Skip to main content

Late Effects in Children and Adolescents with Osteosarcoma

  • Chapter
  • First Online:
Late Treatment Effects and Cancer Survivor Care in the Young

Abstract

Multimodal osteosarcoma therapy according to past and current European and American protocols is described. This includes both local treatment (usually surgery) and systemic antineoplastic therapy, which is often based on high-dose methotrexate, doxorubicin (Adriamycin), cisplatin, and sometimes ifosfamide. As all must be employed at relatively high doses, early and late adverse effects have long been a major research focus. Their long-term late effects on organ function are described, and recommendations for lifelong follow-up are given. These are meant to comply with the evidence-based recommendations of the International Guideline Harmonization Group. Follow-up after surgery of the primary tumor and (endoprosthetic) reconstruction require the expertise of specialized centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffe N, et al. Osteosarcoma: evolution of treatment paradigms. Sarcoma. 2013;2013:203531.

    Article  CAS  Google Scholar 

  2. Jaffe N. Recent advances in the chemotherapy of metastatic osteogenic sarcoma. Cancer. 1972;30(6):1627–31.

    Article  CAS  Google Scholar 

  3. Cortes EP, et al. Amputation and adriamycin in primary osteosarcoma. N Engl J Med. 1974;291(19):998–1000.

    Article  CAS  Google Scholar 

  4. Rosen G, et al. The rationale for multiple drug chemotherapy in the treatment of osteogenic sarcoma. Cancer. 1975;35(3 Suppl):936–45.

    Article  CAS  Google Scholar 

  5. Pagani PA, et al. [Association of radical surgery and cyclic polychemotherapy (with vincristine, methotrexate and adriamycin) in the treatment of some forms of osteosarcoma. Preliminary results]. Chir Organi Mov. 1975;62(1):81–92.

    Google Scholar 

  6. Winkler K, et al. [Chemotherapy of osteosarcoma]. Dtsch Med Wochenschr. 1977;102(50):1831–5.

    Google Scholar 

  7. Winkler K, et al. [Cooperative osteosarcoma study COSS-77: results after 4 years]. Klin Padiatr. 1982;194(4):251–6.

    Google Scholar 

  8. Rosen G, et al. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer. 1976;37(1):1–11.

    Article  CAS  Google Scholar 

  9. Winkler K, et al. Neoadjuvant chemotherapy for osteogenic sarcoma: results of a Cooperative German/Austrian study. J Clin Oncol. 1984;2(6):617–24.

    Article  CAS  Google Scholar 

  10. Bielack S, et al. Osteosarcoma: the COSS experience. Cancer Treat Res. 2009;152:289–308. Review. https://doi.org/10.1007/978-1-4419-0284-9_15.

    Article  Google Scholar 

  11. Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother. 2015;16(18):2727–36. https://doi.org/10.1517/14656566.2015.1102226.

    Article  CAS  Google Scholar 

  12. Luetke A, et al. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32. https://doi.org/10.1016/j.ctrv.2013.11.006.

    Article  Google Scholar 

  13. Whelan JS, et al. EURAMOS-1, an international randomised study for osteosarcoma: results from pre-randomisation treatment. Ann Oncol. 2015;26(2):407–14. https://doi.org/10.1093/annonc/mdu526. Epub 2014 Nov 24.

    Article  CAS  Google Scholar 

  14. Bielack SS, et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol. 2015;33(20):2279–87. https://doi.org/10.1200/JCO.2014.60.0734.

    Article  CAS  Google Scholar 

  15. Marina NM, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408. https://doi.org/10.1016/S1470-2045(16)30214-5.

    Article  Google Scholar 

  16. Schwarz R, et al. The role of radiotherapy in osteosarcoma. Cancer Treat Res. 2009;152:147–64. https://doi.org/10.1007/978-1-4419-0284-9_7.

    Article  Google Scholar 

  17. Beck JD, et al. After-care of children and young adults surviving cancer. Initial recommendations by the late sequelae study group. Klin Pädiatr. 1995;207(4):186–92. German.

    Article  CAS  Google Scholar 

  18. Langer T, et al. Basic methods and the developing structure of a late effects surveillance system (LESS) in the long-term follow-up of pediatric cancer patients in Germany. For the German Late Effects Study Group in the German Society Pediatric Oncology and Hematology (GPOH). Med Pediatr Oncol. 2000;34(5):348–51.

    Article  CAS  Google Scholar 

  19. Langer T, et al. Late effects surveillance system for sarcoma patients. Pediatr Blood Cancer. 2004;42:373–9.

    Article  Google Scholar 

  20. Winkler K, et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol. 1988;6(2):329–37.

    Article  CAS  Google Scholar 

  21. Le Deley MC, et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur J Cancer. 2007;43:752–61.

    Article  CAS  Google Scholar 

  22. Paulides M, et al. Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report of the Late Effects Surveillance System (LESS). Pediatr Blood Cancer. 2006;46:489–95.

    Article  CAS  Google Scholar 

  23. Armenian SH, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36. https://doi.org/10.1016/S1470-2045(14)70409-7.

    Article  Google Scholar 

  24. Fuchs N, et al. Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group’s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann Oncol. 1998;9(8):893–9.

    Article  CAS  Google Scholar 

  25. Schwartz CL, et al. Intensified chemotherapy with dexrazoxane cardioprotection in newly diagnosed nonmetastatic osteosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2016;63(1):54–61.

    Article  CAS  Google Scholar 

  26. Bielack SS, et al. Impact of scheduling on toxicity and clinical efficacy of doxorubicin: what do we know in the mid-nineties? Eur J Cancer. 1996;32A(10):1652–60.

    Article  CAS  Google Scholar 

  27. Conway A, et al. The prevention, detection and management of cancer treatment-induced cardiotoxicity: a meta-review. BMC Cancer. 2015;15:366. https://doi.org/10.1186/s12885-015-1407-6.

    Article  CAS  Google Scholar 

  28. Lipshultz SE, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130(6):1003–11.

    Article  Google Scholar 

  29. Tebbi CK, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25(5):493–500.

    Article  CAS  Google Scholar 

  30. Asselin BL, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62. https://doi.org/10.1200/JCO.2015.60.8851. Epub 2015 Dec 23.

    Article  CAS  Google Scholar 

  31. Seif AE, et al. Dexrazoxane exposure and risk of secondary acute myeloid leukemia in pediatric oncology patients. Pediatr Blood Cancer. 2015;62(4):704–9. https://doi.org/10.1002/pbc.25043. Epub 2014 Mar 26.

    Article  CAS  Google Scholar 

  32. Shaikh F, et al. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2015;108(4):djv357. https://doi.org/10.1093/jnci/djv357.

    Article  CAS  Google Scholar 

  33. Stöhr W, et al. Nephrotoxicity of cisplatin and carboplatin in sarcoma patients: a report from the late effects surveillance system. Pediatr Blood Cancer. 2007;48(2):140–7.

    Article  Google Scholar 

  34. Stöhr W, et al. Cisplatin-induced ototoxicity in osteosarcoma patients: a report from the Late effects Surveillance System. Cancer Investig. 2005;23:201–7.

    Article  CAS  Google Scholar 

  35. Nitz A, et al. Prospective evaluation of cisplatin- and carboplatin-mediated ototoxicity in paediatric and adult soft tissue and osteosarcoma patients. Oncol Lett. 2013;5(1):311–5.

    Article  CAS  Google Scholar 

  36. Clemens E, et al. Determinants of ototoxicity in 451 platinum-treated Dutch survivors of childhood cancer: a DCOG late-effects study. Eur J Cancer. 2016;69:77–85. https://doi.org/10.1016/j.ejca.2016.09.023. Epub 2016 Nov 4.

  37. Petrilli AS, et al. Use of amifostine in the therapy of osteosarcoma in children and adolescents. J Pediatr Hematol Oncol. 2002;24(3):188–91.

    Article  Google Scholar 

  38. Gallegos-Castorena S, et al. Toxicity prevention with amifostine in pediatric osteosarcoma patients treated with cisplatin and doxorubicin. Pediatr Hematol Oncol. 2007;24(6):403–8.

    Article  CAS  Google Scholar 

  39. van As JW, et al. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev. 2016;9:CD009219. [Epub ahead of print].

    Google Scholar 

  40. van As JW, et al. Different infusion durations for preventing platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev. 2016;8:CD010885. https://doi.org/10.1002/14651858.CD010885.pub3.

    Article  Google Scholar 

  41. Chow EJ, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2016;17(5):567–76. https://doi.org/10.1016/S1470-2045(16)00086-3. Epub 2016 Mar 22.

    Article  Google Scholar 

  42. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703.

    Article  CAS  Google Scholar 

  43. Christensen AM, et al. Resumption of high-dose methotrexate after acute kidney injury and glucarpidase use in pediatric oncology patients. Cancer. 2012;118(17):4321–30.

    Article  CAS  Google Scholar 

  44. Grönroos MH, et al. Long-term follow-up of renal function after high-dose methotrexate treatment in children. Pediatr Blood Cancer. 2008;51(4):535–9.

    Article  Google Scholar 

  45. Janeway KA, Grier HE. Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol. 2010;11(7):670–8.

    Article  Google Scholar 

  46. Lien HH, et al. Osteogenic sarcoma: MR signal abnormalities of the brain in asymptomatic patients treated with high-dose methotrexate. Radiology. 1991;179(2):547–50.

    Article  CAS  Google Scholar 

  47. Krull KR, et al. Neurocognitive outcomes decades after treatment for childhood acute lymphoblastic leukemia: a report from the St Jude lifetime cohort study. J Clin Oncol. 2013;31(35):4407–15.

    Article  Google Scholar 

  48. Landier W, et al. Development of risk-based guidelines for pediatric cancer survivors: the Children’s Oncology Group long-term follow-up guidelines from the Children’s Oncology Group Late Effects Committee and Nursing Discipline. J Clin Oncol. 2004;22(24):4979–90.

    Article  Google Scholar 

  49. Edelmann MN, et al. Neurocognitive and patient-reported outcomes in adult survivors of childhood osteosarcoma. JAMA Oncol. 2016;2(2):201–8.

    Article  Google Scholar 

  50. Peddi PF, et al. Central nervous system toxicities of chemotherapeutic agents. Expert Rev Anticancer Ther. 2014;14(7):857–63. https://doi.org/10.1586/14737140.2014.911089. Epub 2014 Apr 21.

    Article  CAS  Google Scholar 

  51. Skinner R. Nephrotoxicity—what do we know and what don’t we know? J Pediatr Hematol Oncol. 2011;33(2):128–34. https://doi.org/10.1097/MPH.0b013e3181f8cac0.

    Article  Google Scholar 

  52. Loebstein R, et al. Risk factors for long-term outcome of ifosfamide-induced nephrotoxicity in children. J Clin Pharmacol. 1999;39(5):454–61.

    Article  CAS  Google Scholar 

  53. Skinner R, et al. Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer. 2000;82(10):1636–45.

    CAS  Google Scholar 

  54. Stöhr W, et al. Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer. 2007;48(4):447–52.

    Article  Google Scholar 

  55. Piperno-Neumann S, et al. Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17(8):1070–80.

    Article  CAS  Google Scholar 

  56. Williams D, et al. Does ifosfamide affect gonadal function? Pediatr Blood Cancer. 2008;50(2):347–51.

    Article  Google Scholar 

  57. Longhi A, et al. Fertility in male patients treated with neoadjuvant chemotherapy for osteosarcoma. J Pediatr Hematol Oncol. 2003;25(4):292–6.

    Article  Google Scholar 

  58. Thomas-Teinturier C, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2015;30(6):1437–46.

    Article  CAS  Google Scholar 

  59. Meyers PA, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633–8. https://doi.org/10.1200/JCO.2008.14.0095.

    Article  CAS  Google Scholar 

  60. Anderson PM, et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments. Pediatr Blood Cancer. 2014;61(2):238–44.

    Article  Google Scholar 

  61. Mifamurtide: osteosarcoma: ineffective and harmful. Prescrire Int. 2011;20(115):89.

    Google Scholar 

  62. Kempf-Bielack B, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68.

    Article  Google Scholar 

  63. Bielack SS, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol. 2009;27(4):557–65. https://doi.org/10.1200/JCO.2008.16.2305.

    Article  Google Scholar 

  64. van Maldegem AM, et al. Comprehensive analysis of published phase I/II clinical trials between 1990-2010 in osteosarcoma and Ewing sarcoma confirms limited outcomes and need for translational investment. Clin Sarcoma Res. 2012;2(1):5. https://doi.org/10.1186/2045-3329-2-5.

    Article  CAS  Google Scholar 

  65. Omer N, et al. Phase-II trials in osteosarcoma recurrences: a systematic review of past experience. Eur J Cancer. 2017;75:98–108. https://doi.org/10.1016/j.ejca.2017.01.005.

    Article  Google Scholar 

  66. Grignani G, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16(1):98–107. https://doi.org/10.1016/S1470-2045(14)71136-2.

    Article  CAS  Google Scholar 

  67. Penel-Page M, et al. Off-label use of targeted therapies in osteosarcomas: data from the French registry OUTC’S (Observatoire de l’Utilisation des Thérapies Ciblées dans les Sarcomes). BMC Cancer. 2015;15:854.

    Article  CAS  Google Scholar 

  68. Paoluzzi L, et al. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin Sarcoma Res. 2016;6:24. eCollection 2016. https://doi.org/10.1186/s13569-016-0064-0.

    Article  CAS  Google Scholar 

  69. Grimer RJ, et al. Very long-term outcomes after endoprosthetic replacement for malignant tumours of bone. Bone Joint J. 2016;98-B(6):857–64. https://doi.org/10.1302/0301-620X.98B6.37417.

    Article  CAS  Google Scholar 

  70. Schinhan M, et al. Extendible prostheses for children after resection of primary malignant bone tumor: twenty-seven years of experience. J Bone Joint Surg Am. 2015;97(19):1585–91. https://doi.org/10.2106/JBJS.N.00892.

    Article  CAS  Google Scholar 

  71. Barrera M, et al. Sexual function in adolescent and young adult survivors of lower extremity bone tumors. Pediatr Blood Cancer. 2010;55(7):1370–6. https://doi.org/10.1002/pbc.22761.

    Article  Google Scholar 

  72. Denbo JW, et al. Long-term pulmonary function after metastasectomy for childhood osteosarcoma: a report from the St Jude lifetime cohort study. J Am Coll Surg. 2014;219(2):265–71.

    Article  Google Scholar 

  73. Paulino AC. Late effects of radiotherapy for pediatric extremity sarcomas. Int J Radiat Oncol Biol Phys. 2004;60(1):265–74.

    Article  Google Scholar 

  74. Burgers JM, et al. Osteosarcoma of the limbs. Report of the EORTC-SIOP 03 trial 20781 investigating the value of adjuvant treatment with chemotherapy and/or prophylactic lung irradiation. Cancer. 1988;61(5):1024–31.

    Article  CAS  Google Scholar 

  75. Craft AW, Burgers JM. The European Osteosarcoma Intergroup (E.O.I.) studies 1980-1991. Cancer Treat Res. 1993;62:279–86.

    Article  CAS  Google Scholar 

  76. Min SS, Wierzbicki AS. Radiotherapy, chemotherapy and atherosclerosis. Curr Opin Cardiol. 2017;32(4):441–7. https://doi.org/10.1097/HCO.0000000000000404.

    Article  Google Scholar 

  77. Ivins JC, et al. Elective whole-lung irradiation in osteosarcoma treatment: appearance of bilateral breast cancer in two long-term survivors. Skelet Radiol. 1987;16(2):133–5.

    Article  CAS  Google Scholar 

  78. Thompson DK, et al. Breast cancer in a man 30 years after radiation for metastatic osteogenic sarcoma. Cancer. 1979;44(6):2362–5.

    Article  CAS  Google Scholar 

  79. Robbins E. Radiation risks from imaging studies in children with cancer. Pediatr Blood Cancer. 2008;51(4):453–7.

    Article  Google Scholar 

  80. Haupt R, et al. Long term survivors of childhood cancer: cure and care. The Erice statement. Eur J Cancer. 2007;43(12):1778–80.

    Article  Google Scholar 

  81. Hjorth L, et al. Survivorship after childhood cancer: PanCare: a European Network to promote optimal long-term care. Eur J Cancer. 2015;51(10):1203–11. https://doi.org/10.1016/j.ejca.2015.04.002. Epub 2015 May 6.

    Article  Google Scholar 

  82. Byrne J, et al. PanCareLIFE: the scientific basis for a European project to improve long-term care regarding fertility, ototoxicity and health-related quality of life after cancer occurring among children and adolescents. Eur J Cancer. 2018;103:227–37. https://doi.org/10.1016/j.ejca.2018.08.007.

    Article  Google Scholar 

  83. Michel G, et al. Evidence-based recommendations for the organization of long-term follow-up care for childhood and adolescent cancer survivors: a report from the PanCareSurFup Guidelines Working Group. J Cancer Surviv. 2019;13(5):759–72. Review. https://doi.org/10.1007/s11764-019-00795-5. Epub 2019 Aug 8.

  84. Akam-Venkata J, et al. Late cardiotoxicity: issues for childhood cancer survivors. Curr Treat Options Cardiovasc Med. 2016;18(7):47. https://doi.org/10.1007/s11936-016-0466-6.

    Article  Google Scholar 

  85. Rossi R, et al. Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediatr Oncol. 1999;32(3):177–82.

    Article  CAS  Google Scholar 

  86. Green DM, et al. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2374–81. https://doi.org/10.1200/JCO.2008.21.1839. Epub 2009 Apr 13.

    Article  Google Scholar 

  87. Signorello LB, et al. Congenital anomalies in the children of cancer survivors: a report from the childhood cancer survivor study. J Clin Oncol. 2012;30(3):239–45. https://doi.org/10.1200/JCO.2011.37.2938. Epub 2011 Dec 12.

    Article  Google Scholar 

  88. Nagarajan R, Robison LL. Pregnancy outcomes in survivors of childhood cancer. J Natl Cancer Inst Monogr. 2005;34:72–6.

    Article  Google Scholar 

  89. Mathews JD, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. https://doi.org/10.1136/bmj.f2360.

    Article  Google Scholar 

  90. Zhang J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46. https://doi.org/10.1056/NEJMoa1508054.

    Article  CAS  Google Scholar 

  91. Chauveinc L, et al. Osteosarcoma following retinoblastoma: age at onset and latency period. Ophthalmic Genet. 2001;22(2):77–88.

    Article  CAS  Google Scholar 

  92. Ripperger T, et al. Childhood cancer predisposition syndromes—a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173(4):1017–37.

    Article  Google Scholar 

  93. Mirabello L, et al. Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst. 2015;107(7):djv101.

    Article  CAS  Google Scholar 

  94. Mai PL, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122(23):3673–81.

    Article  CAS  Google Scholar 

  95. Longhi A, et al. Late effects of chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients: the Italian Sarcoma Group Experience (1983-2006). Cancer. 2012;118(20):5050–9. https://doi.org/10.1002/cncr.27493. Epub 2012 Mar 13.

    Article  Google Scholar 

  96. Tan BY, et al. Phyllodes tumours of the breast: a consensus review. Histopathology. 2016;68(1):5–21.

    Article  Google Scholar 

  97. Jaing TH, et al. Phyllodes tumor in survivors of childhood osteosarcoma: a single institution’s experience. J Pediatr Hematol Oncol. 2014;36(1):e36–8.

    Article  Google Scholar 

  98. Bielack SS, et al. More on osteosarcoma and phylloides tumor. J Pediatr Hematol Oncol. 2015;37(2):158–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bielack, S.S., Hecker-Nolting, S., Beck, J.D. (2021). Late Effects in Children and Adolescents with Osteosarcoma. In: Beck, J.D., Bokemeyer, C., Langer, T. (eds) Late Treatment Effects and Cancer Survivor Care in the Young. Springer, Cham. https://doi.org/10.1007/978-3-030-49140-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49140-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49138-3

  • Online ISBN: 978-3-030-49140-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics