Skip to main content

SLP1 and SLP2: Ancient Chloroplast and Mitochondrial Protein Phosphatases

  • Chapter
  • First Online:
Protein Phosphatases and Stress Management in Plants

Abstract

The plant Shewanella-like PPP protein phosphatases, SLP1 and SLP2, are localized to the chloroplast and mitochondria, respectively. Originally uncovered through bioinformatics, these enzymes have been proven to be bona fide protein serine/threonine phosphatases that originated in bacteria but display limited distribution across eukaryotes. They are remarkably conserved in plants, suggesting they play fundamental roles in plant chloroplast and mitochondrial biology. SLP1 appears to reside in the stromal or soluble fraction of chloroplasts and is not expressed in non-photosynthetic plastids. SLP2 is found in peroxisomes but is predominately localized to mitochondria and specifically in the mitochondrial intermembrane space. Like many proteins destined for the mitochondrial intermembrane space, SLP2 is retained here by the formation of disulfide bonds generated by association with oxidoreductase Mia40. We review the unique aspects of these plant enzymes and discuss the use of quantitative mass spectrometry (MS) to discover protein phosphatase substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam K, Hunter T (2018) Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Lab Investig 98:233–247

    Article  CAS  Google Scholar 

  • Andreeva AV, Kutuzov MA (2004) Widespread presence of “bacterial-like” PPP phosphatases in eukaryotes. BMC Evol Biol 4:47

    Article  Google Scholar 

  • Baginsky S, Gruissem W (2009) The chloroplast kinase network: new insights from large-scale phosphoproteome profiling. Mol Plant 2:1141–1153

    Article  CAS  Google Scholar 

  • Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346

    Article  CAS  Google Scholar 

  • Bollen M, Peti W, Ragusa MJ, Beullens M (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35:450–458

    Article  CAS  Google Scholar 

  • Brautigan DL, Shenolikar S (2018) Protein serine/threonine phosphatases: keys to unlocking regulators and substrates. Annu Rev Biochem 87:921–964

    Google Scholar 

  • Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980

    CAS  PubMed  Google Scholar 

  • Bykova NV, Egsgaard H, Moller IM (2003) Identification of 14 new phosphoproteins involved in important plant mitochondrial processes. FEBS Lett 540:141–146

    Article  CAS  Google Scholar 

  • Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuan Szklarz LK, Schulze-Specking A, Truscott KN, Guiard B, Meisinger C, Pfanner N (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23:3735–3746

    Article  CAS  Google Scholar 

  • Chen MJ, Dixon JE, Manning G (2017) Genomics and evolution of protein phosphatases. Sci Signal 10:eaag1796

    Article  Google Scholar 

  • Grimsrud PA, Carson JJ, Hebert AS, Hubler SL, Niemi NM, Bailey DJ, Jochem A, Stapleton DS, Keller MP, Westphall MS, Yandell BS, Attie AD, Coon JJ, Pagliarini DJ (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16:672–683

    Article  CAS  Google Scholar 

  • Havelund JF, Thelen JJ, Moller IM (2013) Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells. Front Plant Sci 4:51

    Article  Google Scholar 

  • Heroes E, Lesage B, Gornemann J, Beullens M, Van Meervelt L, Bollen M (2013) The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J 280:584–595

    Article  CAS  Google Scholar 

  • Kataya AR, Muench DG, Moorhead G (2019) A framework to investigate peroxisomal protein phosphorylation in arabidopsis. Trends Plant Sci 24:366–381

    Article  CAS  Google Scholar 

  • Kerk D, Templeton G, Moorhead GB (2008) Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146:351–367

    Article  CAS  Google Scholar 

  • Law YS, Ngan L, Yan J, Kwok LY, Sun Y, Cheng S, Schwenkert S, Lim BL (2018) Multiple kinases can phosphorylate the N-terminal sequences of mitochondrial proteins in Arabidopsis thaliana. Front Plant Sci 9:982

    Article  Google Scholar 

  • Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A 62:234–241

    Article  CAS  Google Scholar 

  • Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069

    Article  CAS  Google Scholar 

  • Miernyk JA, Randall DD (1987) Some properties of pea mitochondrial phospho-pyruvate dehydrogenase-phosphatase. Plant Physiol 83:311–315

    Article  CAS  Google Scholar 

  • Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8:234–244

    Article  CAS  Google Scholar 

  • Moorhead GB, Trinkle-Mulcahy L, Nimick M, De Wever V, Campbell DG, Gourlay R, Lam YW, Lamond AI (2008) Displacement affinity chromatography of protein phosphatase one (PP1) complexes. BMC Biochem 9:28

    Article  Google Scholar 

  • Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417:401–409

    Article  CAS  Google Scholar 

  • Nasa I, Rusin SF, Kettenbach AN, Moorhead GB (2018) Aurora B opposes PP1 function in mitosis by phosphorylating the conserved PP1-binding RVxF motif in PP1 regulatory proteins. Sci Signal 11:eaai8669

    Article  Google Scholar 

  • Oeljeklaus S, Schummer A, Mastalski T, Platta HW, Warscheid B (2016) Regulation of peroxisome dynamics by phosphorylation. Biochim Biophys Acta 1863:1027–1037

    Article  CAS  Google Scholar 

  • Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34

    Article  CAS  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  CAS  Google Scholar 

  • Richter AS, Gartmann H, Fechler M, Rodiger A, Baginsky S, Grimm B (2016) Identification of four plastid-localized protein kinases. FEBS Lett 590:1749–1756

    Article  CAS  Google Scholar 

  • Rusin SF, Schlosser KA, Adamo ME, Kettenbach AN (2015) Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells. Sci Signal 8:rs12

    Article  Google Scholar 

  • Sharma K, D’Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8:1583–1594

    Article  CAS  Google Scholar 

  • Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  CAS  Google Scholar 

  • Silver DM, Kotting O, Moorhead GB (2014) Phosphoglucan phosphatase function sheds light on starch degradation. Trends Plant Sci 19:471–478

    Article  CAS  Google Scholar 

  • Uhrig RG, Moorhead GB (2011) Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties. Plant Physiol 157:1778–1792

    Article  CAS  Google Scholar 

  • Uhrig RG, Moorhead G (2017) AtSLP2 is an intronless protein phosphatase that co-expresses with intronless mitochondrial pentatricopeptide repeat (PPR) and tetratricopeptide (TPR) protein encoding genes. Plant Signal Behav 12:e1307493

    Article  Google Scholar 

  • Uhrig RG, Labandera AM, Moorhead GB (2013a) Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci 18:505–513

    Article  CAS  Google Scholar 

  • Uhrig RG, Kerk D, Moorhead GB (2013b) Evolution of bacteria-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. Plant Physiol 163:1829–1843

    Article  CAS  Google Scholar 

  • Uhrig RG, Labandera AM, Muhammad J, Samuel M, Moorhead GB (2016) Rhizobiales-like phosphatase 2 from Arabidopsis thaliana is a novel phospho-tyrosine-specific phospho-protein phosphatase (PPP) family protein phosphatase. J Biol Chem 291:5926–5934

    Article  CAS  Google Scholar 

  • Uhrig RG, Labandera AM, Tang LY, Sieben NA, Goudreault M, Yeung E, Gingras AC, Samuel MA, Moorhead GB (2017) Activation of mitochondrial protein phosphatase SLP2 by MIA40 regulates seed germination. Plant Physiol 173:956–969

    Article  CAS  Google Scholar 

  • van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–2389

    Article  Google Scholar 

  • White-Gloria C, Johnson JJ, Marritt K, Kataya A, Vahab A, Moorhead GB (2018) Protein kinases and phosphatases of the plastid and their potential role in starch metabolism. Front Plant Sci 9:1032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg B. Moorhead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, J.J., White-Gloria, C., Toth, R., Labandera, AM., Uhrig, R.G., Moorhead, G.B. (2020). SLP1 and SLP2: Ancient Chloroplast and Mitochondrial Protein Phosphatases. In: Pandey, G.K. (eds) Protein Phosphatases and Stress Management in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-48733-1_1

Download citation

Publish with us

Policies and ethics