Skip to main content

Current Status–Enlightens in Its Biology and Omics Approach on Arbuscular Mycorrhizal Community

  • Chapter
  • First Online:
Symbiotic Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 60))

  • 820 Accesses

Abstract

Symbiotic association has been subject to great heed in part because of the prime of the disease to world agriculture, but also because both host and arbuscular mycorrhizal fungi are persuadable to proceed investigational approaches. The goal of the review is to furnish an overview of the microbial association system and designate concurrent remarkable studies that amend our comprehension of the biology and Omics of VAM fungi. The genomic studies have been organized to long-term well-established areas of investigation, including disease development and the characterization of proteins in relation to host. VAM fungi act as biological control in global sustainable development under varied agroecological regions. VAM fungi illustrate the plant–root/microbial interactions which serves gaining knowledge and a wide out-look of issues in crop production/protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahiabor BD, Hirata H (1994) Characteristic responses of three tropical legumes to the inoculation of two species of VAM fungi in andosol soils with different fertilities. Mycorrhiza 5(1):63–70

    Article  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  CAS  Google Scholar 

  • Alloisio N, Félix S, Maréchal J et al (2007) Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol Plantarium 130:440–453

    Article  CAS  Google Scholar 

  • Bai L, Sun HB, Liang RT, Cai BY (2019) iTRAQ proteomic analysis of continuously cropped soybean root InoculatedWithFunneliformismosseae. Front Microbiol 10:61. https://doi.org/10.3389/fmicb.2019.00061

    Article  Google Scholar 

  • Bapaume L, Laukamm S, Darbon G, Monney C, Meyenhofer F, Feddermann N, Reinhardt D (2019) VAPYRIN marks an endosomal trafficking compartment involved in arbuscular mycorrhizal symbiosis. Front Plant Sci 10:666

    Article  Google Scholar 

  • Barge EG, Cripps CL (2016) New reports, phylogenetic analysis, and a key to Lactarius Pers. in the greater Yellowstone ecosystem informed by molecular data. Mycokeys 15:1–58

    Article  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226. https://doi.org/10.1371/journal.pbio.0040226

    Article  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Gianinazzi S (2004) Proteomics as a tool to monitor plant-microbe endosymbioses in the rhizosphere. Mycorrhiza 14(1):1–10

    Article  CAS  Google Scholar 

  • Błaszkowski J (2010) Two new Glomus spp. Glomus africanum and G. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol Soc America 102(6):1450–1462

    Google Scholar 

  • Błaszkowski J (2017) Taxonomy of arbuscular fungi. http://www.zor.zut.edu.pl/Glomeromycota/Taxonomy.html (consultado diciembre de 2017)

  • Błaszkowski J, Chwat G (2013) Septoglomus deserticola emended and new combinations in the emended definition of the family Diversisporaceae. Acta Mycol 48(1):89–103. https://doi.org/10.5586/am.2013.011

    Article  Google Scholar 

  • Błaszkowski J, Chwat G, Góralska A, Bobrowska-Chwat A (2014) Glomus tetrastratosum, a new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycoscience 30:1–7. https://doi.org/10.1016/j.myc.2015.08.003

  • Błaszkowski J, Chwat G, Góralska A, Ryszka P, Kovács GM (2015) Two new genera, Dominikia and Kamienskia, and D. disticha sp. nov. in Glomeromycota. Nova Hedw 100:225–238. https://doi.org/10.1127/nova_hedwigia/2014/0216

    Article  Google Scholar 

  • Błaszkowski J, Niezgoda P, Piątek M, Magurno F, Malicka M, Zubek S et al (2019) Rhizoglomus dalpeae, R. maiae, and R. silesianum, new species. Mycologia 111(6):965–980

    Article  CAS  Google Scholar 

  • Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:451–457

    Article  CAS  Google Scholar 

  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J et al (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355

    Article  CAS  Google Scholar 

  • Chen EC, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S et al (2018) High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol 220(4):1161–1171

    Article  CAS  Google Scholar 

  • Chimal-Sánchez E, Senés-Guerrero C, Varela L, Montaño NM, García-Sánchez R, Pacheco A et al (2020) Septoglomus mexicanum, a new species of arbuscular mycorrhizal fungi from semiarid regions in Mexico. Mycologia 112(1):121–132

    Article  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula — a model in the making! Commentary. Curr Opin Plant Biol 2:301–304

    Article  CAS  Google Scholar 

  • Corazon-Guivin MA, Cerna-Mendoza A, Guerrero-Abad JC, Vallejos-Tapullima A, Ríos-Ramírez O, Vallejos-Torres G et al (2020) Paraglomus occidentale, a new arbuscular mycorrhizal fungus from the sources of the Amazon river in Peru, with a key to the Paraglomeromycetes species. Sydowia 72:85

    Google Scholar 

  • Crossay T, Cilia A, Cavaloc Y, Amir H, Redecker D (2018) Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia. Mycol Prog 17(6):729–744

    Article  Google Scholar 

  • de Maagd RA, Wijfjes AH, Spaink HP, Ruiz-Sainz JE, Wijffelman CA, Okker RJ, Lugtenberg BJ (1989) nodO, a new nod gene of the rhizobium leguminosarum biovar viciae sym plasmid pRL1JI, encodes a secreted protein. J Bacteriol 171:6764–6770

    Article  Google Scholar 

  • Doré J, Perraud M, Dieryckx C, Kohler A, Morin E, Henrissat B, Lindquist E, Zimmermann SD, Girard V, Kuo A (2015) Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytol 208:1169

    Article  CAS  Google Scholar 

  • Dumas-Gaudot E, Valot B, Bestel-Corre G, Recorbet G, St-Arnaud M, Fontaine B et al (2004) Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices — RiT-DNA carrot root mycorrhizas. FEMS Microbiol Ecol 48:401–411

    Article  CAS  Google Scholar 

  • Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 110(51):E5025–E5034

    Article  CAS  Google Scholar 

  • Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H et al (2012) EstablishmentofaLotusjaponicusgene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69:720–730

    Article  CAS  Google Scholar 

  • Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Connolly M et al (2007) Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Mol Plant-Microbe Interact 20(7):843–856

    Article  CAS  Google Scholar 

  • Garcia-Garrido JM, Tribak M, Rejon-Palomares A, Ocampo JA, Garcia-Romera I (2000) Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J Exp Bot 51(349):1443–1448

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10(1):43–48

    Article  Google Scholar 

  • Gliessman SR (1992) Agroecology in the tropics: achieving a balance between land use and preservation. Environ Mngt 16:681–689

    Google Scholar 

  • Gobbato E, Marsh J, Verníe T, Wang E, Maillet F et al (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241

    Article  CAS  Google Scholar 

  • Göbel C, Hahn A, Hock B (1995) Production of polyclonal and monoclonal antibodies against hyphae from arbuscular mycorrhizal fungi. Crit Rev Biotechnol 15(3–4):293–304

    Article  Google Scholar 

  • Gomes EV, Ulhoa CJ, Cardoza RE, Silva RN, Gutiérrez S (2017) Involvement of Trichoderma harzianum Epl-1 protein in the regulation of Botrytis virulence-and tomato defense-related genes. Front Plant Sci 8:880

    Article  Google Scholar 

  • Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol Plant-Microbe Interact 24:867–878

    Article  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552

    Article  CAS  Google Scholar 

  • Guerreiro N, Redmond JW, Rolfe BG, Djordjevic MA (1997) New rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins. Mol Plant-Microb Interact 10:506–516

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331(1–2):313–327

    Article  CAS  Google Scholar 

  • Hamiaux C, RSM D, Janssen BJ, Ledger SE, Cooney JM et al (2012) DAD2 is an α/βhydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species — opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Haselwandter K (1987) Mycorrhizal infection and its possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angew Bot 61:107–114

    Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  CAS  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  Google Scholar 

  • Herrera-Medina M, Steinkellner S, Vierheilig H, Ocampo Bote J, García Garrido J. (2007) Absicic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  Google Scholar 

  • Ibáñez SG, Medina MI, Agostini E (2011) Phenol tolerance, changes of antioxidative enzymes and cellular damage in transgenic tobacco hairy roots colonized by arbuscular mycorrhizal fungi. Chemosphere 83(5):700–705

    Article  CAS  Google Scholar 

  • Irar S, González EM, Arrese-Igor C, Marino D (2014) A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. Physiol Plant 152(4):634–645

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Nat Acad Sci 104:1720–1725

    Article  CAS  Google Scholar 

  • Jia T, Wang J, Chang W, Fan X, Sui X, Song F (2019) Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal fungi under salt stress. Int J Mol Sci 20(3):788

    Article  CAS  Google Scholar 

  • Jia-Dong H, Tao D, Hui-Hui W, Ying-Ning Z, Qiang-Sheng W, Kamil K (2019) Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci Hortic 243:64–69

    Article  CAS  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D et al (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356(6343):1172–1175

    Article  CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27(9):1153–1159

    Article  CAS  Google Scholar 

  • Joshee N, Mentreddy SR, Yadav AK (2007) Mycorrhizal fungi and growth and development of micropropagated Scutellaria integrifolia plants. Ind Crop Prod 25(2):169–177

    Article  CAS  Google Scholar 

  • Killham K (2002) Bioindicators and sensors of soil health and the application of geostatistics. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, Inc., New York, pp 391–405

    Google Scholar 

  • Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, Kawaguchi M (2018) The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 19(1):465

    Article  CAS  Google Scholar 

  • Kruger M, Kruger C, Walker C, Stockinger H, Schußler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. https://doi.org/10.1111/j.1469-8137.2011.03962.x

    Article  Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. Tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bact 189:8059–8072

    Article  CAS  Google Scholar 

  • Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, González EM (2007) Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol 144(3):1495–1507

    Article  CAS  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  Google Scholar 

  • Lee E-H, Park S-H, Eo J-K (2018) Kang-Hyeon Ka, and Ahn-Heum Eom Acaulosproa koreana, a new species of arbuscular mycorrhizal Fungi (Glomeromycota) associated with roots of Woody plants in Korea. Mycobiology 46(4):341–348

    Article  Google Scholar 

  • Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DG, Mu D et al (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet 10(1):e1004078

    Article  CAS  Google Scholar 

  • Lingua G, Agostino GD, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  Google Scholar 

  • Liu J, Blaylock L, Endre G, Cho J, Town C et al (2003) Transcript profiling coupled with spatial expression analysis reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  Google Scholar 

  • Liu Q, Parsons AJ, Xue H, Jones CS, Rasmussen S (2013) Functional characterization and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizalfungus Funneliformis mosseae. Fungal Genet Biol 54:52–59

    Article  CAS  Google Scholar 

  • Lone R, Shuab R, Sharma V, Kumar V, Mir R, Koul KK (2015) Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian J Crop Sci 7(3):233–243

    Article  Google Scholar 

  • Mamontova T, Afonin AM, Ihling C, Soboleva A, Lukasheva E, Sulima AS, Frolov A (2019) Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules 24(8):1603

    Article  CAS  Google Scholar 

  • Malbreil, M., Tisserant, E., Martin, F., & Roux, C. (2014). Genomics of arbuscular mycorrhizal fungi: out of the shadows. In: Advances in Botanical Research, Vol. 70 Academic Press, pp 259–290

    Google Scholar 

  • Ming-Yuan W, Ren-Xue X, Qiang-Sheng W, Ji-Hong L, Li-Ming H (2007) Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover. Ann Microbiol 57(1):1–7

    Article  Google Scholar 

  • Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interactions between rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22(3):586–598

    Article  CAS  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Murphy CL et al (2019) The extraradical proteins of Rhizophagus irregularis: a shotgun proteomics approach. Fungal Biol 124:91. https://doi.org/10.1016/j.funbio.2019.12.001

    Article  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, southern India. Mycorrhiza 9:297–313

    Article  Google Scholar 

  • O’Connor PJ, Smith SE, Smith AF (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218

    Article  Google Scholar 

  • Oehl M, Brandenburg S, Huemer AK (2019) German bike messengers’ experiences and expressions of cycling anger. Traffic Inj Prev 20(7):753–758

    Article  Google Scholar 

  • Oh HS, Collmer A (2005) Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J 44:348–359

    Article  CAS  Google Scholar 

  • Omar SA (1995) Growth effects of the vesicular-arbuscular mycorrhizal fungus Glomus constrictum on maize plants in pot trials. Folia Microbiol 40(5):503–507

    Article  CAS  Google Scholar 

  • Opik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  Google Scholar 

  • Packer NH, Pawlak A, Kett WC, Gooley AA, Redmond JW, Williams KL (1997) Proteome analysis of glycoforms: A review of strategies for the microcharacterisation of glycoproteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18(3–4):452–460

    Article  CAS  Google Scholar 

  • Pal A, Pandey S (2017) Role of arbuscular mycorrhizal fungi on plant growth and reclamation of barren soil with wheat (Triticum aestivum L.) crop. Int J Soil Sci 12:25–31

    Article  CAS  Google Scholar 

  • Panter S, Thomson R, De Bruxelles G, Laver D, Trevaskis B, Udvardi M (2000) Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol Plant-Microbe Interact 13(3):325–333

    Article  CAS  Google Scholar 

  • Pereira CMR, Goto BT, da Silva DKA, de Ferreira ACA, de Souza FA, da Silva GA, Maia LC, Oehl F (2015) Acaulospora reducta sp. nov. and A. excavata-two glomeromycotan fungi with pitted spores from Brazil. Mycotaxon 130(4):983–995. https://doi.org/10.5248/130.983

    Article  Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  CAS  Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1983) Responses of endomycorrhizal plants grown in a calcined montmorillonite clay to different levels of soluble phosphorus. I Effect on growth and mycorrhizal development. Can J Bot 61(5):1377–1383

    Article  CAS  Google Scholar 

  • Poveda J, Hermosa R, Monte E, Nicolás C (2019) Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Raiesi F, Ghollarata M (2006) Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50(5):413–425

    Article  CAS  Google Scholar 

  • Ramírez-Valdespino CA, Casas-Flores S, Olmedo-Monfil V (2019) Trichoderma as a model to study effector-like molecules. Front Microbiol 10:1030

    Article  Google Scholar 

  • Ramos A, Bandala VM, Montoya L (2017) A new species and a new record of Laccaria (Fungi, Basidiomycota) found in a relict forest of the endangered Fagus grandifolia var. Mexicana Myco Keys 27:77–94

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four-hundred million-year-old vesicular–arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7(3):333–337

    Article  Google Scholar 

  • Saad MM, Staehelin C, Broughton WJ, Deakin WJ (2008) Protein-protein interactions within type III secretion systemdependent pili of rhizobium sp. strain NGR234. J Bacteriol 190:750–754

    Article  CAS  Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales) is nonmonophyletic. Mol Phyl Evol 21:190–197

    Article  CAS  Google Scholar 

  • Simpson D, Daft MJ (1990) Spore production and mycorrhizal development in various tropical crop hosts infected with Glomus clarum. Plant Soil 121(2):171–178

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Sogawa A, Yamazaki A, Yamasaki H, Komi M, Manabe T, Tajima S, Nomura M (2019) SNARE proteins LjVAMP72a and LjVAMP72b are required for root symbiosis and root hair formation in Lotus japonicus. Front Plant Sci 9:1992

    Article  Google Scholar 

  • Song F, Qi D, Liu X, Kong X, Gao Y, Zhou Z et al (2015) Proteomic analysis of symbiotic proteins of glomus mosseae and Amorpha fruticosa. Sci Rep 5:18031

    Article  CAS  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016a) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML et al (2016b) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  Google Scholar 

  • Suarez MB, Sanz L, Chamorro MI, Rey M, Gonzalez FJ, Llobell A et al (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum — identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    Article  CAS  Google Scholar 

  • Sun Z, Song J, Xin XA, Xie X, Zhao B (2018) Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Front Microbiol 9:91

    Article  CAS  Google Scholar 

  • Symanczik S, Al-Yahya’ei MN, Kozłowska A, Ryszka P, Błaszkowski J (2018) A new genus, Desertispora, and a new species, Diversispora sabulosa, in the family Diversisporaceae (order Diversisporales, subphylum Glomeromycotina). Mycol Prog 17(4):437–449

    Article  Google Scholar 

  • Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis, gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187

    Article  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Nat Acad Sci 110:20117–20122

    Article  CAS  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ et al (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    Article  CAS  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15(3):261–272

    Article  Google Scholar 

  • Vidal MT, Azcón-Aguilar C, Barea JM, Pliego-Alfaro F (1992) Mycorrhizal inoculation enhances growth and development of micropropagated plants of avocado. HortScience 27(7):785–787

    Article  Google Scholar 

  • Vincent D, Kohler A, Claverol S, Solier E, Joets J, Gibon J, Lebrun MH, Plomion C, Martin F (2012) Secretome of the free-living mycelium from the ectomycorrhizal basidiomycete laccaria bicolor. J Proteome Res 11:157

    Article  CAS  Google Scholar 

  • Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in rhizobium. Mol Microbiol 28:1381–1389

    Article  CAS  Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in cd polluted soil. Environ Pollut 134(2):257–266

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  Google Scholar 

  • Wewer V, Brands M, Dörmann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus R hizophagus irregularis during mycorrhization of L otus japonicus. Plant J 79(3):398–412

    Article  CAS  Google Scholar 

  • Wilson AW, Hosaka K, Perry BA, Mueller GM (2013) Laccaria (Agaricomycetes, Basidiomycota) from Tibet (Xizang autonomous region, China). Myco Science 54(6):406–419. https://doi.org/10.1016/j.myc.2013.01.006

    Article  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44(1):122–128

    Article  Google Scholar 

  • Zeng T, Holmer R, Hontelez J, te Lintel-Hekkert B, Marufu L, de Zeeuw T et al (2018) Host-and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant J 94(3):411–425

    Article  CAS  Google Scholar 

  • Zhang H, Tang M, Chen H, Tian Z, Xue Y, Feng Y (2010) Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant Soil 326:415–424

    Article  CAS  Google Scholar 

  • Zhao ZW, Xia YM, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, Southwest China. Mycorrhiza 11(3):159–162

    Article  Google Scholar 

  • Zu Y, Ping Y, Mu L, Yang T (2019) The diversity of arbuscular mycorrhizal fungi of Rosa acicularis ‘Luhe’in saline areas. J For Res 30(4):1507–1512

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tulasikorra et al. (2021). Current Status–Enlightens in Its Biology and Omics Approach on Arbuscular Mycorrhizal Community. In: Shrivastava, N., Mahajan, S., Varma, A. (eds) Symbiotic Soil Microorganisms. Soil Biology, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-51916-2_1

Download citation

Publish with us

Policies and ethics