Skip to main content

Lipoproteins and the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

The tumor microenvironment (TME) plays a key role in enhancing the growth of malignant tumors and thus contributing to “aggressive phenotypes,” supporting sustained tumor growth and metastasis. The precise interplay between the numerous components of the TME that contribute to the emergence of these aggressive phenotypes is yet to be elucidated and currently under intense investigation. The purpose of this article is to identify specific role(s) for lipoproteins as part of these processes that facilitate (or oppose) malignant growth as they interact with specific components of the TME during tumor development and treatment. Because of the scarcity of literature reports regarding the interaction of lipoproteins with the components of the tumor microenvironment, we were compelled to explore topics that were only tangentially related to this topic, to ensure that we have not missed any important concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacko AG, Nair M, Paranjape S, Mooberry L, McConathy WJ (2006) Trojan horse meets magic bullet to spawn a novel, highly effective drug delivery model. Chemotherapy 52(4):171–173. Review. PMID: 16691026

    Article  CAS  PubMed  Google Scholar 

  2. Counsell RE, Pohland RC (1982) Lipoproteins as potential site-specific delivery systems for diagnostic and therapeutic agents. J Med Chem 25(10):1115–1120

    Article  CAS  PubMed  Google Scholar 

  3. Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG (2016) Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Front Pharmacol 7:466. https://doi.org/10.3389/fphar.2016.00466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anantharamaiah GM, Garber DW, White CR (2016) Apolipoprotein mimetic peptides as modulators of lipoprotein function. Protein Pept Lett 23(11):1024–1031. PMID: 27586181

    Article  CAS  PubMed  Google Scholar 

  5. Foster DS et al (2018) The evolving relationship of wound healing and tumor stroma. JCI Insight 3(18):e99911. https://doi.org/10.1172/jci.insight.99911

    Article  PubMed Central  Google Scholar 

  6. Wang M, Zhao J, Zhang L, Wei F (2017) Role of tumor microenvironment in tumorigenesis. J. Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  Google Scholar 

  7. Denton AE, Roberts EW, Fearon DT (2018) Stromal cells in the tumor microenvironment. Adv Exp Med Biol 1060:99–114

    Article  CAS  PubMed  Google Scholar 

  8. Wei S, Chang A, Zou W (2007) Immune escape: immunosupressive networks. In: Cancer immunotherapy. Springer, Cham, pp 83–97

    Chapter  Google Scholar 

  9. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiche J, Brahimi-Horn M-C, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14(4):771–794. https://doi.org/10.1111/j.1582-4934.2009.00994.x

    Article  CAS  PubMed  Google Scholar 

  11. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252; Epub 12 Mar 2008. https://doi.org/10.1038/nrc2618

    Article  CAS  PubMed  Google Scholar 

  12. Mbeunkui F, Johann DJ Jr (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63(4):571–582. https://doi.org/10.1007/s00280-008-0881-9

    Article  PubMed  Google Scholar 

  13. Yuan Y, Jiang Y-C, Sun C-K, Chen Q-M (2016) Role of the tumor microenvironment in tumor progression and the clinical applications. Oncol Rep 35:2499–2515

    Article  CAS  PubMed  Google Scholar 

  14. Damaghi M, Wojtkowiak JW, Gillies RJ (2013) pH sensing and regulation in cancer. Front Physiol 4:370. https://doi.org/10.3389/fphys.2013.00370

    Article  PubMed  PubMed Central  Google Scholar 

  15. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677. https://doi.org/10.1038/nrc3110

    Article  CAS  PubMed  Google Scholar 

  16. Uda S, Accossu S, Spolitu S et al (2012) A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line. Tumour Biol 33(2):443–453. https://doi.org/10.1007/s13277-011-0270-6

    Article  CAS  PubMed  Google Scholar 

  17. Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, Cheng JX (2014) Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 19(3):393–406. https://doi.org/10.1016/j.cmet.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 25:855–860. https://doi.org/10.1016/j.cell.2009.11.005

    Article  CAS  Google Scholar 

  19. Olofsson SV, Boström P, Lagerstedt J, Anderson L, Adiels M, Permann J (2009) The lipid droplet: a dynamic organelle, not only involved in the storage and turnover of lipids. In: Ehnholm C (ed) Cellular lipid metabolism. Springer-Verlag, Berlin/Heidelberg, pp 1–26

    Google Scholar 

  20. Bensaad K, Favaro E, Lewis CA et al (2014) Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 9:349–365. https://doi.org/10.1016/j.celrep.2014.08.056

    Article  CAS  PubMed  Google Scholar 

  21. Chen M, Zhang J, Sampieri K et al (2018) An aberrant SREBP dependent lipogenic program promote metastatic prostate cancer. Nat Genet 50:206–218. https://doi.org/10.1038/s41588017-0027-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cotte AK, Aires V, Fredon M et al (2018) Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun 9:322. https://doi.org/10.1038/s41467-01702732-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Du W, Zhang L, Brett-Morris A et al (2017) HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun 8:1769. https://doi.org/10.1038/s41467-017-01965-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koizume S, Miyagi Y (2016) Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci 17:1–23. https://doi.org/10.3390/ijms17091430

    Article  CAS  Google Scholar 

  25. Li J, Gu D, Lee S, Song B et al (2016) Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene 35:6378–6388. https://doi.org/10.1038/onc.2016.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Menard JA, Christianson HC, Kucharzewska P et al (2016) Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Res 76:4828–4840. https://doi.org/10.1158/0008-5472.CAN-15-2831

    Article  CAS  PubMed  Google Scholar 

  27. Ohsaki Y, Cheng J, Fujita A, Tokumoto T, Fujimoto T (2006) Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein. Mol Biol Cell 17:2674–2683. https://doi.org/10.1091/mbc.e05-07-0659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koritzinsky M, Wouters BG (2013) The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol 23:252–261. https://doi.org/10.1016/j.semradonc.2013.05.006

    Article  PubMed  Google Scholar 

  29. Zeeshan HM, Lee GH, Kim H-R, Chae H-J (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17:327. https://doi.org/10.3390/ijms17030327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Busch S, Acar A, Magnusson Y, Gregersson P, Rydén L, Landberg G (2015) TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 34(1):27–38. https://doi.org/10.1038/onc.2013.527

    Article  CAS  PubMed  Google Scholar 

  31. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011

    CAS  PubMed  Google Scholar 

  32. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. https://doi.org/10.1016/j.cell.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  33. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, Yin R (2019b) Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol 12(1):86. https://doi.org/10.1186/s13045-019-0770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Labernadie A, Kato T, Brugues A et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19:224–237. https://doi.org/10.1038/ncb3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17:559–572. https://doi.org/10.1038/nri.2017.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang R, Qi F, Zhao F, Li G et al (2019) Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis 10:273. https://doi.org/10.1038/s41419-019-1435-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi H, Sakakura K, Kudo T et al (2017) Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget 8:8633–8647. https://doi.org/10.18632/oncotarget.14374

    Article  PubMed  Google Scholar 

  38. Ueshima E, Fujimori M, Kodama H et al (2019) Macrophage secreted TGF-beta1 contributes to fibroblast activation and ureteral stricture following ablation injury. Am J Physiol Renal Physiol 317:F52. PMID:31017012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujii N, Shomori K, Shiomi T et al (2012) Cancer-associated fibroblasts and CD163-positive macrophages in oral squamous cell carcinoma: their clinicopathological and prognostic significance. J Oral Pathol Med 41:444–451. https://doi.org/10.1111/j.1600-0714.2012.01127.x

    Article  PubMed  Google Scholar 

  40. Herrera M, Herrera A, Dominguez G et al (2013) Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci 104:437–444. https://doi.org/10.1111/cas.12096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takai K, Le A, Weaver VM, Werb Z (2016) Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7(50):82889–82901. https://doi.org/10.18632/oncotarget.12658

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alsibai KD, Meseure D (2018) In: Srivastava S (ed) Significance of tumor microenvironment scoring and immune biomarkers in patient stratification and cancer outcomes. Histopathology – an update. IntechOpen. https://doi.org/10.5772/intechopen.72648

  43. Keener J, Sneyd J (2009) Neuroendocrine cells. In: Keener J, Sneyd J (eds) Mathematical physiology. Interdisciplinary applied mathematics, vol 8/1. Springer, New York

    Google Scholar 

  44. Cives M, Simone V, Rizzo FM et al (2014) Cancer-associated fibroblasts in neuroendocrine neoplasms: a role in cancer progression. Neuroendocrinology 99:231. Abstract # 905, 11th Annual ENETS Conference (2014)

    Google Scholar 

  45. Epstein JI, Amin MB, Beltran H et al (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38:756–767. https://doi.org/10.1097/PAS.0000000000000208

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chan JA, Blaszkowsky L, Stuart K et al (2013) A prospective, phase 1/2 study of everolimus and temozolomide in patients with advanced pancreatic neuroendocrine tumor. Cancer 119(17):3212–3218. https://doi.org/10.1002/cncr.28142

    Article  CAS  PubMed  Google Scholar 

  47. Berney E, Sabnis N, Panchoo M, Raut S, Dickerman R, Lacko AG (2019) The SR-B1 receptor as a potential target for treating glioblastoma. J Oncol 2019:1805841. https://doi.org/10.1155/2019/1805841. eCollection 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mooberry LK, Nair M, Paranjape S, McConathy WJ, Lacko AG (2010) Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J Drug Target. 18(1):53–58. https://doi.org/10.3109/10611860903156419. PMID: 19637935

    Article  CAS  PubMed  Google Scholar 

  49. El-Benna J, Hurtado-Nedelec M, Marzaioli V et al (2016) Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 273(1):180–193. https://doi.org/10.1111/imr.12447

    Article  CAS  PubMed  Google Scholar 

  50. Lee WL, Harrison RE, Grinstein S (2003) Phagocytosis by neutrophils. Microbes Infect 5(14):1299–1306. https://doi.org/10.1016/j.micinf.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  51. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89(10):3503–3521. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9160655

    Article  CAS  PubMed  Google Scholar 

  52. Francis N, Wong SH, Hampson P, Wang K et al (2011) Lactoferrin inhibits neutrophil apoptosis via blockade of proximal apoptotic signaling events. Biochim Biophys Acta 1813(10):1822–1826. https://doi.org/10.1016/j.bbamcr.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  53. Jahani S, Shakiba A, Jahani L (2015) The antimicrobial effect of lactoferrin on gram-negative and gram-positive bacteria. Int J Infect 2(3):e27954. https://doi.org/10.17795/iji-27954

    Article  Google Scholar 

  54. Okubo K, Kamiya M, Urano Y et al (2016) Lactoferrin suppresses neutrophil extracellular traps release in inflammation. EBioMedicine 10:204–215. https://doi.org/10.1016/j.ebiom.2016.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wong SH, Francis N, Chahal H et al (2009) Lactoferrin is a survival factor for neutrophils in rheumatoid synovial fluid. Rheumatology (Oxford) 48(1):39–44. https://doi.org/10.1093/rheumatology/ken412

    Article  CAS  Google Scholar 

  56. Cutone A, Rosa L, Lepanto MS et al (2017) Lactoferrin efficiently counteracts the inflammation-induced changes of the iron homeostasis system in macrophages. Front Immunol 8:705. https://doi.org/10.3389/fimmu.2017.00705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drago-Serrano ME, Campos-Rodriguez R, Carrero JC, de la Garza M (2017) Lactoferrin: balancing ups and downs of inflammation due to microbial infections. Int J Mol Sci 18(3):E501. https://doi.org/10.3390/ijms18030501

    Article  CAS  PubMed  Google Scholar 

  58. Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A (2019) Lactoferrin in aseptic and septic inflammation. Molecules 24(7). https://doi.org/10.3390/molecules24071323

  59. Yang F, Feng C, Zhang X, Lu J, Zhao Y (2017) The diverse biological. Functions of neutrophils, beyond the defense against infections. Inflammation 40(1):311–323. https://doi.org/10.1007/s10753-016-0458-4

    Article  CAS  PubMed  Google Scholar 

  60. Coleman WB, Shen M, Hu P et al (2014) Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS One 9(6):e98259. https://doi.org/10.1371/journal.pone.0098259

    Article  CAS  Google Scholar 

  61. Mei Z, Shi L, Wang B et al (2017) Prognostic role of pretreatment blood neutrophil-to-lymphocyte ratio in advanced cancer survivors: a systematic review and meta-analysis of 66 cohort studies. Cancer Treat Rev 58:1–13. https://doi.org/10.1016/j.ctrv.2017.05.005

    Article  PubMed  Google Scholar 

  62. Templeton A, McNamara MG, Šeruga B et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6). https://doi.org/10.1093/jnci/dju124

  63. Wu L, Saxena S, Awaji M, Singh RK (2019a) Tumor-associated neutrophils in cancer: going pro. Cancers (Basel) 11(4). https://doi.org/10.3390/cancers11040564

  64. Yan J, Kloecker G, Fleming C et al (2014) Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells. Onco Targets Ther 3(7):e950163. https://doi.org/10.4161/15384101.2014.950163

    Article  Google Scholar 

  65. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 104(51):20262–20267. https://doi.org/10.1073/pnas.0706438104

    Article  PubMed  PubMed Central  Google Scholar 

  66. Deryugina EI, Zajac E, Juncker-Jensen A et al (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 16(10):771–788. https://doi.org/10.1016/j.neo.2014.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498. https://doi.org/10.1073/pnas.0601807103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fridlender ZG, Sun J, Kim S et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim Y, Lee D, Lee J, Lee S, Lawler S (2019) Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: a mathematical model. PLoS One 14(1):e0211041. https://doi.org/10.1371/journal.pone.0211041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eruslanov EB, Bhojnagarwala PS, Quatromoni JG et al (2014) Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 124(12):5466–5480. https://doi.org/10.1172/JCI77053

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grecian R, Whyte MKB, Walmsley SR (2018) The role of neutrophils in cancer. Br Med Bull 128(1):5–14. https://doi.org/10.1093/bmb/ldy029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Murphy AJ, Woollard KJ, Suhartoyo A et al (2011) Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler Thromb Vasc Biol 31(6):1333–1341. https://doi.org/10.1161/ATVBAHA.111.226258

    Article  CAS  PubMed  Google Scholar 

  73. Palvinskaya T, Antkowiak M, Burg E et al (2013) Effects of acute and chronic low density lipoprotein exposure on neutrophil function. Pulm Pharmacol Ther 26(4):405–411. https://doi.org/10.1016/j.pupt.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  74. Obama T, Ohinata H, Takaki T et al (2019) Cooperative action of oxidized low-density lipoproteins and neutrophils on endothelial inflammatory responses through neutrophil extracellular trap formation. Front Immunol 10:1899. https://doi.org/10.3389/fimmu.2019.01899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Delimaris I, Faviou E, Antonakos G et al (2007) Oxidized LDL, serum oxidizability and serum lipid levels in patients with breast or ovarian cancer. Clin Biochem 40(15):1129–1134. https://doi.org/10.1016/j.clinbiochem.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  76. Wan F, Qin X, Zhang G et al (2015) Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer. Tumor Biol 36(5):3573–3582. https://doi.org/10.1007/s13277-014-2994-6

    Article  CAS  Google Scholar 

  77. Tan JTM, Ng MKC, Bursill CA (2015) The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res 106:184–193. https://doi.org/10.1093/cvr/cvv104

    Article  CAS  PubMed  Google Scholar 

  78. Yu JE, Shu-Yan H, Wolfson B, Zhou Q (2018b) The role of endothelial lipase in lipid metabolism, inflammation, and cancer. Histopathol 33(1):1–10. https://doi.org/10.14670/HH-11-905. Epub 2017 May 25

    Article  Google Scholar 

  79. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M et al (2011) Endothelium-protectivesphingosine-1-phosphate provided by HDL-associated apolipoproteinM. Proc Natl Acad Sci U S A 108:9613–9618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Christoffersen C, Nielsen LB, Apolipoprotein M (2013) Bridging HDL and endothelial function. Curr Opin Lipidol 24:295–300

    Article  CAS  PubMed  Google Scholar 

  81. Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB (2013) Sphingosine-1-phosphate and its receptors: Structure, signaling, and influence. Annu Rev Biochem. 82:637–662. https://doi.org/10.1146/annurev-biochem-062411-130916. Epub 2013 Mar 18

    Article  CAS  PubMed  Google Scholar 

  82. Tatematsu M, Nishikawa F, Seya T, Matsumoto M (2013) Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun. 4:1833. https://doi.org/10.1038/ncomms2857. PMID: 23673618.

    Article  CAS  PubMed  Google Scholar 

  83. Yu JE, Han S-H, Wolfson B, Zhou Q (2018a) The role of endothelial lipase in lipid metabolism, inflammation, and cancer. Histol Histopathol 33(1):1–10. https://doi.org/10.14670/HH-11-905

    Article  PubMed  Google Scholar 

  84. Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, Ng C, Wagner A, Hough G, Farias-Eisner G, Anantharamaiah GM, Van Lenten BJ, Navab M, Fogelman AM, Reddy ST, Farias-Eisner R (2010) Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci U S A. 107(46):19997–20002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zamanian-Daryoush M, Lindner D, Tallant TC et al (2013) The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J Biol Chem 288:21237–21252. https://doi.org/10.1074/jbc.M113.468967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su F, Grijalva V, Navab K, Ganapathy E, Meriwether D, Imaizumi S, Navab M, Fogelman AM, Reddy ST, Farias-Eisner R (2012) HDL mimetics inhibit tumor development in both induced and spontaneous mouse models of colon cancer. Mol Cancer Ther. 11(6):1311–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao F, Vasquez SX, Su F et al (2011) L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways. Integr Biol 3:479–489. https://doi.org/10.1039/c0ib00147c

    Article  CAS  Google Scholar 

  88. Dumortier J, Ratineau C, Scoazec JY et al (2000) Site-specific epithelial-mesenchymal interactions in digestive neuroendocrine tumors. An experimental in vivo and in vitro study. Am J Pathol 156:671–683. https://doi.org/10.1016/S0002-9440(10)64771-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bowden M, Sicinska E, Kulke M, Loda M (2014) Abstract 168: Understanding the role of the carcinoid associated fibroblast in neuroendocrine tumors microenvironment. Cancer Res 74(19 Suppl)

    Google Scholar 

  90. Carrasco P, Zuazo-Gaztelu I, Casanovas O (2017) Sprouting strategies and dead ends in anti-angiogenic targeting of NETs. J Mol Endocrinol 59:R77–R91. https://doi.org/10.1530/JME-17-0029

    Article  CAS  PubMed  Google Scholar 

  91. Marion-Audibert AM, Barel C, Gouysse G et al (2003) Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Gastroenterology 125:1094–1104. https://doi.org/10.1016/s0016-5085(03)01198-3

    Article  PubMed  Google Scholar 

  92. Belousova E, Karmazanovsky G, Kriger A et al (2017) Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumour grades. Clin Radiol 72(2):150–158. https://doi.org/10.1016/j.crad.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  93. Scoazec JY (2013) Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology 97:45–56. https://doi.org/10.1159/000338371

    Article  CAS  PubMed  Google Scholar 

  94. Durkin AJ, Bloomston M, Yeatman TJ et al (2004) Differential expression of the Tie-2 receptor and its ligands in human pancreatic tumors. J Am Coll Surg 199:724–731. https://doi.org/10.1016/j.jamcollsurg.2004.07.021

    Article  PubMed  Google Scholar 

  95. Rigamonti N, Kadioglu E, Keklikoglou I et al (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep 8:696–706. https://doi.org/10.1016/j.celrep.2014.06.059

    Article  CAS  PubMed  Google Scholar 

  96. Wilhelm S, Tavares A, Dai Q et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:1–12

    Google Scholar 

  97. Dai Q, Wilhelm S, Ding D et al (2018) Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12:8423–8435. https://doi.org/10.1021/acsnano.8b03900

    Article  CAS  PubMed  Google Scholar 

  98. Shahzad MM, Mangala LS, Ha D et al (2011) Targeted delivery of small interfering RNA using rHDL nanoparticles. Neoplasia 13:309–319. https://doi.org/10.1593/neo.101372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21:73–79. https://doi.org/10.1016/j.gde.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  100. De Bock K, De Smet F, Leite De Oliveira R, Anthonis K, Carmeliet P (2009) Endothelial oxygen sensors regulate tumor vessel abnormalization by instructing. J Mol Med (Berl) 87(6):561–569. https://doi.org/10.1007/s00109-009-0482-z

    Article  CAS  Google Scholar 

  101. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. PMID: 15637262. https://doi.org/10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  102. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212. https://doi.org/10.1016/j.coi.2011.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Padera TP, Meijer EF, Munn LL (2016) The lymphatic system in disease processes and cancer progression. Annu Rev Biomed Eng 18:125–158. https://doi.org/10.1146/annurev-bioeng-112315-031200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pereira ER, Jones D, Jung K et al (2015) The lymph node microenvironment and its role in the progression of metastatic cancer. Semin Cell Dev Biol 38:98–105. https://doi.org/10.1016/j.semcdb.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Crawford Y, Ferrara N (2009) VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 335:261–269. https://doi.org/10.1007/s00441-008-0675-8

    Article  CAS  PubMed  Google Scholar 

  106. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591. https://doi.org/10.1038/nrc2403

    Article  CAS  PubMed  Google Scholar 

  107. Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6:395–404. https://doi.org/10.1038/nrclinonc.2009.52

    Article  CAS  PubMed  Google Scholar 

  108. Muntoni S, Atzori L, Mereu R et al (2009) Serum lipoproteins and cancer. Nutr Metab Cardiovasc Dis 19(3):218–225. https://doi.org/10.1016/j.numecd.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  109. Raste AS, Naik PP (2000) Clinical significance of lipid profile in cancer patients. Indian J Med Sci 54(10):435–441

    CAS  PubMed  Google Scholar 

  110. Eaton CB (2005) Hyperlipidemia. Prim Care 32(4):1027–1055. https://doi.org/10.1016/j.pop.2005.09.002

    Article  PubMed  Google Scholar 

  111. Shayeganpour A, Lee SD, Wasan KM, Brocks DR (2007) The influence of hyperlipoproteinemia on in vitro distribution of amiodarone and desethylamiodarone in human and rat plasma. Pharm Res 24(4):672–678. https://doi.org/10.1007/s11095-006-9186-z

    Article  CAS  PubMed  Google Scholar 

  112. Wasan KM, Brocks DR, Lee SD, Sachs-Barrable K, Thornton SJ (2008) Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 7(1):84–99. https://doi.org/10.1038/nrd2353

    Article  CAS  PubMed  Google Scholar 

  113. Gilbert CA, Slingerland JM (2013) Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med 64:45–57. https://doi.org/10.1146/annurev-med-121211-091527

    Article  CAS  PubMed  Google Scholar 

  114. Wu Q, Li B, Li Z, Li J, Sun S, Sun S (2019b) Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol 12:95. https://doi.org/10.1186/s13045-019-0778-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lago F, Gomez R, Gomez-Reino JJ, Dieguez C, Gualillo O (2009) Adipokines as novel modulators of lipid metabolism. Trends Biochem Sci 34:500–510. https://doi.org/10.1016/j.tibs.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  116. Mohammadpour H, Pourfathollah AA, Nikougoftar ZM, Shahbazfar AA (2016) Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-alpha activated adipose derived mesenchymal stem cells in breast cancer model. Sci Rep 6:28433. https://doi.org/10.1038/srep28433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316. https://doi.org/10.1146/annurev.med.080708.082713

    Article  CAS  PubMed  Google Scholar 

  118. Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14:109–119. https://doi.org/10.1016/j.molmed.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  119. Donohoe CL, O’Farrell NJ, Doyle SL, Reynolds JV (2014) The role of obesity in gastrointestinal cancer: evidence and opinion. Ther Adv Gastroenterol 7:38–50. https://doi.org/10.1177/1756283X13501786

    Article  Google Scholar 

  120. Goodwin PJ, Stambolic V (2015) Impact of the obesity epidemic on cancer. Annu Rev Med 66:281–296. https://doi.org/10.1146/annurev-med-051613-012328

    Article  CAS  PubMed  Google Scholar 

  121. Iwen KA, Priewe AC, Winnefeld M et al (2014) Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: gluteal cells display increased adipogenic and osteogenic differentiation potentials. Exp Dermatol 23:395–400. https://doi.org/10.1111/exd.12406

    Article  CAS  PubMed  Google Scholar 

  122. Kolonin MG, Evans KW, Mani SA, Gomer RH (2012) Alternative origins of stroma in normal organs and disease. Stem Cell Res 8:312–323. https://doi.org/10.1016/j.scr.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  123. Gruen ML, Plummer MR, Zhang W et al (2005) Persistence of high density lipoprotein particles in obese mice lacking apolipoprotein A-I. J Lipid Res 46:2007–2014. https://doi.org/10.1194/jlr.M500181-JLR200

    Article  CAS  PubMed  Google Scholar 

  124. Takazawa T, Yamauchi T, Tsuchida A et al (2009) Peroxisome proliferator-activated receptor gamma agonist rosiglitazone increases expression of very low density lipoprotein receptor gene in adipocytes. J Biol Chem 284(44):30049–30057. https://doi.org/10.1074/jbc.M109.047993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang S, Peng D (2012) Regulation of adipocyte autophagy--the potential anti-obesity mechanism of high density lipoprotein and ApolipoproteinA-I. Lipids Health Dis 11:131–139. https://doi.org/10.1186/1476-511X-11-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Buss LA, Dachs GU (2018) The role of exercise and hyperlipidaemia in breast cancer progression. Exerc Immunol Rev 24:10–25

    PubMed  Google Scholar 

  127. Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    Article  CAS  PubMed  Google Scholar 

  128. Dore-Duffy P, Mehedi A, Wang X et al (2011) Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent. Microvasc Res 82:18–27. https://doi.org/10.1016/j.mvr.2011.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Birbrair A, Zhang T, Wang ZM et al (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci 128:81–93. https://doi.org/10.1042/CS20140278

    Article  CAS  Google Scholar 

  130. Watters KM, Bajwa P, Kenny HA (2018) Organotypic 3D models of the ovarian cancer tumor microenvironment. Cancers 10:265. Published 9 Aug 2018. https://doi.org/10.3390/cancers10080265

    Article  CAS  PubMed Central  Google Scholar 

  131. Runa F, Hamalian S, Meade K et al (2017) Tumor microenvironment heterogeneity: challenges and opportunities. Curr Mol Biol Rep 3:218–229. https://doi.org/10.1007/s40610-017-0073-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guerra DAP, Paiva AE, Sena IFG et al (2018) Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 21:667–675. https://doi.org/10.1007/s10456-018-9621-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sena IFG, Paiva AE, Prazeres PHDM (2018) Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med 7(4):1232–1239. https://doi.org/10.1002/cam4.1375

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ma Q, Zhao Z, Sagare AP et al (2018) Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener 13:57. Published 19 Oct 2018. https://doi.org/10.1186/s13024-018-0286-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Menard J, Cerezo-Magaña M, Beltig M (2017) Functional role of extracellular vesicles and lipoproteins in the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 373:20160480. https://doi.org/10.1098/rstb.2016.0480

    Article  CAS  PubMed Central  Google Scholar 

  136. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797; Epub 2015 Jun 26

    Article  PubMed  PubMed Central  Google Scholar 

  137. Michell DL, Vickers KC (2016) Lipoprotein carriers of microRNAs. Biochim Biophys Acta 1861(12 Pt B):2069–2074. https://doi.org/10.1016/j.bbalip.2016.01.011. Epub 2016 Jan 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Keerthikumar S et al (2016) Exocarta: a web–based compendium of exosomal cargo. J Mol Biol 428:688–692

    Article  CAS  PubMed  Google Scholar 

  139. Sodar BW, Pálóczi KÁ et al (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6:24316. https://doi.org/10.1038/srep24316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland RJ (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vescicles 3:23262. https://doi.org/10.3402/jev.v3.23262

    Article  CAS  Google Scholar 

  141. Nolte-‘t Hoen E, Cremer T et al (2016) Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A 113:9155–9161. https://doi.org/10.1073/pnas.1605146113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Di Rocco G, Baldari S, Toietta G (2016) Towards therapeutic delivery of extracellular vesicles: strategies for in vivo tracking and biodistribution analysis. Stem Cells Int 2016:5029619; Epub 23 Nov 2016

    Article  PubMed  PubMed Central  Google Scholar 

  143. Thaxton CS, Rink JS, Naha PC, Cormode DP (2016) Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 106(Pt A):116–131; Epub 29 Apr 2016. https://doi.org/10.1016/j.addr.2016.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Raut SG, Garud A, Nagarajan B, Sabnis N, Remaley A, Fudala R, Gryczynski I, Gryczynski Z, Dzyuba SV, Borejdo J, Lacko AG. (2020). Probing the assembly of HDL mimetic, drug carrying nanoparticles, using intrinsic fluorescence. J Pharmacol Exp Ther. jpet.119.262899. https://doi.org/10.1124/jpet.119.262899

  145. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. https://doi.org/10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Guerriero JL (2018) Macrophages: the road less traveled, changing anticancer therapy. Trends Mol Med 24(5):472–489. https://doi.org/10.1016/j.molmed.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lavin Y, Merad M (2013) Macrophages: gatekeepers of tissue integrity. Cancer Immunol Res 1(4):201–209. https://doi.org/10.1158/2326-6066.CIR-13-0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shigeta A, Huang V, Zuo J et al (2019) Endocardially derived macrophages are essential for valvular remodeling. Dev Cell 48:617–630.e3. https://doi.org/10.1016/j.devcel.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hu K, Jin Y, Chroneos Z et al (2018) Macrophage functions and regulation: roles in diseases and implications in therapeutics. J Immunol Res 2018:7590350. https://doi.org/10.1155/2018/7590350

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lemke G (2019) How macrophages deal with death. Nat Rev Immunol 19(9):539–549. https://doi.org/10.1038/s41577-019-0167-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hume DA (2008) Macrophages as APC and the dendritic cell myth. J Immunol 181(9):5829–5835. https://doi.org/10.4049/jimmunol.181.9.5829

    Article  CAS  PubMed  Google Scholar 

  152. Cui X, Morale RT, Qian W et al (2018) Hacking macrophage-associated immuno suppression for regulating glioblastoma angiogenesis. Biomaterials 161:164–178. https://doi.org/10.1016/j.biomaterials.2018.01.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liao LC, Hu B, Zhang S (2019) Macrophages participate in the immunosuppression of condyloma acuminatum through the PD-1/PD-L1 signaling pathway. J Chin Med Assoc 82(5):413–418. https://doi.org/10.1097/JCMA.0000000000000090

    Article  PubMed  Google Scholar 

  154. Bosurgi L, Cao YG, Cabeza-Cabrerizo M et al (2017) Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356(6342):1072–1076. https://doi.org/10.1126/science.aai8132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23. https://doi.org/10.1017/S1462399411001943

    Article  PubMed  PubMed Central  Google Scholar 

  156. Peiseler M, Kubes P (2018) Macrophages play an essential role in trauma-induced sterile inflammation and tissue repair. Eur J Trauma Emerg Surg 44(3):335–349. https://doi.org/10.1007/s00068-018-0956-1

    Article  PubMed  Google Scholar 

  157. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep 6:13. https://doi.org/10.12703/P6-13

    Article  CAS  Google Scholar 

  158. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462. https://doi.org/10.1016/j.immuni.2016.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vinogradov S, Warren G, Wei X (2014) Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine 9:695–707. https://doi.org/10.2217/Nnm.14.13

    Article  CAS  PubMed  Google Scholar 

  160. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40(4):310–327. https://doi.org/10.1016/j.it.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  161. Poh AR, Ernst M (2018) Targeting macrophages in cancer: from bench to bedside. Front Oncol 8:49. https://doi.org/10.3389/fonc.2018.00049

    Article  PubMed  PubMed Central  Google Scholar 

  162. Franklin RA, Liao W, Sarkar A et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925. https://doi.org/10.1126/science.1252510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727. https://doi.org/10.1016/j.ejca.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  164. Cassetta L, Fragkogianni S, Sims AH et al (2019) Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35(4):588–602; e510. https://doi.org/10.1016/j.ccell.2019.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Incio J, Tam J, Rahbari NN et al (2016) PlGF/VEGFR-1 signaling promotes macrophage polarization and accelerated tumor progression in obesity. Clin Cancer Res 22(12):2993–3004. https://doi.org/10.1158/1078-0432.CCR-15-1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang F, Wang H, Wang X, Jiang G et al (2016) TGF-β induces M2-like macrophage polarization via SNAIL mediated suppression of a pro-inflammatory phenotype. Oncotarget 7(32):52294–52306

    Article  PubMed  PubMed Central  Google Scholar 

  167. Shinohara H, Kuranaga Y, Kumazaki M et al (2017) Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles. J Immunol 199(4):1505–1515. https://doi.org/10.4049/jimmunol.1700167

    Article  CAS  PubMed  Google Scholar 

  168. Lai YS, Wahyuningtyas R, Aui SP, Chang KT (2019) Autocrine VEGF signalling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. J Cell Mol Med 23(2):1257–1267. https://doi.org/10.1111/jcmm.14027

    Article  CAS  PubMed  Google Scholar 

  169. Liu Z, Kuang W, Zhou Q, Zhang Y (2018) TGF-beta1 secreted by M2 phenotype macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signalling pathway. Int J Mol Med 42(6):3395–3403. https://doi.org/10.3892/ijmm.2018.3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Henze AT, Mazzone M (2016) The impact of hypoxia on tumor-associated macrophages. J Clin Invest 126(10):3672–3679. https://doi.org/10.1172/JCI84427

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia. Am J Pathol 167(3):627–635. https://doi.org/10.1016/s0002-9440(10)62038-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Honkanen TJ, Tikkanen A, Karihtala P et al (2019) Prognostic and predictive role of tumour-associated macrophages in HER2 positive breast cancer. Sci Rep 9(1):10961. https://doi.org/10.1038/s41598-019-47375-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Miyasato Y, Shiota T, Ohnishi K et al (2017) High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci 10:1693–1700. https://doi.org/10.1111/cas.13287

    Article  CAS  Google Scholar 

  174. Raiha MR, Puolakkainen PA (2018) Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: a review. Chronic Dis Transl Med 4:156–163. https://doi.org/10.1016/j.cdtm.2018.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27(4):462–472. https://doi.org/10.1016/j.ccell.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yagi T, Baba Y, Okadome K et al (2019) Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer. Eur J Cancer 111:38–49. https://doi.org/10.1016/j.ejca.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  177. Yu M, Guan R, Hon W et al (2019) Prognostic value of tumor-associated macrophages in pancreatic cancer: a meta-analysis. Cancer Manag Res 11:4041–4058. https://doi.org/10.2147/CMAR.S196951

    Article  PubMed  PubMed Central  Google Scholar 

  178. Genard G, Lucas S, Michiels C (2017) Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front Immunol 8:828. https://doi.org/10.3389/fimmu.2017.00828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76. https://doi.org/10.1186/s13045-019-0760-3

    Article  PubMed  PubMed Central  Google Scholar 

  180. Liu J, Li C, Zhang L et al (2019a) Association of tumour-associated macrophages with cancer cell EMT, invasion, and metastasis of Kazakh oesophageal squamous cell cancer. Diagn Pathol 14(1):55. https://doi.org/10.1186/s13000-019-0834-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Madsen DH, Jurgensen HJ, Siersbaek MS et al (2017) Tumor-associated macrophages derived from circulating inflammatory monocytes degrade collagen through cellular uptake. Cell Rep 21(13):3662–3671. https://doi.org/10.1016/j.celrep.2017.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shen L, Li H, Shi Y et al (2016) M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma. Sci Rep 6:30347. https://doi.org/10.1038/srep30347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou J, Li X, Wu X (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6:1578–1592. https://doi.org/10.1158/2326-6066.CIR-17-0479

    Article  CAS  PubMed  Google Scholar 

  184. Miyake M, Tatsumi Y, Gotoh D et al (2017) Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical bacille calmette-guerin: a long-term follow-up study of a Japanese cohort. Int J Mol Sci 18(10):2186. https://doi.org/10.3390/ijms18102186

    Article  CAS  PubMed Central  Google Scholar 

  185. Peranzoni E, Lemoine J, Vimeux L et al (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A 115(17):E4041–E4050. https://doi.org/10.1073/pnas.1720948115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gordon SR, Maute RL, Dulken BW et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499. https://doi.org/10.1038/nature22396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hartley GP, Chow L, Ammons DT et al (2018) Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res 6(10):1260–1273. https://doi.org/10.1158/2326-6066.CIR-17-0537

    Article  CAS  PubMed  Google Scholar 

  188. Veillette A, Chen J (2018) SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 39:173–184. https://doi.org/10.1016/j.it.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  189. Brown JM, Recht L, Strober S (2017) The promise of targeting macrophages in cancer therapy. Clin Cancer Res 23(13):3241–3250. https://doi.org/10.1158/1078-0432.CCR-16-3122

    Article  PubMed  PubMed Central  Google Scholar 

  190. Barter PJ, Nicholls S, Rye KA et al (2004) Anti-inflammatory properties of HDL. Circ Res 95(8):764–772. https://doi.org/10.1161/01.RES.0000146094.59640.13

    Article  CAS  PubMed  Google Scholar 

  191. Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38(32):2459–2472. https://doi.org/10.1093/eurheartj/ehx144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ghosh S (2011) Macrophage cholesterol homeostasis and metabolic diseases: critical role of cholesteryl ester mobilization. Expert Rev Cardiovasc Ther 9(3):329–340. https://doi.org/10.1586/erc.11.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kennedy MA, Barrera GC, Nakamura K et al (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1(2):121–131. https://doi.org/10.1016/j.cmet.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  194. Shen WJ, Azhar S, Kraemer FB (2018) SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol 80:95–116. https://doi.org/10.1146/annurev-physiol-021317-121550

    Article  CAS  PubMed  Google Scholar 

  195. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30:139–143. https://doi.org/10.1161/ATVBAHA.108.179283

    Article  CAS  PubMed  Google Scholar 

  196. Ji Y, Jian B, Wang N, Sun Y et al (1997) Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 272(34):20982–20985. https://doi.org/10.1074/jbc.272.34.20982

    Article  CAS  PubMed  Google Scholar 

  197. Thuahnai ST, Lund-Katz S, Dhanasekaran P et al (2004) Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high density lipoprotein size and structure. J Biol Chem 279:12448–12455. https://doi.org/10.1074/jbc.M311718200

    Article  CAS  PubMed  Google Scholar 

  198. Mineo C, Shaul PW (2013) Regulation of signal transduction by HDL. J Lipid Res 54(9):2315–2324. https://doi.org/10.1194/jlr.R039479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cruz PM, Mo H, McConathy WJ, Sabnis N, Lacko AG (2013) The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics. Front Pharmacol 4:119. https://doi.org/10.3389/fphar.2013.00119.Z

    Article  PubMed  PubMed Central  Google Scholar 

  200. Deng H, Zhou T, Mo X, Liu C, Yin Y (2019) Low-density lipoprotein promotes lymphatic metastasis of esophageal squamous cell carcinoma and is an adverse prognostic factor. Oncol Lett 17(1):1053–1061. https://doi.org/10.3892/ol.2018.9683

    Article  CAS  PubMed  Google Scholar 

  201. Zhang Q, Wang H, Mao C (2018) Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Molecular Immunology 94:27–35. https://doi.org/10.1016/j.molimm.2017.12.011

    Article  CAS  PubMed  Google Scholar 

  202. Divakaruni AS, Hsieh WY, Minarrieta L et al (2018) Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab 28(3):490–503.e7. https://doi.org/10.1016/j.cmet.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462. https://doi.org/10.3389/fimmu.2019.01462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lu CW, Lo YH, Chen CH et al (2017) VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis. Cancer Lett 388:130–138. https://doi.org/10.1016/j.canlet.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  205. Gallagher EJ, Zelenko Z, Neel BA et al (2017) (2017). Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene 36(46):6462–6471. https://doi.org/10.1038/onc.2017.247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Rios FJ, Koga MM, Pecenin M et al (2013) Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR. Mediat Inflamm 2013:198193. https://doi.org/10.1155/2013/198193

    Article  CAS  Google Scholar 

  207. van der Vorst EPC, Theodorou K, Wu Y et al (2017) High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-kappaB/STAT1-IRF1 signaling. Cell Metab 25:197–207. https://doi.org/10.1016/j.cmet.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  208. Cai L, Wang Z, Meyer JM, Ji A, van der Westhuyzen DR (2012) Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. J Lipid Res 53(8):1472–1481. https://doi.org/10.1194/jlr.M023234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhou DY, Qin J, Huang J (2017) Zoledronic acid inhibits infiltration of tumor-associated macrophages and angiogenesis following transcatheter arterial chemoembolization in rat hepatocellular carcinoma models. Oncol Lett 14(4):4078–4084. https://doi.org/10.3892/ol.2017.6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sag D, Cekic C, Wu R, Linden J, Hedrick CC (2015) The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun 6:6354. https://doi.org/10.1038/ncomms7354

    Article  CAS  PubMed  Google Scholar 

  211. Zamanian-Daryoush M, Daniel J, Lindner D, Joseph A, DiDonato JA, Matthew Wagner M, Buffa J, Patricia Rayman P, Parks JS, Westerterp M, Tall AR, Hazen SL (2017) Myeloid-specific genetic ablation of atp-binding cassette transporter ABCA1 is protective against cancer. Oncotarg 8(42):71965–71980. https://doi.org/10.18632/oncotarget.18666. eCollection 2017 Sep 22.

    Article  Google Scholar 

  212. Goossens P, Rodriguez-Vita J, Etzerodt A et al (2019) Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab 29:1376–1389.e4. https://doi.org/10.1016/j.cmet.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  213. Dhaliwal A, Zheng G (2019) Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: designing a new perspective in nanomedicine delivery. Theranostics 9:8091–8108. https://doi.org/10.7150/thno.37204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Raut S, Mooberry L, Sabnis L et al (2018) Reconstituted HDL: drug delivery platform for overcoming biological barriers to cancer therapy. Front Pharmacol 9:1154; eCollection 2018 Review. https://doi.org/10.3389/fphar.2018.01154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ghosh S, Girigoswami K, Girigoswami A (2019) Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine 14:2067–2082. https://doi.org/10.2217/nnm-2019-0155

    Article  CAS  PubMed  Google Scholar 

  216. He H, Ghosh S, Yang H (2017) Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 247:106–126. https://doi.org/10.1016/j.jconrel.2016.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by the Rutledge Cancer Foundation, the Texas Alzheimer’s Research and Care Consortium, the Virginia Kincaid Charitable Trust, and Wheels for Wellness, Fort Worth TX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras G. Lacko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dossou, A.S., Sabnis, N., Nagarajan, B., Mathew, E., Fudala, R., Lacko, A.G. (2020). Lipoproteins and the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1272. Springer, Cham. https://doi.org/10.1007/978-3-030-48457-6_6

Download citation

Publish with us

Policies and ethics