Skip to main content

Lentil Breeding in Genomic Era: Present Status and Future Prospects

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Genomics-assisted breeding is a relatively powerful and fast approach to develop high-yielding plant varieties adapted to different environmental conditions. During the past years, genomic resources including mapping populations, high-density linkage maps, molecular markers, and transcriptomics data have been developed in lentil. Use of these genomic resources led to identification of the QTLs or candidate genes controlling yield contributing traits and tolerance to biotic and abiotic stresses in lentil. These efforts have opened up the opportunities of exploiting the genomics in breeding program for developing the high-yielding and climate-smart cultivars in lentil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe J, Xu DH, Suzuki Y, Kanazawa A, Shimanmoto Y (2003) Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor Appl Genet 106:445–453

    CAS  PubMed  Google Scholar 

  • Abo-Elwafa A, Murai K, Shimada T (1995) Intra-and inter-specific variations in Lens revealed by RAPD markers. Theor Appl Genet 90(3–4):335–340

    CAS  PubMed  Google Scholar 

  • Akcay UC, Mahmoudian M, Kamci H, Yucel M, Oktem HA (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep 28:407–417

    PubMed  Google Scholar 

  • Aldemir S, AteÅŸ D, Temel HY, YaÄŸmur B, Alsaleh A, Kahriman A, Özkan H, Vandenberg A, Tanyolaç MB (2017) QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk J Agric For 41. https://doi.org/10.3906/tar-1610-33

  • Andeden EE, Derya M, Baloch FS, Kilian B, Ozkan H (2013) Development of SSR markers in lentil. In: Proceedings of plant and animal genome conference XXI.351 p. (https://pag.confex.com/pag/xxi/webprogram/Paper6565.html)

    Google Scholar 

  • Andeden EE, Baloch FS, Çakır E, Toklu F, Özkan H (2015) Development, characterization and mapping of microsatellite markers for lentil (Lens culinaris Medik.). Plant Breed 134(5):589–598

    CAS  Google Scholar 

  • Andrahennadi CP, Slinkard AE, Vandenberg A (1995 Feb 23) RAPD markers for Ascochyta resistance in lentil. In: Soils and crops workshop

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Ates D, Aldemir S, Alsaleh A, Erdogmus S, Nemli S, Kahriman A, Ozkan H, Vandenberg A, Tanyolac B (2018a) A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One 13(1):e0191375

    PubMed  PubMed Central  Google Scholar 

  • Ates D, Aldemir S, Yagmur B, Kahraman A, Ozkan H, Vandenberg A, Tanyolac MB (2018b) QTL mapping of genome regions controlling manganese uptake in lentil seed. G3: Genes Genomes Genet 8(5):1409–1416

    CAS  Google Scholar 

  • Bakır M, Kahraman A (2019) Development of new SSR (simple sequence repeat) markers for lentils (Lens culinaris Medik.) from genomic library enriched with AG and AC microsatellites. Biochem Genet 57(2):338–353

    PubMed  Google Scholar 

  • Batley J, Barker G, O'Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132(1):84–91. View at Publisher · View at Google Scholar · View at Scopus

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauchet GJ, Bett KE, Cameron CT, Campbell JD, Cannon EK, Cannon SB, Carlson JW, Chan A, Cleary A, Close TJ, Cook DR (2019) The future of legume genetic data resources: challenges, opportunities, and priorities. Legume Sci. https://doi.org/10.1002/leg3.16

  • Bett K (2016) The lentil genome–from the sequencer to the field, https://hdl.handle.net/20.500.11766/6763

  • Bett K, Ramsay L, Sharpe A, Cook D, Penmetsa RV, Verma N et al (2014) Lentil genome sequencing: establishing a comprehensive platform for molecular breeding. In: Proceedings of international food legumes research conference (IFLRC-VI) and ICCLG-VII. Crop Development Center, Saskatoon. 19

    Google Scholar 

  • Bhadauria V, Ramsay L, Bett KE, Banniza S (2017) QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Sci Rep 7. https://doi.org/10.1038/s41598-017-03463-9

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014) Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127(6):1263–1291

    PubMed  PubMed Central  Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608

    CAS  PubMed  Google Scholar 

  • Chowdhury MA, Andrahennadi CP, Slinkard AE, Vandenberg A (2001) RAPD and SCAR markers for resistance to Ascochyta blight in lentil. Euphytica 118(3):331–337

    CAS  Google Scholar 

  • Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol 5:85–96

    CAS  PubMed  Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng EH (2019) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132(3):627–645

    PubMed  PubMed Central  Google Scholar 

  • Datta S, Tiwari S, Kaashyap M, Gupta PP, Choudhury PR, Kumari J et al (2011) Genetic similarity analysis in Lentil using cross-genera legume sequence tagged microsatellite site markers. Crop Sci 51:2412–2422

    CAS  Google Scholar 

  • Dikshit HK, Singh A, Singh D, Aski MS, Prakash P, Jain N, Meena S, Kumar S, Sarker A (2015) Genetic diversity in Lens species revealed by EST and genomic simple sequence repeat analysis. PloS one 10(9)

    Google Scholar 

  • Duran Y, Fratini R, Garcia P, De la Vega MP (2004) An intersubspecific genetic map of Lens. Theor Appl Genet 108:1265–1273

    CAS  PubMed  Google Scholar 

  • ErdoÄŸan C (2015) Genetic characterization and cotyledon color in lentil. Chile J Agric Res 75(4):383–389

    Google Scholar 

  • Eujayl I, Baum M, Erskine W, Pehu E, Muehlbauer FJ (1997) The use of RAPD markers for lentil genetic mapping and the evaluation of distorted F 2 segregation. Euphytica 96(3):405–412

    CAS  Google Scholar 

  • Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998a) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89. https://doi.org/10.1007/s001220050869

    Article  CAS  Google Scholar 

  • Eujayl I, Erskine W, Bayaa B, Baum M, Pehu E (1998b) Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breed 117:497–499. https://doi.org/10.1111/j.1439-0523.1998.tb01982.x

    Article  Google Scholar 

  • Fedoruk MJ, Vandenberg A, Bett KE (2013) Quantitative trait loci analysis of seed quality characteristics in lentil using single nucleotide polymorphism markers. Plant Genome:6. https://doi.org/10.3835/plantgenome2013.05.0012

  • Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to Ascochyta blight (A. lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98:93–98. https://doi.org/10.1023/a:1003097600701

    Article  CAS  Google Scholar 

  • Fratini R, Duran Y, Garcia P, Pérez de la Vega M (2007) Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Span J Agric Res 5:348–356

    Google Scholar 

  • Gujaria-verma N, Vail SL, Carrasquilla-garcia N, Penmetsa R, Cook DR, Farmer AD, Vandenberg A, Bett KE (2014) Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea. Front Plant Sci 5:676. https://doi.org/10.3389/fpls.2014.00676

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38:316–324

    CAS  Google Scholar 

  • Gupta D, Taylor PW, Inder P, Phan HT, Ellwood SR, Mathur PN, Sarker A, Ford R (2012a) Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to Ascochyta blight at seedling and pod stages. Mol Breed 30(1):429–439

    CAS  Google Scholar 

  • Gupta M, Verma B, Kumar N, Chahota RK, Rathour R, Sharma SK, Bhatia S, Sharma TR (2012b) Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J Genet 91(3):279–287

    CAS  PubMed  Google Scholar 

  • Gupta DS, Cheng P, Sablok G, Thavarajah P, Coyne CJ, Kumar S, Baum M, McGee RJ (2016) Development of a panel of unigene-derived polymorphic EST–SSR markers in lentil using public database information. Crop J 4(5):425–433

    Google Scholar 

  • Hamwieh A, Udupa S, Choumane W, Sarker A, Dreyer F, Jung C et al (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    CAS  PubMed  Google Scholar 

  • Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86

    CAS  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theor Appl Genet 77:395–401. https://doi.org/10.1007/bf00305835

    Article  CAS  PubMed  Google Scholar 

  • Hoque ME, Hasan MM (2012) Molecular diversity analysis of lentil (Lens culinaris Medik.) through RAPD Markers. Plant Tissue Cult Biotechnol 22(1):51–58

    Google Scholar 

  • Hoque ME, Mishra SK, Sarker A, (2002) Inheritance and linkage relationship between morphological and RAPD markers in lentil (Lens culinaris Medik.). Indian J Genet. 62:5–10

    Google Scholar 

  • Idrissi O, Udupa SM, Houasli C, De Keyser E, Van Damme P, De Riek J (2015) Genetic diversity analysis of Moroccan lentil (Lens culinaris Medik.) landraces using simple sequence repeat and amplified fragment length polymorphisms reveals functional adaptation towards agro-environmental origins. Plant Breed 134:322–333

    Google Scholar 

  • Kahraman A, Demirel U, Ozden M, Muehlbauer FJ (2010) Mapping of QTLs for leaf area and the association with winter hardiness in fall-sown lentil. Afr J Biotechnol 9:8515–8519

    Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443

    CAS  PubMed  Google Scholar 

  • Kaur S, Cogan NOI, Pembleton LW, Shinozuka M, Savin KW, Materne M et al (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265. https://doi.org/10.1186/1471-2164-12-265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Cogan NI, Stephens A, Noy D, Butsch M, Forster J et al (2014) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713. https://doi.org/10.1007/s00122-013-2252-0

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Webster T, Sudheesh S, Pembleton L, Sawbridge T, Rodda M, Cogan N (2016) Lentil genome sequencing effort: a comprehensive platform for genomics assisted breeding. (https://www.researchgate.net/publication/308741664)

  • Khatib F, Koudsieh S, Ghazal B, Barton J, Tsujimoto H, Baum M (2007) Developing herbicide resistant lentil (Lens culinaris Medikus subsp. culinaris) through Agrobacterium-mediated transformation. Arab. J. Plant Prot 25:185–192

    Google Scholar 

  • Khatib F, Makris A, Yamaguchi-Shinozaki K, Kumar S, Sarker A, Erskine W et al (2011) Expression of the DREB1A gene in lentil (Lens culinaris Medik. subsp culinaris) transformed with the Agrobacterium system. Crop Pasture Sci 62:488–495

    CAS  Google Scholar 

  • Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik) and its relation to the world's agro-ecological zones. Front Plant Sci 7:1093

    PubMed  PubMed Central  Google Scholar 

  • Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker–trait association analysis of iron and zinc concentration in lentil(Lens culinaris Medik.) seeds. Plant Genome 10(2) https://doi.org/10.3835/plantgenome2017.02.0007

  • Khazaei H, Fedoruk M, Caron CT, Vandenberg A, Bett KE (2018) Single Nucleotide Polymorphism markers associated with seed quality characteristics of cultivated lentil. Plant Genome 11(1) https://doi.org/10.3835/plantgenome2017.06.0051

  • Kreplak J, Madoui MA, Cápal P, Novak P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411

    CAS  PubMed  Google Scholar 

  • Kumar S, & Ali, M (2006) GE interaction and its breeding implications in pulses. The Botanica 56:31–36

    Google Scholar 

  • Kumar J, Gupta S (2019) Inheritance of qualitative and quantitative traits in interspecific crosses of lentil. Indian J Genet Plant Breed 79(3):626–631

    Google Scholar 

  • Kumar S, Hamweih A, Manickavelu A, Kumar J, Sharma TR, Baum M (2014) Advances in lentil genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in omics era. Springer Science+Business Media, New York, pp 111–130

    Google Scholar 

  • Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:78

    PubMed  PubMed Central  Google Scholar 

  • Kumar J, Gupta S, Gupta P, Dubey S, Tomar RSS, Kumar S (2016) Breeding strategies to improve lentil for diverse agro-ecological environments. Indian J Genet 76(4):530–549

    Google Scholar 

  • Kumar J, Gupta S, Biradar RS, Gupta P, Dubey S, Singh NP (2018a) Association of functional markers with flowering time in lentil. J Appl Genet 59(1):9–21

    CAS  PubMed  Google Scholar 

  • Kumar J, Gupta S, Gupta DS, Singh NP (2018b) Identification of QTLs for agronomic traits using association mapping in lentil. Euphytica 214(4):75

    Google Scholar 

  • Kumar J, Basu PS, Gupta S, Dubey S, Gupta DS, Singh NP (2018c) Physiological and molecular characterisation for high temperature stress in Lens culinaris. Funct Plant Biol 45(4):474–487

    CAS  PubMed  Google Scholar 

  • Kumar, J, Kumar S, Gupta DS, Dubey S, Gupta S, Gupta P (2019). Molecular marker assisted gene pyramiding. https://doi.org/10.1016/B978-0-12-813522-8.00007-8

    Book  Google Scholar 

  • Kushwaha UK, Ghimire SK, Yadav NK, Ojha BR (2013, Sep) Genetic relatedness of lentil (Lens culinaris L.) germplasm by using SSR markers. International Journal of Applied Sciences and Biotechnology 1(3):132–136

    Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23(3):184–186

    CAS  PubMed  Google Scholar 

  • Lombardi M, Materne M, Cogan NO, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 15(1):150

    PubMed  PubMed Central  Google Scholar 

  • Lurquin PF, Cai Z, Stiff CM, Fuerst EP (1998) Half-embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars to Agrobacterium tumefaciens. Mol Biotechnol 9:175–179

    CAS  PubMed  Google Scholar 

  • Mahmoudian M, Yucel M, Oktem HA (2002) Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration of Agrobacterium tumefaciens. Plant Mol Biol Rep. 20:251–257

    Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom 2012: 728398. https://doi.org/10.1155/2012/728398

  • Mbasani-Mansi J, Ennami M, Briache FZ, Gaboun F, Benbrahim N, Triqui ZE, Mentag R (2019) Characterization of genetic diversity and population structure of Moroccan lentil cultivars and landraces using molecular markers. Physiol Mol Biol Plants 25(4):965–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobini SH, Lulsdorf T, Warkentin D, Vanderberg A (2014) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev Biol- Plant. https://doi.org/10.1007/s11627-014-9647-8

  • Nepolean T, Kaul J, Mukri G, Mittal S (2018) Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize. Front Plant Sci 9:361

    PubMed  PubMed Central  Google Scholar 

  • Pandian A, Ford R, Taylor PW (2000) Transferability of sequence tagged microsatellite site (STMS) primers across four major pulses. Plant Mol Biol Rep 18:395–395

    Google Scholar 

  • Pavan S, Bardaro N, Fanelli V, Marcotrigiano AR, Mangini G, Taranto F, Catalano D, Montemurro C, De Giovanni C, Lotti C, Ricciardi L (2019) Genotyping by sequencing of cultivated lentil (Lens culinaris Medik.) highlights population structure in the Mediterranean gene pool associated with geographic patterns and phenotypic variables. Front Genet 10:872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phan HT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114:549–558

    PubMed  Google Scholar 

  • Polanco C, de Miera LE, Bett K, de la Vega MP (2018) A genome-wide identification and comparative analysis of the lentil MLO genes. PLoS One 13(3):e0194945

    PubMed  PubMed Central  Google Scholar 

  • Polanco C, de Miera LE, González AI, García P, Fratini R, Vaquero F, Vences FJ, de la Vega MP (2019) Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS One 14(3):e0214409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2009) Cross genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breed 129:514–518

    Google Scholar 

  • Roy S, Ray BP, Sarker A, Das SC (2015) DNA fingerprinting and genetic diversity in Lentil Germplasm using SSR markers. Asian J Conserv Biol 4:109–115

    Google Scholar 

  • Rubeena, Ford R, Taylor PWJ (2003) Construction of an intraspecific linkage map of lentil (Lens culinaris ssp culinaris). Theor Appl Genet 107:910–916. https://doi.org/10.1007/s00122-003-1326-9

    Article  CAS  PubMed  Google Scholar 

  • Rubeena A, Taylor PWJ, Ades PK, Ford R (2006) QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to Ascochyta blight (Ascochyta lentis). Plant Breed 125:506–512

    CAS  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2010) Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil. Crop Sci 50:1831–1839

    CAS  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2013) Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int J Agron 2013:9. https://doi.org/10.1155/2013/618926

    Article  Google Scholar 

  • Shamshad M, Sharma A (2018) The usage of genomic selection strategy in plant breeding. Next Gener Plant Breed 26:93

    Google Scholar 

  • Sharma SK, Dawson IK, Waugh R (1995) Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet 91(4):647–54. Sharma, 52

    CAS  PubMed  Google Scholar 

  • Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Rong L et al (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:1–13. https://doi.org/10.1186/1471-2164-14-192

    Article  Google Scholar 

  • Singh A, Dikshit HK, Singh D, Jain N, Aski M, Sarker A, Sharma TR (2016a) Use of expressed sequence tag microsatellite markers for exploring genetic diversity in lentil and related wild species. J Agric Sci 154(7):1254–1269

    CAS  Google Scholar 

  • Singh D, Singh CK, Tomar RS, Taunk J, Singh R, Maurya S, Chaturvedi AK, Pal M, Singh R, Dubey SK (2016b) Molecular assortment of Lens species with different adaptations to drought conditions using SSR markers. PLoS One 11(1):e0147213

    PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh CK, Tomar RS, Chaturvedi AK, Shah D, Kumar A, Pal M (2016c) Exploring genetic diversity for heat tolerance among lentil (Lens culinaris Medik.) genotypes of variant habitats by simple sequence repeat markers. Plant Breed 135(2):215–223

    CAS  Google Scholar 

  • Singh A, Sharma VK, Dikshit HK, Singh D, Aski M, Prakash P, Kaushik SC, Singh G, Kumar S, Sarker A (2017a) Microsatellite marker-based genetic diversity analysis of elite lentil lines differing in grain iron and zinc concentration. J Plant Biochem Biotechnol 26(2):199–207

    CAS  Google Scholar 

  • Singh D, Singh CK, Singh T, Pal M (2017b) Genetics and molecular mapping of heat tolerance for seedling survival and pod set in lentil. Crop Sci 57(6):3059–3067

    CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Tomar RS, Chaturvedi AK, Gaikwad K, Pal M (2017c) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18(1):206

    PubMed  PubMed Central  Google Scholar 

  • Singh A, Dikshit HK, Mishra GP, Aski M, Kumar S (2019a) Association mapping for grain diameter and weight in lentil using SSR markers. Plant Gene 20:100204

    CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K (2019b) Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 9(1):1–9

    Google Scholar 

  • Solanki R, Singh S, Kumar J (2010) Molecular marker assisted testing of hybridity of F1 plants in lentil. Food Legumes 23:21–24

    Google Scholar 

  • Subedi M, Bett KE, Khazaei H, Vandenberg A (2018) Genetic mapping of milling quality traits in lentil (Lens culinaris Medik.). Plant Genome 11(2) https://doi.org/10.3835/plantgenome2017.10.0092

  • Sudheesh S, Rodda MS, Davidson J, Javid M, Stephens A, Slater AT, et al. (2016) SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front Plant Sci 7:1604

    Google Scholar 

  • Temel HY, Gol D, Kahriman A, Tanyolac MB (2014) Construction of linkage map through genotyping-by-sequencing in lentil. In: Proceedings of plant and animal genome conference XXII. 358 p. (https://pag.confex.com/pag/xxii/webprogram/Paper10284.html)

    Google Scholar 

  • Tsanakas G, Mylona P, Koura K, Gleridou A, Polidoros A (2018) Genetic diversity analysis of the Greek lentil (Lens culinaris) landrace ‘Eglouvis’ using morphological and molecular markers. Plant Genet Resour Charact Utiliz 16(5):469–477. https://doi.org/10.1017/S1479262118000096

    Article  Google Scholar 

  • Tullu A, Tar'an B, Breitkreutz C, Buchwaidt L, Banniza S, Warkentin TD et al (2006) A quantitative-trait locus for resistance to Ascochyta blight Ascochyta lentis maps close to a gene for resistance to anthracnose Colletotrichum truncatum in lentil. Can J Plant Pathol 28:588–595

    CAS  Google Scholar 

  • Tullu A, Tar'an B, Warkentin T, Vandenberg A (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264. https://doi.org/10.2135/cropsci2007.11.062

    Article  Google Scholar 

  • Udupa SM, Robertson LD, Weigand F, Baum M, Kahl G (1999) Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genet 261:354–363

    CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83

    CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B, Millan T (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240

    CAS  PubMed  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34(1–3):169–194

    Google Scholar 

  • Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C, Vadez V, Whitbread AM, Siddique KH, Nguyen HT, Carberry PS, Bergvinson D (2018) Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot 69(13):3293–3312

    CAS  PubMed  Google Scholar 

  • Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S (2015) Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in Lentil (Lens culinaris Medik.). PLoS One 10(10):e0139666

    PubMed  PubMed Central  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132(3):669–686

    PubMed  Google Scholar 

  • Weeden NF, Muehlbauer FJ, Ladizinsky G (1992) Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83:123–129

    Google Scholar 

  • Weller JL, Liew LC, Hecht VFG, Rajandran V, Laurie RE, Ridge S et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158–21163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SI, Bi IV, Schroeder SC et al (2005) Evolution: the effects of artificial selection on the maize genome. Science 308(5726):1310–1314

    CAS  PubMed  Google Scholar 

  • Zamir D, Ladizinsky G (1984) Genetics of allozyme variants and linkage groups in lentil. Euphytica 33:329–336. https://doi.org/10.1007/bf00021129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, J., Gupta, D.S., Tiwari, P. (2020). Lentil Breeding in Genomic Era: Present Status and Future Prospects. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_7

Download citation

Publish with us

Policies and ethics