Skip to main content

Bioinspired Sensors and Actuators Based on Stimuli-Responsive Hydrogels for Underwater Soft Robotics

  • Chapter
  • First Online:
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems

Abstract

Various active soft materials have been developed for sensors and actuators inspired by the powerful, dexterous, and adaptive biological muscles found in octopus arms and elephant trunks. Stimuli-responsive hydrogels, a class of water-loaded polymers, exhibit large volume change and actuation strain upon environmental cues, enabling them to absorb and release water up to more than 90% of their total weight. These tissue-like, multifunctional, and multi-responsive hydrogels exhibit attractive sensing and actuation capabilities, qualifying them as potential candidates for artificial muscles used in next-generation underwater soft robotics. This chapter introduces a variety of stimuli-responsive hydrogels that can serve as soft sensors for local environment and strain monitoring, and as powerful actuators capable of rapidly generating high force. Furthermore, these materials can be designed towards self-sensing actuation as a step towards mimicking biological local adaptation and intelligence. Three primary approaches have been taken to engineer materials that closely resemble naturally occurring muscles. Firstly, adaptive coloration in artificial skins has been utilized to mimic the camouflage and environmental detection capabilities of artificial muscle tissue. Secondly, to better approach the high work density of natural muscles, the exerted force and deformation speed of the artificial muscles were significantly enhanced by controlling the storing-releasing mechanism of the hydrogels’ elastic energy. Thirdly, in an effort to approach biological intelligence, hydrogels have been designed to serve as simultaneous sensors and actuators, enabling self-monitoring soft robots and underwater swimming robots with fully self-regulated motion, shape tracking, and propulsion. These recent progresses demonstrate the versatility of smart soft materials and their potential for producing autonomous soft robots with self-diagnostic capability, built-in feedback control, and higher level of autonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Yeo, H.K. Yap, W. Xi, Z.P. Wang, C.H. Yeow, C.T. Lim, Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Advanced Materials Technologies 1(3), 1600018 (2016)

    Article  Google Scholar 

  2. M.A. Mcevoy, N. Correll, Materials that couple sensing, actuation, computation, and communication. Science 347(6228), 1261689 (2015)

    Article  Google Scholar 

  3. S. Kim, C. Laschi, B. Trimmer, Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 31(5), 23–30 (2013)

    Article  Google Scholar 

  4. D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker, Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3) (2008)

    Google Scholar 

  5. H. Zeng, P. Wasylczyk, D.S. Wiersma, A. Priimagi, Light robots: Bridging the gap between microrobotics and photomechanics in soft materials. Adv. Mater. 30(24) (2018)

    Google Scholar 

  6. A. O’Halloran, F. O’Malley, P. Mchugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7) (2008)

    Google Scholar 

  7. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17(16) (2007)

    Google Scholar 

  8. S.-J. Jeon, A.W. Hauser, R.C. Hayward, Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50(2), 161–169 (2017)

    Article  Google Scholar 

  9. T. Wang, Y. Zhang, Q.C. Liu, W. Cheng, X.R. Wang, L.J. Pan, B.X. Xu, H.X. Xu, A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. 28(7), 1705551 (2018)

    Article  Google Scholar 

  10. J.J. Duan, X.C. Liang, J.H. Guo, K.K. Zhu, L.N. Zhang, Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater. 28(36), 8037–8044 (2016)

    Article  Google Scholar 

  11. S. Brady, D. Diamond, K.T. Lau, Inherently conducting polymer modified polyurethane smart foam for pressure sensing. Sens. Actuators A Phys 119(2), 398–404 (2005)

    Article  Google Scholar 

  12. T. Del Castillo-Castro, M.M. Castillo-Ortega, J.C. Encinas, P.J.H. Franco, H.J. Carrillo-Escalante, Piezo-resistance effect in composite based on cross-linked Polydimethylsiloxane and Polyaniline: Potential pressure sensor application. J. Mater. Sci. 47(4), 1794–1802 (2012)

    Article  Google Scholar 

  13. Q. Shao, Z.Q. Niu, M. Hirtz, L. Jiang, Y.J. Liu, Z.H. Wang, X.D. Chen, High-performance and Tailorable pressure sensor based on ultrathin conductive polymer film. Small 10(8), 1466–1472 (2014)

    Article  Google Scholar 

  14. L. Chen, M.J. Liu, L. Lin, T. Zhang, J. Ma, Y.L. Song, L. Jiang, Thermal-responsive hydrogel surface: Tunable wettability and adhesion to oil at the water/solid Interface. Soft Matter 6(12), 2708–2712 (2010)

    Article  Google Scholar 

  15. X.B. Zhang, C.L. Pint, M.H. Lee, B.E. Schubert, A. Jamshidi, K. Takei, H. Ko, A. Gillies, R. Bardhan, J.J. Urban, M. Wu, R. Fearing, A. Javey, Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett. 11(8), 3239–3244 (2011)

    Article  Google Scholar 

  16. D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006)

    Article  Google Scholar 

  17. S.K. De, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, J. Moore, Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. J. Microelectromech. Syst. 11(5), 544–555 (2002)

    Article  Google Scholar 

  18. D. Han, C. Farino, C. Yang, T. Scott, D. Browe, W. Choi, J.W. Freeman, H. Lee, Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl. Mater. Interfaces 10(21), 17512–17518 (2018)

    Article  Google Scholar 

  19. A. Matsumoto, R. Yoshida, K. Kataoka, Glucose-responsive polymer gel bearing Phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5(3), 1038–1045 (2004)

    Article  Google Scholar 

  20. K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1879 (2001)

    Article  Google Scholar 

  21. C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Highly stretchable electroluminescent skin for optical Signaling and tactile sensing. Science 351(6277), 1071–1074 (2016)

    Article  Google Scholar 

  22. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwodiauer, 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 26(1), 149–162 (2014)

    Article  Google Scholar 

  23. C. Keplinger, J.Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z.G. Suo, Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013)

    Article  Google Scholar 

  24. Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53(3), 321–339 (2001)

    Article  Google Scholar 

  25. K.L. Ang, S. Venkatraman, R.V. Ramanujan, Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater. Sci. Eng. C Biomim. Supramol. Syst 27(3), 347–351 (2007)

    Article  Google Scholar 

  26. Y. Mori, H. Tokura, M. Yoshikawa, Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications. J. Mater. Sci. 32(2), 491–496 (1997)

    Article  Google Scholar 

  27. L. Zhao, J.H. Huang, Y.C. Zhang, T. Wang, W.X. Sun, Z. Tong, Programmable and bidirectional bending of soft actuators based on Janus structure with sticky tough PAA-clay hydrogel. ACS Appl. Mater. Interfaces 9(13), 11866–11873 (2017)

    Article  Google Scholar 

  28. Z.S. Liu, P. Calvert, Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12(4), 288–291 (2000)

    Article  Google Scholar 

  29. E.A. Moschou, S.F. Peteu, L.G. Bachas, M.J. Madou, S. Daunert, Artificial muscle material with fast electroactuation under neutral pH conditions. Chem. Mater. 16(12), 2499–2502 (2004)

    Article  Google Scholar 

  30. Z.Y. Lei, P.Y. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10, 3429 (2019)

    Article  Google Scholar 

  31. C.J. Yu, Z. Duan, P.X. Yuan, Y.H. Li, Y.W. Su, X. Zhang, Y.P. Pan, L.L. Dai, R.G. Nuzzo, Y.G. Huang, H.Q. Jiang, J.A. Rogers, Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv. Mater. 25(11), 1541–1546 (2013)

    Article  Google Scholar 

  32. R.C. Luo, J. Wu, N.D. Dinh, C.H. Chen, Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv. Funct. Mater. 25(47), 7272–7279 (2015)

    Article  Google Scholar 

  33. E. Wang, M.S. Desai, S.W. Lee, Light-controlled Graphene-elastin composite hydrogel actuators. Nano Lett. 13(6), 2826–2830 (2013)

    Article  Google Scholar 

  34. M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. R Rep 93, 1–49 (2015)

    Article  Google Scholar 

  35. W. Francis, A. Dunne, C. Delaney, L. Florea, D. Diamond, Spiropyran based hydrogels actuators—Walking in the light. Sens. Actuators B 250, 608–616 (2017)

    Article  Google Scholar 

  36. R.M. Kramer, W.J. Crookes-Goodson, R.R. Naik, The self-organizing properties of squid reflectin protein. Nat. Mater. 6(7), 533–538 (2007)

    Article  Google Scholar 

  37. L. Phan, W.G. Walkup, D.D. Ordinario, E. Karshalev, J.M. Jocson, A.M. Burke, A.A. Gorodetsky, Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25(39), 5621 (2013)

    Article  Google Scholar 

  38. M. Qin, M. Sun, R.B. Bai, Y.Q. Mao, X.S. Qian, D. Sikka, Y. Zhao, H.J. Qi, Z.G. Suo, X.M. He, Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv. Mater. 30(21), 1800468 (2018)

    Article  Google Scholar 

  39. M. Sun, R.B. Bai, X.Y. Yang, J.Q. Song, M. Qin, Z.G. Suo, X.M. He, Hydrogel interferometry for ultrasensitive and highly selective chemical detection. Adv. Mater. 30(46), 1804916 (2018)

    Article  Google Scholar 

  40. M. Qin, M. Sun, M.T. Hua, X.M. He, Bioinspired structural color sensors based on responsive soft materials. Curr. Opin. Solid State Mater. Sci. 23(1), 13–27 (2019)

    Article  Google Scholar 

  41. J. Choi, M. Hua, S.Y. Lee, W. Jo, C.Y. Lo, S.H. Kim, H.T. Kim, X.M. He, Hydrocipher: Bioinspired dynamic structural color-based cryptographic surface. Adv. Opt. Mater. 8(1), 1901259 (2020)

    Article  Google Scholar 

  42. H. Banerjee, M. Suhail, H.L. Ren, Hydrogel actuators and sensors for biomedical soft robots: Brief overview with impending challenges. Biomimetics 3(3), 15 (2018)

    Article  Google Scholar 

  43. H. Yuk, S.T. Lin, C. Ma, M. Takaffoli, N.X. Fang, X.H. Zhao, Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017)

    Article  Google Scholar 

  44. Y.S. Kim, M.J. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. Aida, Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14(10), 1002–1007 (2015)

    Article  Google Scholar 

  45. Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3, 1270 (2012)

    Article  Google Scholar 

  46. S.M. Chin, C.V. Synatschke, S.P. Liu, R.J. Nap, N.A. Sather, Q.F. Wang, Z. Alvarez, A.N. Edelbrock, T. Fyrner, L.C. Palmer, I. Szleifer, M.O. De La Cruz, S.I. Stupp, Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nat. Commun. 9, 2395 (2018)

    Article  Google Scholar 

  47. T. Mirfakhrai, J.D.W. Madden, R.H. Baughman, Polymer artificial muscles. Mater. Today 10(4), 30–38 (2007)

    Article  Google Scholar 

  48. R.E. Godt, B.D. Lindley, Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle-fibers of the frog. J. Gen. Physiol. 80(2), 279–297 (1982)

    Article  Google Scholar 

  49. L.A. Cole, Biology of Life: Biochemistry, Physiology and Philosophy (Academic Press, London, 2016), pp. 1–184

    Book  Google Scholar 

  50. Y.F. Ma, M.T. Hua, S.W. Wu, Y.J. Du, X.W. Pei, F. Zhou, X.M. He, Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil, Sci. Adv. (2020). (accepted)

    Google Scholar 

  51. G.J. Lutz, L.C. Rome, Built for jumping—The design of the frog muscular system. Science 263(5145), 370–372 (1994)

    Article  Google Scholar 

  52. T.J. Roberts, R.L. Marsh, Probing the limits to muscle-powered accelerations: Lessons from jumping bullfrogs. J. Exp. Biol. 206(15), 2567–2580 (2003)

    Article  Google Scholar 

  53. D. Taylor, N. O’Mara, E. Ryan, M. Takaza, C. Simms, The fracture toughness of soft tissues. J. Mech. Behav. Biomed. Mater. 6, 139–147 (2012)

    Article  Google Scholar 

  54. Y.S. Zhao, C.Y. Lo, L.C. Ruan, C.H. Pi, C.G. Kim, Y. Alsaid, I. Frenkel, R. Rico, T.C. Tsao, X.M. He, Somatosensory Actuator Based on Stretchable Conductive Photothermally-Responsive Hydrogel. (Submitted)

    Google Scholar 

  55. X.M. He, M. Aizenberg, O. Kuksenok, L.D. Zarzar, A. Shastri, A.C. Balazs, J. Aizenberg, Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487(7406), 214–218 (2012)

    Article  Google Scholar 

  56. Y.S. Zhao, C. Xuan, X.S. Qian, Y. Alsaid, M.T. Hua, L.H. Jin, X.M. He, Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 4(33), Eaax7112 (2019)

    Article  Google Scholar 

  57. H. Liu, Q.M. Li, S.D. Zhang, R. Yin, X.H. Liu, Y.X. He, K. Dai, C.X. Shan, J. Guo, C.T. Liu, C.Y. Shen, X.J. Wang, N. Wang, Z.C. Wang, R.B. Wei, Z.H. Guo, Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 6(45), 12121–12141 (2018)

    Article  Google Scholar 

  58. L.W. Xia, R. Xie, X.J. Ju, W. Wang, Q.M. Chen, L.Y. Chu, Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4, 2226 (2013)

    Article  Google Scholar 

  59. W. Jayathilaka, K. Qi, Y.L. Qin, A. Chinnappan, W. Serrano-Garcia, C. Baskar, H.B. Wang, J.X. He, S.Z. Cui, S.W. Thomas, S. Ramakrishna, Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 31(7), 1805921 (2019)

    Article  Google Scholar 

  60. E.S. Gil, S.H. Park, L.W. Tien, B. Trimmer, S.M. Hudson, D.L. Kaplan, Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-Isopropylacrylamide)/silk hybrid hydrogels. Langmuir 26(19), 15614–15624 (2010)

    Article  Google Scholar 

  61. X.S. Qian, Y.S. Zhao, Y. Alsaid, X. Wang, M.T. Hua, T. Galy, H. Gopalakrishna, Y.Y. Yang, J.S. Cui, N. Liu, M. Marszewski, L. Pilon, H.Q. Jiang, X.M. He, Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 14(11), 1048 (2019)

    Article  Google Scholar 

  62. K. Kruse, F. Jülicher, Oscillations in cell biology. Curr. Opin. Cell Biol. 17(1), 20–26 (2005)

    Article  Google Scholar 

  63. C. Christianson, N.N. Goldberg, D.D. Deheyn, S. Cai, M.T. Tolley, Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3(17), Eaat1893 (2018)

    Article  Google Scholar 

  64. S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15(6), 647–653 (2016)

    Article  Google Scholar 

  65. B.J. Williams, S.V. Anand, J. Rajagopalan, M.T.A. Saif, A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5(1), 1–8 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lo, CY. et al. (2021). Bioinspired Sensors and Actuators Based on Stimuli-Responsive Hydrogels for Underwater Soft Robotics. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_5

Download citation

Publish with us

Policies and ethics