, Hayden MJ, Hayes BJ (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127:1795–1803. https://doi.org/10.1007/s00122-014-2341-8

    Article  CAS  Google Scholar 

  • de Los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385

    Article  CAS  Google Scholar 

  • Díaz ML, Echenique CV, Schrauf G, Cardone S, Lutz EE, Spangenberg G (2004) Biotecnología y mejoramiento genético de especies forrajeras. RIA 33(3):77–104

    Google Scholar 

  • Garyulo M, Marcantoni F, Figueras I, Rush P, Capurro P, Schrauf GE (2006) Mejora del rendimiento en Cebadilla criolla (Bromus catharticus) a través de la selección de genotipos complementarios. In: III Congreso Científico y Cultural. Ciudad del Beni –Bolivia, pp 1–15

    Google Scholar 

  • Giordano A, Cogan NOI, Kaur S, Drayton M, Mouradov A, Panter S, Schrauf GE, Mason JE; Spangenberg G (2014) Gene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir. PLOS ONE 9(2):e85050

    Google Scholar 

  • Guan B, Zhou D, Zhang H, Tian Y, Japhet W, Wang P (2009) Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. J Arid Environ 73:135–138

    Google Scholar 

  • Hammer G, Messina C, van Oosterom E, Chapman S, Singh V, Borrell A, Jordan D, Cooper M (2016) Molecular breeding for complex adaptive traits: how integrating crop ecophysiology and modelling can enhance efficiency. In: Yin X, Struik P (eds) Crop systems biology. Springer, Cham

    Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  Google Scholar 

  • Hill J (1990) The three C’s—competition, coexistence and coevolution—and their impact on the breeding of forage crop mixtures. Theor Appl Genet 79:168–176

    Article  CAS  Google Scholar 

  • INaSe (2003) Inscripción del cultivar “RELINCHO” de pasto miel (Paspalum dilatatum) en los Registros de la Propiedad de Cultivares y Nacional de Cultivares del INaSe. Record number 7774

    Google Scholar 

  • INaSe (2007a) Inscripción del cultivar “FARAÓN” de trébol de olor blanco (Melilotus albus) en los Registros de la Propiedad de Cultivares y Nacional de Cultivares del INaSe. Record number 9085

    Google Scholar 

  • INaSe (2007b) Inscripción del cultivar “JUNÍN” de trébol blanco (Trifolium repens) en los Registros de la Propiedad de Cultivares y Nacional de Cultivares del INaSe. Record number 9547

    Google Scholar 

  • INaSe (2013) Inscripción del cultivar “PRIMO” de pasto miel (Paspalum dilatatum), en los Registros de la Propiedad de Cultivares y Nacional de Cultivares del INaSe. Record number 12252

    Google Scholar 

  • Khan MA, Gulzar S (2003) Light, salinity, and temperature effects on the seed germination of perennial grasses. Am J Bot 90:131–134

    Article  Google Scholar 

  • Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BVS (2007) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 156:15–24

    Article  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa P, Mohan Jain S (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, pp 1–32

    Google Scholar 

  • Lin N, Tang JL (2005) Study on the environment evolution and the analysis of causes to land salinization and desertification in Songnen plain. Quater Sci 25:474–483

    Google Scholar 

  • Liu W, Yuan JS, Stewart CN (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    Article  CAS  Google Scholar 

  • Loch DS, Zorin M (2010) Development of new tetraploid Chloris gayana cultivars with improved salt tolerance from ‘Callide’ and ‘Samford’. Int Herb Seed Conf 190–194

    Google Scholar 

  • Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  Google Scholar 

  • Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev-Pl 54:240–252

    Article  CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irrig Drain Div 103:115–134

    Article  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Marinoni LDR, Zabala JM, Taleisnik EL, Schrauf GE, Richard GA, Tomas PA, Giavedoni JA, Pensiero JF (2019) Wild halophytic species as forage sources: key aspects for plant breeding. Grass Forage Sci 74:321–344

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  Google Scholar 

  • Naz N, Hameed M, Wahid A, Arshad M, Aqeel Ahmad MS (2009) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Plant 135:185–195

    Article  CAS  Google Scholar 

  • Oba M, Allen MS (1999) Evaluation of the importance of the digestibility of neutral detergent fiber from forage: effects on dry matter intake and milk yield of dairy cows. J Dairy Sci 82:589–596

    Article  CAS  Google Scholar 

  • Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ (2005) Comparative effects of the sorghum bmr-6 and bmr-12 genes: I. Forage sorghum yield and quality. Crop Sci 45:2234–2239

    Article  CAS  Google Scholar 

  • Palmieri JL (2009) Evaluación de progenies de clones selectos de agropiro alargado (Thinopyrum ponticum) bajo condiciones de salinidad. Undergraduate Thesis, Facultad de Agronomía, Universidad de Buenos Aires

    Google Scholar 

  • Pembleton LW, Inch C, Baillie RC, Drayton MC, Thakur P, Ogaji YO, Spangenberg GC, Forster JW, Daetwyler HD, Cogan NOI (2018) Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass. Theor Appl Genet 131:1891–1902

    Article  Google Scholar 

  • Pérez H, Taleisnik E, Pemán R (2009) Development of a tetraploid salt-tolerant Chloris gayana cultivar. In: II Simpósio Internacional sobre Melhoramento de Forrageiras. Embrapa Gado de Corte, Campo Grande, Brazil

    Google Scholar 

  • Roundy BA (1985) Root penetration and shoot elongation of tall wheatgrass and basin wildrye in relation to salinity. Can J Plant Sci 65:335–343

    Article  Google Scholar 

  • Ruiz M, Terenti O (2012) Germination of four grasses under salt stress. Phyton (Buenos Aires) 81:169–176

    Google Scholar 

  • Schrauf G, Alonso Nogara F, Rush P, Peralta Roa P, Musacchio E, Ghio S, Giordano A, Giavedoni JA, Pensiero JF, Tomas PA, Zabala JM, Spangenberg G (2017) Mejoramiento de forrajeras para tolerancia a la salinidad. In: Taleisnik E, Lavado R (eds) Ambientes salinos y alcalinos de la Argentina: Recursos y aprovechamiento productivo. Orientación Gráfica Editora and Universidad Católica de Córdoba, Buenos Aires, pp 467–484

    Google Scholar 

  • Schrauf GE (2009) Aplicación de métodos convencionales y biotecnológicos en el mejoramiento de Paspalum dilatatum Poir. Doctoral Thesis, Universidad de Buenos Aires

    Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Lou GM, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  Google Scholar 

  • Snaydon R (1985) Aspects of the ecological genetics of pasture species. In: Haeck J, Woldendorp JW, Holl N (eds) Structure and functioning of plant populations. North-Holland Pub. Co., Amsterdam

    Google Scholar 

  • Spangenberg G (2005) Transgenesis and genomics in molecular breeding of pasture grasses and legumes for forage quality and other traits. In: Makkar HP, Viljoen GJ (eds) Applications of gene-based technologies for improving animal production and health in developing countries. Springer, Berlin, pp 357–372

    Google Scholar 

  • Spangenberg G, Kalla R, Lidgett A, Sawbridge T, Ong EK, John U (2001) Breeding forage plants in the genome era. In: Spangenberg GC (ed) Molecular breeding of forage crops. Developments in plant breeding. Springer, Dordrecht, pp 1–39

    Google Scholar 

  • Speranza P, Malosetti M (2007) Nuclear and cytoplasmic microsatellite markers for the species of the Dilatata group of Paspalum (Poaceae). Plant Genet Resour C 5:14–26

    Article  CAS  Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Leon RJC (2006) Root strength and trampling tolerance in the grass Paspalum dilatatum and the dicot Lotus glaber in flooded soil. Funct Ecol 20:4–10

    Article  Google Scholar 

  • Taleisnik EL, Anton AM (1988) Salt glands in Pappophorum (Poaceae). Ann Bot 62:383–388

    Google Scholar 

  • Tomas PA, González GE, Schrauf GE, Poggio L (2012) Chromosomal characterization in native populations of Elymus scabrifolius from Argentina through classical and molecular cytogenetics (FISH–GISH). Genome 55:591–598

    Article  CAS  Google Scholar 

  • Tomas PA, Gottlieb AM, Schrauf GE, Poggio L (2013) Utilization of morphological and AFLP molecular markers in the identification of native and cultivated germplasm of Elymus scabrifolius (Poaceae) | Utilización de marcadores morfológicos y moleculares AFLP en la identificación de germoplasma nativo y cult. Rev Fac Cienc Agrar 45:85–100

    Google Scholar 

  • Ungar IA (1995) Seed germination and seed-bank ecology in halophytes. In: Kigel J (ed) Seed development and germination. Routledge, New York, p 30

    Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    Article  CAS  Google Scholar 

  • Yu L-X, Liu X, Boge W, Liu X-P (2016) Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid Alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Front Plant Sci 7:956

    Google Scholar 

  • Zabala JM (2016) Bases fisiológicas y control genético de la exclusión de sodio en agropiro criollo Elymus scabrifolius (Doll) Hunz. Doctoral thesis. Universidad Nacional del Litoral, Argentina

    Google Scholar 

  • Zabala JM, Delbino M, Giavedoni JA, Pensiero JF (2011) Glándulas de sal como criterio de selección y evaluación de la tolerancia a la salinidad en Trichloris crinita y Trichloris pluriflora. In: 2da Reunión de la Red Argentina de Salinidad (RAS). San Miguel de Tucumán, Argentina

    Google Scholar 

  • Zabala JM, Marinoni L, Giavedoni JA, Schrauf GE (2018) Breeding strategies in Melilotus albus Desr., a salt-tolerant forage legume. Euphytica 214:1–15

    Article  Google Scholar 

  • Zabala JM, Schrauf G, Baudracco J, Giavedoni J, Quaino O, Rush P (2012) Selection for late flowering and greater number of basal branches increases the leaf dry matter yield in Melilotus albus Desr. Crop Pasture Sci 63:370–376

    Article  Google Scholar 

  • Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:1000716

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo E. Schrauf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schrauf, G.E. et al. (2021). Genetic Improvement of Perennial Forage Plants for Salt Tolerance. In: Taleisnik, E., Lavado, R.S. (eds) Saline and Alkaline Soils in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-52592-7_20

Download citation

Publish with us

Policies and ethics