Skip to main content

The Mango Chloroplast Genome

  • Chapter
  • First Online:
The Mango Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 504 Accesses

Abstract

Chloroplast is an important cell organelle that performs photosynsthesis and helps in several cellular processes. Metabolic compounds synthesized in chloroplasts help in signal transfer and play a seminal role in alleviating biotic and abiotic stresses. Although chloroplast is smaller in size and gene number compared to nuclear genome, it is equally important for evolution and molecular ecological studies. NGS sequencing technologies made it easier to characterize chloroplast genome in mango. Chloroplast genome of ‘Langra’ cultivar was first sequenced by using Sanger and GS-FLX systems which provided insight in new functional genes in mango. Thereafter, chloroplast genome of ‘GuiFei’ cultivar was sequenced using Illumina Hiseq-2000 platform, while in wild mango (Mangifera sylvatica Roxb) it was sequenced using Illumina’s Hiseq 2500 which are available in the public domain. Genes identified from chloroplast genome are having significant role in photosynthesis, cell regulatory mechanisms, resistance for herbicides, biotic and abiotic stresses. The highly conserved nature of chloroplast genome sequences opened new avenues in phylogenetic and evolutionary studies on mango, which thus offers enormous opportunities for refining our insight into its origin, diversity, evolutionary relationship, and species identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhter S, McDonald MA, Marriott R (2016) Mangifera sylvatica (Wild Mango): a new cocoa butter alternative. Sci Rep 6(1): 32050. https://doi.org/10.1038/srep32050

  • Azim MK, Khan IA, Zhang Y (2014) Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome. Plant Mol Biol 85(1–2):193–208. https://doi.org/10.1007/s11103-014-0179-8

  • Bansal KC, Saha D (2012) Chloroplast genomics and genetic engineering for crop improvement. Agric Res 1(1):53–66. https://doi.org/10.1007/s40003-011-0010-6

    Article  CAS  Google Scholar 

  • Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21. https://doi.org/10.1186/1471-2229-6-21

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotech J 14:1070–1085. https://doi.org/10.1111/pbi.12454

    Article  CAS  Google Scholar 

  • Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, Dopazo J (2015) A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol Biol Evol 32:2015–2035

    Article  CAS  Google Scholar 

  • Cheng YJ, Carmen-de-Vicente M, Meng HJ, Guo WW, Tao NG, Deng XX (2005) A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiol 25:661–672

    Article  Google Scholar 

  • Chung HY, Won SY, Kim YK, Kim JS (2019) Development of the chloroplast genome based InDel markers in Niitaka (Pyrus pyrifolia) and its application. Plant Biotechnol Rep 13:51–61. https://doi.org/10.1007/s11816-018-00513-0

    Article  Google Scholar 

  • Daniell H, Lin C, Yu M, Chang W (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134. https://doi.org/10.1186/s13059-016-1004-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesh MR, Ravishankar KV, Nischita P, Sandya BS, Padmakar B, Ganeshan S, Chithiraichelvan R, Sharma TVRS (2015) Exploration, characterization and phylogenetic studies in wild Mangifera indica relatives. Am J Plant Sci 6:2151–2160. https://doi.org/10.4236/ajps.2015.613217

    Article  CAS  Google Scholar 

  • Fitmawati F, Hartana A (2010) Phylogenetic study of Mangifera laurina and its related species using cpDNA trnL-F spacer markers. Hayati J Biosci 17(1):9–14. https://doi.org/10.4308/hjb.17.1.9

    Article  Google Scholar 

  • Harahap SP, Fitmawati Sofiyanti N (2017) Phylogenetic analysis of mango (Mangifera) in Northern Sumatra based on gene sequences of cpDNA trnL-F intergenic spacer. Biodiversitas 18:715–719. https://doi.org/10.13057/biodiv/d180239

    Article  Google Scholar 

  • Hidayat T, Pancoro A, Kusumawaty D, Eiadthong W (2011) Development matK gene as DNA barcode to assess evolutionary relationship of important tropical forest tree genus Mangifera (Anacardiaceae) in Indonesia and Thailand. J Teknologi 59:17–20

    Google Scholar 

  • Intrieri MC, Muleo R, Buiatti M (2007) Chloroplast DNA polymorphisms as molecular markers to identify cultivars of Olea europaea L. J Hort Sci Biotechnol 82:109–113. https://doi.org/10.1080/14620316.2007.11512206

    Article  CAS  Google Scholar 

  • Jagarlamudi S, Rosaiah G, Kurapati RK, Pinnamaneni R (2011) Molecular identification of Mango, Mangifera indica L. var. Totupura. Bioinformation 5(10):405–409. https://doi.org/10.6026/97320630005405

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, Leebens-Mack J, Müller KF (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  CAS  Google Scholar 

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327

    Article  CAS  Google Scholar 

  • Jo S, Kim HW, Kim YK, Sohn JY, Cheon SH, Kim KJ (2017) The complete plastome sequences of Mangifera indica L. (Anacardiaceae). Mitochondrial DNA Part B 2(2):698–700

    Google Scholar 

  • Khan IA, Azim MK (2011) Variations in intergenic spacer rpl20-rps12 of mango (Mangifera indica) chloroplast DNA: implications for cultivar identification and phylogenetic analysis. Plant Sys Evol 292:249–255. https://doi.org/10.1007/s00606-011-0424-4

    Article  CAS  Google Scholar 

  • Kulski JK, Suzuki S, Ozaki Y, Mitsunaga S, Inoko H, Shiina T (2014) Phase HLA genotyping by next generation sequencingA comparison between two massively parallel sequencing bench-top systems, the Roche GS Junior and Ion Torrent PGM. In: Xi Y (ed) HLA and Associated Important Diseases. Croatia: Intech, pp 141–81. https://doi.org/10.5772/57556

  • Lam HY, Clark MJ, Chen R (2012) Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 30:78–83. https://doi.org/10.1038/nbt.2065

    Article  CAS  Google Scholar 

  • Leo VC, Morgan NV, Bern D (2015) Use of next-generation sequencing and candidate gene analysis to identify underlying defects in patients with inherited platelet function disorders. J Thromb Haemost 13:643–650. https://doi.org/10.1111/jth.12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Liu Y, Yang Y, Xie X, Lu Y, Yang Z, Jin X, Dong W, Suo Z (2018) Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC Plant Biol 18:210. https://doi.org/10.1186/s12870-018-1421-3

    Article  CAS  Google Scholar 

  • Mardis ER, Wilson RK (2009) Cancer genome sequencing: A review. Hum Mol Genet 18(R2):R163–R168. https://doi.org/10.1093/hmg/ddp396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariac C, Scarcelli N, Pouzadou J, Barnaud A, Billot C, Faye A, Kougbeadjo A, Maillol V, Martin G, Sabot F, Santoni S, Vigouroux Y, Couvreur TLP (2014) Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol Resour 14:1103–1113

    Article  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologiesThe next generation. Nat Rev Genet 11:31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    Article  CAS  Google Scholar 

  • Muthukumar M, Bajpai A, Rajan S (2018) Chloroplast genes reveal hybridity in mango (Mangifera indica L.). J Appl Hort 20(1):55–59

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Pelizzola M, Ecker JR (2011) The DNA methylome. FEBS Lett 585:1994–2000. https://doi.org/10.1016/j.febslet.2010.10.061

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Yamamoto H, Shikanai T (2011) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochem Biophys Acta 1807:945–953

    CAS  PubMed  Google Scholar 

  • Rabbini B, Tekin M, Mahdieh N (2014) The promise of whole-exome sequencing in medical genetics. J Hum Genet 59:5–15. https://doi.org/10.1038/jhg.2013.114

    Article  CAS  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7(4):465–474. https://doi.org/10.1046/j.1365-294x.1998.00318.x

    Article  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Article  CAS  Google Scholar 

  • Singh NK, Mahato AK, Sharma N, Gaikwad K, Srivastava M, Tiwari K, Dogra V, Rawal HC, Jayaswal P, Singh A, Rai V, Mithra SVA, Bajpai A, Dinesh MR, Ravishankar KV, Rajan S, Rai A, Singh AK, Sharma TR (2014) A draft genome of the king of fruit, mango (Mangifera indica L.). Paper presented in Plant and Animal Genomic XXII conference January 11–15, 2014, San Diego, USA

    Google Scholar 

  • Smith DR (2016) The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief Funct Genomics 15:47–54

    CAS  PubMed  Google Scholar 

  • Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, Zhou X (2014) Multiplex sequencing of pooled mitochondrial genomes- a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res 42:e166

    Article  Google Scholar 

  • Wambugu P, Brozynska M, Furtado A, Waters D, Henry R (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5:13957

    Article  Google Scholar 

  • Wang X, Cheng F, Rohlsen D, Bi C, Wang C, Xu Y, Wei S, Ye Q, Yin T, Ye N (2018) Organellar genome assembly methods and comparative analysis of horticultural plants Hort Res 5:3. https://doi.org/10.1038/s41438-017-0002-1

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin-hua HE, Yong-ze G, Yang-mi L, Sh-jin O (2007) Assessment of the genetic relationship and diversity of mango and its relatives by cpISSR marker. Agril Sci China 6(2):137–142

    Article  Google Scholar 

  • Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid- expressed 5-enolpyruvyl shikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  Google Scholar 

  • Zhang Y, Ou K, Huang G, Lu Y, Yang G, Pang X (2020) The complete chloroplast genome sequence of Mangifera sylvatica Roxb. (Anacardiaceae) and its phylogenetic analysis, Mitochondrial DNA Part B 5(1):738–739. https://doi.org/10.1080/23802359.2020.171 5286

  • Zhao Z, Gao A, Huang J, Luo R (2019) The complete sequence of chloroplast genome from mango (Mangifera indica var ‘GuiFei’). Mitochondrial DNA Part B 4(1):1916–1917. https://doi.org/10.1080/23802359.2019.1606678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Srivastav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastav, M., Singh, S.K., Sharma, N. (2021). The Mango Chloroplast Genome. In: Kole, C. (eds) The Mango Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-47829-2_11

Download citation

Publish with us

Policies and ethics