Skip to main content

Current Methods for Operational Modal Analysis of Rotating Machinery and Prospects of Machine Learning

  • Conference paper
  • First Online:
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6

Abstract

Current demands for operational efficiency and safety of aircraft engines require a deep understanding of engine component behavior. Mechanical spinning tests can be utilized for this purpose by extracting modal properties of the tested hardware by Operational Modal Analysis. However, this process is challenging because the operational input force is unknown and is disturbed by influences such as harmonics in the excitation, which are characteristic for rotating hardware. To address this issue, this paper provides a qualitative review of existing methods for Operational Modal Analysis (OMA) applied to rotating machinery. A plate structure under random excitation with additional harmonic loading, which resembles the effect of rotation, is presented. The vibration response of the plate has been processed by six different OMA methods to estimate their applicability and output variance. The results of the conducted research and experimental analysis indicate that a hybrid approach based on machine learning and different vibration analysis methods can be beneficial. Specifically, data fusion and condition monitoring can be facilitated to acquire more consistent and accurate analysis results and ultimately contribute to optimized engine system designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batel, M.: Operational modal analysis – another way of doing modal testing. J. Sound Vib. 36, 22–27 (2002)

    Google Scholar 

  2. Peeters, B., De Roeck, G.: Stochastic system identification for operational modal analysis: a review. J. Dyn Syst, Meas Control. 123, 659–667 (2001). https://doi.org/10.1115/1.1410370

    Article  Google Scholar 

  3. Jacobsen, N.-J.: Separating Structural Modes and Harmonic Components in Operational Modal Analysis. Proceedings of the IMAC-XXIV, vol. 5, 2335–2342 (2006)

    Google Scholar 

  4. Weijtjens, W., Shirzadeh, R., De Sitter, G., Devriendt, C.: Classifying resonant frequencies and damping values of an offshore wind turbine on a monopile foundation for different operational conditions. IET Renew. Power Gener. 8, 433–441 (2014). https://doi.org/10.1049/iet-rpg.2013.0229

    Article  Google Scholar 

  5. Mohanty, P., Rixen, D.J.: Operational modal analysis in the presence of harmonic excitation. J. Sound Vib. 270, 93–109 (2004). https://doi.org/10.1016/S0022-460X(03)00485-1

    Article  Google Scholar 

  6. Yang, W., Li, H., Hu, S.J., Teng, Y.: Stochastic Modal Identification in the Presence of Harmonic Excitations. Proceedings of the 6th International Operational Modal Analysis Conference (IOMAC) (2015)

    Google Scholar 

  7. Zhang, G., Tang, B., Tang, G.: An improved stochastic subspace identification for operational modal analysis. Measurement. 45, 1246–1256 (2012). https://doi.org/10.1016/j.measurement.2012.01.012

    Article  Google Scholar 

  8. Møller, N., Gade, S., Herlufsen, H.: Stochastic Subspace Identification Technique in Operational Modal analysis. Proceedings of the 1st International Operational Modal Analysis Conference (IOMAC) (2005)

    Google Scholar 

  9. Delavaud, V., Gouache, T., Coulange, B., Gonidou, L.O., Foucaud, S.: Performances Assessment of OMA Methods Applied to alteRed Vibration Signals. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), pp. 3223–3235 (2014)

    Google Scholar 

  10. Motte, K., Weijtjens, W., Devriendt, C., Guillaume, P.: Operational Modal Analysis in the Presence of Harmonic Excitations: A Review. Proceedings of the 33rd IMAC, Dynamics of Civil Structures, vol. 2, pp. 379–395 (2015). doi:https://doi.org/10.1007/978-3-319-15248-6_40

  11. Peeters, B., Cornelis, B., Janssens, K., Van der Auweraer, H.: Removing Disturbing Harmonics in Operational Modal Analysis. Proceedings of the 2nd International Operational Modal Analysis Conference (IOMAC), vol. 1, pp. 185–192 (2007)

    Google Scholar 

  12. Häckell, M.W., Rolfes, R.: Long-term monitoring of modal parameters for SHM at a 5 MW offshore wind turbine. Proceedings of the 9th International Workshop on Structural Health Monitoring (IWSHM), vol. 1, pp. 1310–1317 (2013)

    Google Scholar 

  13. Manzato, S., White, J.R., LeBlanc, B., Peeters, B., Janssens, K.: Advanced Identification Techniques for Operational Wind Turbine Data. Proceedings of the 31st IMAC, Topics in Modal Analysis, vol. 7, pp. 195–209 (2013). https://doi.org/10.1007/978-1-4614-6585-0_19

  14. Randall, R.B., Coats, M.D., Smith, W.A.: Repressing the effects of variable speed harmonic orders in operational modal analysis. Mech. Syst. Signal Process. 79, 3–15 (2016). https://doi.org/10.1016/j.ymssp.2016.02.042

    Article  Google Scholar 

  15. Randall, R.B., Peeters, B., Antoni, J., Manzato, S.: New Cepstral Methods of Signal Pre-Processing for Operational Modal analysis. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), pp. 755–764 (2012)

    Google Scholar 

  16. Jacobsen, N.-J., Andersen, P., Brincker, R.: Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), vol. 6, pp. 3129–3140 (2006)

    Google Scholar 

  17. Jacobsen, N.-J., Andersen, P., Brincker, R.: Eliminating the Influence of Harmonic Components in Operational Modal Analysis. Proceedings of the IMAC-XXV, vol. 1, pp. 152–162 (2007)

    Google Scholar 

  18. Jacobsen, N.-J., Andersen, P.: Operational Modal Analysis on Structures With Rotating Parts. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA). vol. 5, pp. 2491–2506 (2008)

    Google Scholar 

  19. Mohanty, P., Rixen, D.J.: A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation. J. Sound Vib. 275, 375–390 (2004). https://doi.org/10.1016/j.jsv.2003.06.030

    Article  Google Scholar 

  20. Mohanty, P., Rixen, D.J.: Modified ERA method for operational modal analysis in the presence of harmonic excitations. Mech. Syst. Signal Process. 20, 114–130 (2006). https://doi.org/10.1016/j.ymssp.2004.06.010

    Article  Google Scholar 

  21. Weijtjens, W., Lataire, J., Devriendt, C., Guillaume, P.: Dealing with periodical loads and harmonics in operational modal analysis using time-varying transmissibility functions. Mech. Syst. Signal Process. 49, 154–164 (2014). https://doi.org/10.1016/j.ymssp.2014.04.008

    Article  Google Scholar 

  22. Weijtjens, W., De Sitter, G., Devriendt, C., Guillaume, P.: Operational modal parameter estimation of MIMO systems using transmissibility functions. Automatica. 50, 559–564 (2014). https://doi.org/10.1016/j.automatica.2013.11.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Di Lorenzo, E., Manzato, S., Vanhollebeke, F., Goris, S., Peeters, B., Desmet, W., Marulo, F.: Dynamic characterization of wind turbine gearboxes using Order-Based Modal Analysis. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), pp. 4349–4362 (2014)

    Google Scholar 

  24. Janssens, K., Kollar, Z., Peeters, B., Pauwels, S., Van der Auweraer, H.: Order-Based Resonance Identification Using Operational Poly MAX. Proceedings of the IMAC-XXIV, vol. 2, pp. 566–575 (2006)

    Google Scholar 

  25. Di Lorenzo, E., Manzato, S., Peeters, B., Marulo, F., Desmet, W.: Best Practices for Using Order-Based Modal Analysis for Industrial Applications. Proceedings of the 35th IMAC, Topics in Modal Analysis & Testing, vol. 10, 69–84 (2017). https://doi.org/10.1007/978-3-319-54810-4_9

  26. Peeters, B., Gajdatsy, P., Aarnoutse, P., Janssens, K., Desmet, W.: Vibro-acoustic Operational Modal Analysis Using Engine Run-Up Data. Proceedings of the 3rd International Operational Modal Analysis Conference (IOMAC), vol. 2, pp. 447–455 (2009)

    Google Scholar 

  27. Mbarek, A., Del Rincon, A.F., Hammami, A., Iglesias, M., Chaari, F., Viadero, F., Haddar, M.: Comparison of experimental and operational modal analysis on a back to back planetary gear. Mech. Mach. Theory. 124, 226–247 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.03.005

    Article  Google Scholar 

  28. Bienert, J., Andersen, P., Aguirre, R.: A Harmonic Peak Reduction Technique for Operational Modal Analysis of Rotating Machinery. Proceedings of the 6th International Operational Modal Analysis Conference (IOMAC) (2015)

    Google Scholar 

  29. Khan, S., Yairi, T.: A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 107, 241–265 (2018). https://doi.org/10.1016/j.ymssp.2017.11.024

    Article  Google Scholar 

  30. Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Van de Walle, R., Van Hoecke, S.: Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377, 331–345 (2016). https://doi.org/10.1016/j.jsv.2016.05.027

    Article  Google Scholar 

  31. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017). https://doi.org/10.1016/j.jsv.2016.10.043

    Article  Google Scholar 

  32. Gul, M., Catbas, F.N.: Damage assessment with ambient vibration data using a novel time series analysis methodology. J. Struct. Eng. 137, 1518–1526 (2010). https://doi.org/10.1061/(asce)st.1943-541x.0000366

    Article  Google Scholar 

  33. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–237 (2019). https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  34. Liu, R., Yang, B., Zio, E., Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Cristinel Mares from Brunel University London as well as Moritz Meyeringh from Rolls-Royce Deutschland for their valuable consultations. This work was also supported by the Engineering and Physical Sciences Research Council (UK) and EXOLAUNCH GmbH (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Sternharz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sternharz, G., Kalganova, T. (2020). Current Methods for Operational Modal Analysis of Rotating Machinery and Prospects of Machine Learning. In: Di Maio, D., Baqersad, J. (eds) Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-47721-9_19

Download citation

Publish with us

Policies and ethics