Skip to main content

Plant Microbiome and Its Important in Stressful Agriculture

  • Chapter
  • First Online:
Plant Microbiome Paradigm

Abstract

The benefits of the green revolution in current agriculture are well-obvious. Use and application of soil and plant microbiome’s potential can overcome part of agricultural limits. The issue of crop production in current world is complicated by decreasing proper farmland, biotic and abiotic stresses and high equipment and labor costs. Therefore, sustainable and appropriate agriculture would depend on the utilization of microorganisms and new methods, which will aid as a marginal approach for more crop yield in the aftertime. The abiotic and biotic stresses are key constraints for food quality, crop yield, and global food security. Effective microbes have a substantial role in biotic and abiotic stresses management, reduce chemical fertilizers and increase the yield of plant cultivar’s by affecting elemental cycling. Additionally, high solicitation for food and crowd everyday increasing, increment necessity of how to use the microbiome for more crop yields and decrease losses affected by environmental stresses. In this chapter the role of the plant microbiome as a new strategy was investigated that may be responsible for increase in crop productivity and eventually by effectively answering biotic and abiotic stresses leads to food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhya TK, Kumar N, Reddy G, Podile AR, Bee H, Samantaray B (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108(7):1280–1287

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Alleviation of fungicide-induced phytotoxicity in greengram (Vigna radiata L.) [Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19(4):451–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    CAS  PubMed  Google Scholar 

  • Alam MA, Seetharam K, Zaidi PH, Dinesh A, Vinayan MT, Nath UK (2017) Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crop Res 204:110–119

    Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46(1):45–55

    CAS  Google Scholar 

  • Armendariz AL, Talano MA, Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci 33:203–210

    CAS  Google Scholar 

  • Arora S, Patel PN, Vanza MJ, Rao GG (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8(17):1779–1788

    Google Scholar 

  • Asgari Lajayer B, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    CAS  PubMed  Google Scholar 

  • Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484

    CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    PubMed  Google Scholar 

  • Bacilio M, Moreno M, Bashan Y (2016) Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl Soil Ecol 107:394–404

    Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    CAS  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1–2):1–3

    CAS  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Solation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366(1-2):93–105

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109(1):8–14

    CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    CAS  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

    CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Yu SM, Lee YH (2015) Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regul 75(1):297–306

    CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? J Hazard Mater 266:141–166

    CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    CAS  PubMed  Google Scholar 

  • Bragina A, Cardinale M, Berg C, Berg G (2013) Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 4:394

    PubMed  PubMed Central  Google Scholar 

  • Bray EA (2000) Response to abiotic stress. In: Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1163

    Google Scholar 

  • Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17(1):239–252

    CAS  PubMed  Google Scholar 

  • Celebi SZ, Demir S, Celebi R, Durak ED, Yilmaz IH (2010) The effect of arbuscular mycorrhizal fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur J Soil Biol 46(5):302–305

    Google Scholar 

  • Chen P, Jeannotte R, Weimer BC (2014) Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier. Trends Microbiol 22(5):292–300

    CAS  PubMed  Google Scholar 

  • Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15(2):299–326

    CAS  Google Scholar 

  • Chithrashree AC, Udayashankar S, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59(2):114–122

    CAS  Google Scholar 

  • Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65(3):1627–1637

    CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    CAS  PubMed  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90

    CAS  PubMed  Google Scholar 

  • Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, Kannan R (2013) Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr J Microbiol Res 7(44):5082–5089

    Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    CAS  PubMed  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores, vol 12. Springer, Berlin, pp 1–42

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17(1):268–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • de la Torre-González A, Navarro-León E, Albacete A, Blasco B, Ruiz JM (2017) Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. J Plant Physiol 216:164–173

    PubMed  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6(2):242–245

    PubMed  Google Scholar 

  • Delangiz N, Behrouzi Varjovi M, Asgari Lajayer B, Ghorbanpour M (2019) The potential of biotechnology for mitigation of greenhouse gasses effects: solutions, challenges, and future perspectives. Arab J Geosci 12(5):174

    Google Scholar 

  • Disante KB, Fuentes D, Cortina J (2011) Response to drought of Zn-stressed Quercus suber L. seedlings. Environ Exp Bot 70(2-3):96–103

    CAS  Google Scholar 

  • Dohroo A, Sharma DR (2012) Role of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their helper bacteria on growth parameters and root rot of apple. World J Sci Technol 2(12):35–38

    Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57(3):423–436

    CAS  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4(3):337

    PubMed  Google Scholar 

  • Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci 22(6):773–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2–3):184–189

    Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht

    Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206

    PubMed  PubMed Central  Google Scholar 

  • Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM (2014) Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biol Biochem 77:261–267

    CAS  Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    CAS  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338(4):241–254

    PubMed  Google Scholar 

  • Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wng MH (2017) Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 583:352–368

    CAS  PubMed  Google Scholar 

  • Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI (2015) Symbiotic options for the conquest of land. Trends Ecol Evol 30(8):477–486

    PubMed  Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056–1071

    CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    CAS  PubMed  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    CAS  Google Scholar 

  • Germida J, Siciliano S (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33(5):410–415

    Google Scholar 

  • Ghassemi S, Farhangi-Abriz S, Faegi-Analou R, Ghorbanpour M, Asgari LB (2018) Monitoring cell energy, physiological functions and grain yield in field-grown mung bean exposed to exogenously applied polyamines under drought stress. J Soil Sci Plant Nutr 18(4):1108–1125

    CAS  Google Scholar 

  • Ghazalibiglar H, Hampton JG, de Jong EV, Holyoake A (2016) Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biol Control 92:195–201

    Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

    PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312

    PubMed  Google Scholar 

  • Gleick PH (1994) Water, war & peace in the Middle East. Environ Sci Policy Sustain Dev 36(3):6–42

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2015) Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J Microbiol Methods 110:7–14

    CAS  PubMed  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20(3):186–194

    CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin

    Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501(7468):S1–S1

    CAS  PubMed  Google Scholar 

  • Guimarães AA, Jaramillo PM, Nóbrega RS, Florentino LA, Silva KB, de Souza Moreira FM (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from soils under agriculture use in the Western Amazon using cowpea as the trap plant. Appl Environ Microbiol AEM-01303

    Google Scholar 

  • Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R. Br. Appl Soil Ecol 64:252–261

    Google Scholar 

  • Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38(6):704–713

    CAS  PubMed  Google Scholar 

  • Hasan MA (2013) Investigation on the nitrogen fixing cyanobacteria (BGA) in Rice fields of north-west region of Bangladesh. III: filamentous (Heterocystous). J Environ Sci Nat Resour 6(1):253–259

    Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23(2):272–281

    CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Google Scholar 

  • Heil M (2001) Induced systemic resistance (ISR) against pathogens–a promising field for ecological research. Perspect Plant Ecol Evol Syst 4(2):65–79

    Google Scholar 

  • Hu S, Gu H, Cui C, Ji R (2016) Toxicity of combined chromium (VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants. Environ Sci Pollut Res 23(15):15227–15235

    CAS  Google Scholar 

  • Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. Plant Biol 13(6):925–931

    CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Bacteria-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci India Sect B: Biol Sci 83(4):561–567

    CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65(2–3):197–209

    Google Scholar 

  • Janoušková M, Pavlíková D, Vosátka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65(11):1959–1965

    PubMed  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356(1–2):265–277

    CAS  Google Scholar 

  • Jiang S, Zhang D, Wang L, Pan J, Liu Y, Kong X, Zhou Y, Li D (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120

    CAS  PubMed  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16(4):321–333

    CAS  PubMed  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182. https://doi.org/10.1016/j.plgene.2019.100182

    Article  CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Google Scholar 

  • Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7:1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang SM, Kim YH, Yun BW, Al-Rawahi A (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    CAS  Google Scholar 

  • Khoshmanzar E, Aliasgharzad N, Neyshabouri MR, Khoshru B, Arzanlou M, Asgari Lajayer B (2019) Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02405-4

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151

    CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    CAS  PubMed  Google Scholar 

  • Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239

    CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    CAS  PubMed  Google Scholar 

  • Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017) Mycorrhizal fungi under biotic and abiotic stress. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International, Cham, pp 57–70

    Google Scholar 

  • Kundu P, Gill R, Nehra A, Sharma KK, Hasanuzzaman M, Prasad R, Tuteja N, Singh Gil SS (2020) Reactive oxygen species (ROS) management in engineered plants for abiotic stress tolerance. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, Netherlands, pp 241–262

    Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90(6):575–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    CAS  PubMed  Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Google Scholar 

  • Lee SW, Ahn IP, Sim SY, Lee SY, Seo MW, Kim S, Park SY, Lee YH, Kang S (2010) Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system. Eur J Plant Pathol 126(1):1–1

    Google Scholar 

  • Leite MC, de Farias AR, Freire FJ, Andreote FD, Kuklinsky-Sobral J, Freire MB (2014) Isolation, bioprospecting and diversity of salt-tolerant bacteria associated with sugarcane in soils of Pernambuco. Brazil Rev Brasileira Engenharia Agrícola Ambiental 18:73–79

    Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58(15-16):4173–4182

    CAS  PubMed  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201

    PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016a) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016b) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    CAS  Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157(4):473–481

    CAS  PubMed  Google Scholar 

  • Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H, Zocchi G, Daffonchio D (2013) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8:e26741

    PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54(3):543

    CAS  PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28(2):115–124

    CAS  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169(7-8):609–615

    CAS  PubMed  Google Scholar 

  • Massad TJ, Dyer LA, Vega G (2012) Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS One 7(10):e47554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015) Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4(4):806–811

    Google Scholar 

  • Mengual C, Schoebitz M, Azcón R, Roldán A (2014) Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. J Environ Manag 134:1–7

    CAS  Google Scholar 

  • Miao Y, Stewart BA, Zhang F (2011) Long-term experiments for sustainable nutrient management in China. A review. Agron Sustain Dev 31(2):397–414

    Google Scholar 

  • Miller GA, Suzuki N, Ciftci-Yilmaz SU, Mittler RO (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    CAS  PubMed  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653

    CAS  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar GH (2009) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Sect B–Soil Plant Sci 59(2):189–196

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    PubMed  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Google Scholar 

  • Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International, Cham, pp 223–232

    Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    CAS  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    CAS  Google Scholar 

  • Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156

    Google Scholar 

  • Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139

    PubMed  PubMed Central  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91(6):727–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11(2):113–121

    Google Scholar 

  • Nonnoi F, Chinnaswamy A, de la Torre VS, de la Pena TC, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. In: Plant genomics. In Tech

    Google Scholar 

  • Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    CAS  PubMed  Google Scholar 

  • Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12

    CAS  PubMed  Google Scholar 

  • Pangesti N, Pineda A, Pieterse CM, Dicke M, Van Loon JJ (2013) Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front Plant Sci 4:414

    PubMed  PubMed Central  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980

    CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    PubMed  PubMed Central  Google Scholar 

  • Penuelas J, Farré-Armengol G, Llusia J, Gargallo-Garriga A, Rico L, Sardans J, Terradas J, Filella I (2014) Removal of floral microbiota reduces floral terpene emissions. Sci Rep 4:6727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14(1):36

    PubMed  PubMed Central  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659–666

    CAS  PubMed  Google Scholar 

  • Prasad R, Garg AP, Varma A (2005) Interaction of medicinal plants with plant growth promoting rhizobacteria and symbiotic fungi. In: Podila GK, Varma A (eds) Basic research and applications of Mycorrhizae, vol 1. IK International, Delhi, pp 363–407

    Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting Rhizobacteria (PGPR) and medicinal plants. Springer International, Cham, pp 247–260

    Google Scholar 

  • Prasad R, Gill SS, Tuteja N (2018) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, Netherlands. ISBN 9780444639882. https://www.elsevier.com/books/crop-improvement-through-microbialbiotechnology/prasad/978-0-444-63987-5

  • Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N (2020) The microbial symbionts: potential for the crop improvement in changing environments. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, Netherlands, pp 233–240

    Google Scholar 

  • Qian J, Li D, Zhan G, Zhang L, Su W, Gao P (2012) Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresour Technol 116:66–73

    CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52(9):1569–1582

    CAS  PubMed  Google Scholar 

  • Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432(2):203–207

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2013) Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J Environ Manag 128:973–980

    CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    CAS  PubMed  Google Scholar 

  • Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 52(2):140–149

    CAS  PubMed  Google Scholar 

  • Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. In: Kader J-C, Delseny M (eds) Advances in botanical research, vol 53. Academic, New York, pp 117–145

    Google Scholar 

  • Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436

    CAS  PubMed  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of ground water depletion in India. Nature 460(7258):999

    CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti CF (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17(2):316–331

    PubMed  Google Scholar 

  • Saghafi D, Ghorbanpour M, Asgari LB (2018) Efficiency of rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18(1):253–268

    CAS  Google Scholar 

  • Saghafi D, Ghorbanpour M, Shirafkan Ajirloo H, Asgari LB (2019a) Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant rhizobium strains containing ACC deaminase activity. Plant Physiol Rep 24(2):225–235

    CAS  Google Scholar 

  • Saghafi D, Delangiz N, Asgari Lajayer B, Ghorbanpour M (2019b) An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech 9:261

    PubMed  PubMed Central  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    CAS  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131(1):15–26

    CAS  Google Scholar 

  • Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10(1):130

    CAS  PubMed  Google Scholar 

  • Sandhya VZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46(1):17–26

    CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960

    CAS  Google Scholar 

  • Sen S, Chandrasekhar CN (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 4:62–67

    Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    CAS  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    CAS  PubMed  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584

    CAS  PubMed  Google Scholar 

  • Silva ED, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JA (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74(10):1130–1137

    Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977

    PubMed  PubMed Central  Google Scholar 

  • Singh R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4(1):1–6

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353

    Google Scholar 

  • Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene. https://doi.org/10.1016/j.plgene.2019.100177

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Biol 27:52–58

    CAS  PubMed  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(5):453–457

    CAS  PubMed  Google Scholar 

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21(3):193–210

    CAS  PubMed  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AM, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

    Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296(1):131–136

    CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203

    CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58

    CAS  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant-Microbe Interact 25(2):241–249

    CAS  PubMed  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49–55

    PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int 1–11

    Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    PubMed  PubMed Central  Google Scholar 

  • Ullah A, Heng S, Munis MF, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59(5):489–496

    CAS  PubMed  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–4

    CAS  Google Scholar 

  • Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    CAS  PubMed  Google Scholar 

  • Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192

    Google Scholar 

  • Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    CAS  Google Scholar 

  • Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17(6):717–726

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–4

    CAS  PubMed  Google Scholar 

  • Wassmann R, Jagadish SV, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40(1):309–348

    CAS  PubMed  Google Scholar 

  • Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa L.). Ecol Eng 62:123–128

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    CAS  PubMed  Google Scholar 

  • Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18(5):1338–1351

    PubMed  Google Scholar 

  • Yi SY, Shirasu K, Moon JS, Lee SG, Kwon SY (2014) The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9(2):e88951

    PubMed  PubMed Central  Google Scholar 

  • Yolcu S, Ozdemir F, Güler A, Bor M (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    CAS  PubMed  Google Scholar 

  • Zabetakis I, Moutevelis-Minakakis P, Gramshaw JW (1999) The role of 2-hydroxypropanal in the biosynthesis of 2, 5-dimethyl-4-hydroxy-2H-furan-3-one in strawberry (Fragaria ananassa, cv. Elsanta) callus cultures. Food Chem 64(3):311–314

    CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77(5):453–460

    Google Scholar 

  • Zhang J, Wang LH, Yang JC, Liu H, Dai JL (2015) Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci Total Environ 508:29–36

    CAS  PubMed  Google Scholar 

  • Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66(2):529–542

    CAS  Google Scholar 

  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khoshru, B., Moharramnejad, S., Gharajeh, N.H., Asgari Lajayer, B., Ghorbanpour, M. (2020). Plant Microbiome and Its Important in Stressful Agriculture. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbiome Paradigm. Springer, Cham. https://doi.org/10.1007/978-3-030-50395-6_2

Download citation

Publish with us

Policies and ethics