Skip to main content

Wavelet-Based Retinal Image Enhancement

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12132))

Included in the following conference series:

Abstract

Retinal images provide a simple non-invasive method for the detection of several eye diseases. However, many factors can result in the degradation of the images’ quality, thus affecting the reliability of the performed diagnosis. Enhancement of retinal images is thus essential to increase the overall image quality. In this work, a wavelet-based retinal image enhancement algorithm is proposed that considers four different common quality issues within retinal images (1) noise removal, (2) sharpening, (3) contrast enhancement and (4) illumination enhancement. Noise removal and sharpening are performed by processing the wavelet detail subbands, such that the upper detail coefficients are eliminated, whereas bilinear mapping is used to enhance the lower detail coefficients based on their relevance. Contrast and illumination enhancement involve applying contrast limited adaptive histogram equalization (CLAHE) and the proposed luminance boosting method to the approximation subband, respectively. Four different retinal image quality measures are computed to assess the proposed algorithm and to compare its performance against four other methods from literature. The comparison showed that the introduced method resulted in the highest overall image improvement followed by spatial CLAHE for all the considered quality measures; thus, indicating the superiority of the proposed wavelet-based enhancement method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO: World Report on vision: executive summary (2019)

    Google Scholar 

  2. Abdel-Hamid, L., El-Rafei, A., El-Ramly, S., Michelson, G., Hornegger, J.: Retinal image quality assessment based on image clarity and content. J. Biomed. Opt. 21(9), 096007 (2016). https://doi.org/10.1117/1.JBO.21.9.096007

    Article  Google Scholar 

  3. Youssif, A.A., Ghalwash, A.Z., Ghoneim, A.S.: Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. In: Cairo International Biomedical Engineering Conference, pp. 1–5 (2006)

    Google Scholar 

  4. Yao, Z., Zhang, Z., Xu, L.Q., Fan, Q., Xu, L.: Generic features for fundus image quality evaluation. In: IEEE 18th International Conference e-Health Networking, Applications and Services (Healthcom), pp. 1–6 (2016). https://doi.org/10.1109/HealthCom.2016.7749522

  5. Yu, H., Agurto, C., Barriga, S., Nemeth, S.C., Soliz, P., Zamora, G.: Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening. In: IEEE Southwest Symposium on Image Analysis Interpretation, pp. 125–128 (2012)

    Google Scholar 

  6. Setiawan, A.W., Mengko, T.R., Santoso, O.S., Suksmono, A.B.: Color retinal image enhancement using CLAHE. In: International Conference on ICT for Smart Society ICISS, pp. 215–217 (2013). https://doi.org/10.1109/ICTSS.2013.6588092

  7. Ramasubramanian, B., Selvaperumal, S.: A comprehensive review on various preprocessing methods in detecting diabetic retinopathy. In: International Conference on Communication Signal Processing ICCSP, pp. 642–646 (2016). https://doi.org/10.1109/ICCSP.2016.7754220

  8. Jintasuttisak, T., Intajag, S.: Color retinal image enhancement by Rayleigh contrast-limited adaptive histogram equalization. In: IEEE 14th International Conference on Control Automation and Systems (ICCAS), pp. 692–697 (2014)

    Google Scholar 

  9. Jin, K., et al.: Computer-aided diagnosis based on enhancement of degraded fundus photographs. Acta Ophthalmol. 96(3), e320–e326 (2018). https://doi.org/10.1111/aos.13573

    Article  Google Scholar 

  10. Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521–527 (2018). https://doi.org/10.1109/TBME.2017.2700627

    Article  Google Scholar 

  11. Sonali, Sahu, S., Singh, A.K., Ghrera, S.P., Elhoseny, M.: An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt. Laser Technol. 110(3), 87–98 (2019). https://doi.org/10.1016/j.optlastec.2018.06.061

  12. Ninassi, A., Le Meur, O., Le Callet, P., Barba, D.: On the performance of human visual system based image quality assessment metric using wavelet domain. In: SPIE Human Vision Electronic Imaging XIII, vol. 6806, pp. 680610–680611 (2008). https://doi.org/10.1117/12.766536

  13. Palanisamy, G., Ponnusamy, P., Gopi, V.P.: An improved luminosity and contrast enhancement framework for feature preservation in color fundus images. Signal Image Video Process. 13(4), 719–726 (2019). https://doi.org/10.1007/s11760-018-1401-y

    Article  Google Scholar 

  14. Soomro, T.A., Gao, J.: Non-invasive contrast normalisation and denosing technique for the retinal fundus image. Ann. Data Sci. 3(3), 265–279 (2016). https://doi.org/10.1007/s40745-016-0079-7

    Article  Google Scholar 

  15. Soomro, T.A., Gao, J., Khan, M.A.U., Khan, T.M., Paul, M.: Role of image contrast enhancement technique for ophthalmologist as diagnostic tool for diabetic retinopathy. In: International Conference on Digital Image Computing: Technical Applications DICTA, pp. 1–8 (2016). https://doi.org/10.1109/DICTA.2016.7797078

  16. Li, D., Zhang, L., Sun, C., Yin, T., Liu, C., Yang, J.: Robust retinal image enhancement via dual-tree complex wavelet transform and morphology-based method. IEEE Access 7, 47303–47316 (2019). https://doi.org/10.1109/ACCESS.2019.2909788

    Article  Google Scholar 

  17. Li, D.M., Zhang, L.J., Yang, J.H., Su, W.: Research on wavelet-based contourlet transform algorithm for adaptive optics image denoising. Optik (Stuttg) 127(12), 5029–5034 (2016). https://doi.org/10.1016/j.ijleo.2016.02.042

    Article  Google Scholar 

  18. Lidong, H., Wei, Z., Jun, W., Zebin, S.: Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Process. 9(10), 908–915 (2015). https://doi.org/10.1049/iet-ipr.2015.0150

    Article  Google Scholar 

  19. Walter, T., Klein, J.C.: Automatic analysis of color fundus photographs and its application to the diagnosis of diabetic retinopathy. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds.) Handbook of Biomedical Image Analysis. ITBE, pp. 315–368. Springer, Boston (2007). https://doi.org/10.1007/0-306-48606-7_7

    Chapter  Google Scholar 

  20. Stefanou, H., Kakouros, S., Cavouras, D., Wallace, M.: Wavelet-based mammographic enhancement. In: 5th International Networking Conference INC, pp. 553–560 (2005)

    Google Scholar 

  21. Jia, C., Nie, S., Zhai, Y., Sun, Y.: Edge detection based on scale multiplication in wavelet domain. Jixie Gongcheng Xuebao/Chin. J. Mech. Eng. 42(1), 191–195 (2006). https://doi.org/10.3901/JME.2006.01.191

    Article  Google Scholar 

  22. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Info. Theory 38(2), 617–643 (1992). https://doi.org/10.1109/18.119727

    Article  MathSciNet  MATH  Google Scholar 

  23. Abdel Hamid, L.S., El-Rafei, A., El-Ramly, S., Michelson, G., Hornegger, J.: No-reference wavelet based retinal image quality assessment. In: 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing VipIMAGE, pp. 123–130 (2016)

    Google Scholar 

  24. Nirmala, S.R., Dandapat, S., Bora, P.K.: Wavelet weighted distortion measure for retinal images. Signal Image Video Process. 7(5), 1005–1014 (2010). https://doi.org/10.1007/s11760-012-0290-8

    Article  Google Scholar 

  25. Köhler, T., Budai, A., Kraus, M.F., Odstrčilik, J., Michelson, G., Hornegger, J.: Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the IEEE 26th Symposium Computer-Based Medical Systems CBMS, pp. 95–100 (2013). https://doi.org/10.1109/CBMS.2013.6627771

  26. Dai, P., Sheng, H., Zhang, J., Li, L., Wu, J., Fan, M.: Retinal fundus image enhancement using the normalized convolution and noise removing. Int. J. Biomed. Imaging (2016). https://doi.org/10.1155/2016/5075612

    Article  Google Scholar 

  27. Abdel-Hamid, L., El-Rafei, A., Michelson, G.: No-reference quality index for color retinal images. Comput. Biol. Med. 90, 68–75 (2017). https://doi.org/10.1016/j.compbiomed.2017.09.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safinaz ElMahmoudy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ElMahmoudy, S., Abdel-Hamid, L., El-Rafei, A., El-Ramly, S. (2020). Wavelet-Based Retinal Image Enhancement. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics