Skip to main content

Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 69))

Abstract

Legume-rhizobia symbiosis has a considerable ecological relevance because it replenishes the soil with fixed-nitrogen (e.g., ammonium) for other plants. Because of this benefit to the environment, the exploitation of the legume-rhizobia symbiosis can contribute to the development of the lower input, sustainable agriculture, thereby, reducing dependency on synthetic fertilizers. To achieve this goal, it is necessary to understand the different levels of regulation of this symbiosis to enhance its nitrogen-fixation efficiency. A different line of evidence attests to the relevance of early molecular events in the establishment of a successful symbiosis between legumes and rhizobia. In this chapter, we will review the early molecular signaling in the legume-rhizobia symbiosis. We will focus on the early molecular responses that are crucial for the recognition of the rhizobia as a potential symbiont.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Broghammer A, Krussel L, Blaise M et al (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharides signal molecules by direct binding. Proc Natl Acad Sci USA 109:13859–13864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-rhizobium symbiosis. Annu Rev Plant Biol 68:535–561

    CAS  PubMed  Google Scholar 

  • Castro-Guerrero NA, Isidra-Arellano MC, Mendoza-Cozatl DG, Valdés-López O (2016) Common bean: a legume model on the rise for unraveling responses and adaptations to iron, zinc, and phosphate deficiencies. Front Plant Sci 7:600

    PubMed  PubMed Central  Google Scholar 

  • Charpentier M, Sun J, Martins TV, Radhakrishnan GV et al (2016) Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352:1102–1105

    CAS  PubMed  Google Scholar 

  • Delaux PM, Varala K, Edger PP, Coruzzi GM, Ané JM (2014) Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 10(7):e1004487

    PubMed  PubMed Central  Google Scholar 

  • Delaux PM, Radhakrishnan GV, Jayaraman D et al (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci USA 112:13390–13395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    PubMed  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    CAS  Google Scholar 

  • Ferguson BJ, Mens C, Hastwell A, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM (2019) Legume nodulation: the host controls the party. Plant Cell Environ 42:41–51

    CAS  PubMed  Google Scholar 

  • Fournier J, Teillet A, Chabaud M et al (2015) Remodeling of the infection chamber before infection thread formation reveals two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiol 167:1233–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    CAS  PubMed  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby J (2003) The nitrogen cascade. Bioscience 53:341–356

    Google Scholar 

  • Genre A, Russo G (2016) Does a common pathway transduce symbiotic signals in plant-microbe interactions? Front Plant Sci 7:96

    PubMed  PubMed Central  Google Scholar 

  • Groth M, Takeda N, Perry J et al (2010) NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhizal fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci USA 107:478–483

    CAS  PubMed  Google Scholar 

  • Hocher V, Alloiso N, Auguy F et al (2011) Transcriptomics of Actinorhizal symbiosis reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumu-Anraku H, Takeda N, Charpentier M, Perry J et al (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 443:527–531

    Google Scholar 

  • Kanamori N, Madsen LH, Radatoiu S et al (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaharada Y, Kelly S, Nielsen MW et al (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312

    CAS  PubMed  Google Scholar 

  • Kawaharada Y, Nielsen MW, Kelly S et al (2017) Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordial. Nat Commun 8:14534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kevei Z, Lougnon G, Mergaert P et al (2007) 3-hydroxy-3-methylglutaryl coenzyme a reductase1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell 19:3974–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Zeng W, Bernard S, Liao J, Venkateshwaran M, Ané JM, Jiang Y (2019) Ca2+-regulated Ca2+ channels with an RCK gating ring control plant symbiotic associations. Nat Commun 10(1):3703

    PubMed  PubMed Central  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011

    Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infections. Proc Natl Acad Sci USA 107:2343–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G (2004) A putative calcium and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1363

    PubMed  Google Scholar 

  • Liu J, Rutten L, Limpens E, van der Molen T et al (2019a) A remote cis-regulatory region is required for NIN expression in the pericycle to initiate nodule primordium formation in Medicago truncatula. Plant Cell 31:68–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CW, Breakspear A, Guan D et al (2019b) NIN acts as a network hub controlling a growth module required for rhizobial infection. Plant Physiol 179:1704–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JB, Pratap A, Miyahara A, Zhou L, Borneman S, Morris RJ, Oldroyd GE (2013) Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. Plant Cell 25:5053–5066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami E, Cheng J, Gysel K et al (2018) Epidermal LysM receptor ensures robust symbiotic signaling in Lotus japonicus. elife 7:e33506

    PubMed  PubMed Central  Google Scholar 

  • Pankievicz VCS, Irving TB, Maia LGS, Ané JM (2019) Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 17:99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peiter E, Sun J, Heckmann AB et al (2007) The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiol 145:192–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    CAS  PubMed  Google Scholar 

  • Rose CM, Venkateshwaran M, Volkening JD et al (2012) Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteomics 11:724–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Liu W, Sekhar R et al (2020) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32:15–41

    CAS  PubMed  Google Scholar 

  • Ryu MH, Zhang J, Toth T et al (2020) Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 5:314–330

    CAS  PubMed  Google Scholar 

  • Saito K, Yoshikawa M, Yano K et al (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiessl K, Lilley JLS, Lee T et al (2019) NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr Biol 29:3657–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Parniske M (2012) Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol 15:444–453

    CAS  PubMed  Google Scholar 

  • Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator orchestrates symbiotic root nodule development. Cell Host Microbe 15:139–152

    CAS  PubMed  Google Scholar 

  • Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK (2020) An endophytic Fusarium-legume association is partially dependent on the common symbiotic signaling pathway. New Phytol 226:1429. https://doi.org/10.1111/nph.16457

    Article  CAS  PubMed  Google Scholar 

  • Soyano T, Kouchi H, Hirota A, Hayashi M (2013) Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9:e1003352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M (2014) NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc Natl Acad Sci USA 111:14607–14612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano T, Shimoda Y, Kawaguchi M, Hayashi M (2019) A shared gene drives lateral root development and root nodule symbiosis pathway in Lotus. Science 366:1021–1023

    CAS  PubMed  Google Scholar 

  • Valdés-López O, Jayaraman D, Maeda J et al (2019) A novel positive regulator of the early stages of root nodule Symbiosis identified by Phosphoproteomics. Plant Cell Physiol 60:575–586

    PubMed  Google Scholar 

  • Venkateshwaran M, Volkening JD, Sussman MR, Ané JM (2013) Symbiosis and the social network of higher plants. Curr Opin Plant Biol 16:118.127

    Google Scholar 

  • Vernié T, Kim J, Frances L et al (2015) The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell 27:3410–3424

    PubMed  PubMed Central  Google Scholar 

  • Wong JEMM, Nadzieja M, Madsen LH et al (2019) A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci USA 116:14339–14348

    PubMed  PubMed Central  Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Olroyd GE, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proc Natl Acad Sci USA 109:633–638

    CAS  PubMed  Google Scholar 

  • Yokota K, Fukai E, Madsen LH et al (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Programa de Apoyo a Proyectos de Investigación e Inovación Tecnológica (PAPIIT-UNAM grants No. IN213017 and IN201320) and by the Consejo Nacional de Ciencia y Tecnología (CONACyT grant No. A1-S-9454) to OV-L. MDRR-S is a Doctoral Student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, and receives a doctoral student fellowship from CONACyT (CVU: 347027). MCI-A is a Doctoral Student from Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, and receives a doctoral student fellowship from CONACyT (CVU: 919676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo Valdés-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdés-López, O., Reyero-Saavedra, M.d.R., Isidra-Arellano, M.C., Sánchez-Correa, M.d.S. (2020). Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?. In: Kloc, M. (eds) Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects. Results and Problems in Cell Differentiation, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-51849-3_15

Download citation

Publish with us

Policies and ethics