Skip to main content

Supercritical Fluid Biorefining Using Supercritical CO2 as an Antisolvent for Micronization, Coprecipitation, and Fractionation: Fundamentals, Processing, and Effect of Process Conditions

  • Chapter
  • First Online:
Supercritical Fluid Biorefining

Abstract

The use of supercritical CO2 (SC–CO2) antisolvent for micronization, coprecipitation, and fractionation of high-value products for biorefining of plant matrices into marketable products has been a promising and increasing research topic. These SC–CO2 antisolvent processes are able to microencapsulate many materials that are difficult to treat with conventional techniques. In addition, the control of the morphology of materials by adjusting nucleation and growth during particle production is provided. The use of supercritical antisolvent processes is advantageous when compared with other methods like freeze-drying, drying at high temperatures and spray-drying such as uniform particle size distribution in the products and high efficiency to obtain nano or microparticles. The optimization of the process on the yield and quality of obtained particles properties depend mainly on the operational conditions such as pressure, temperature, and concentration of the bioactives solution, in terms of extract and polymer. Thus, this chapter provides some insights about the fundamentals and effects of operational conditions of these SC–CO2 antisolvent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami R, Reverchon E, Järvenpää E, Huopalahti R (2008) Supercritical AntiSolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol 182:105–112

    Article  CAS  Google Scholar 

  • Adami R, Di Capua A, Reverchon E (2017) Supercritical assisted atomization for the production of curcumin-biopolymer microspheres. Powder Technol 305:455–461

    Article  CAS  Google Scholar 

  • Anwar M, Ahmad I, Warsi MH, Mohapatra S, Ahmad N, Akhter S, Ali A, Ahmad FJ (2015) Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. Eur J Pharm Biopharm 96:162–172

    Article  CAS  PubMed  Google Scholar 

  • Aro H, Järvenpää EP, Könkö K, Sihvonen M, Hietaniemi V, Huopalahti R (2009) Isolation and purification of egg yolk phospholipids using liquid extraction and pilot-scale supercritical fluid techniques. Eur Food Res Technol 228:857–863

    Article  CAS  Google Scholar 

  • Badens E, Masmoudi Y, Mouahid A, Crampon C (2018) Current situation and perspectives in drug formulation by using supercritical fluid technology. J Supercrit Fluids 134:274–283

    Article  CAS  Google Scholar 

  • Bertucco A, Lora M, Kikic I (1998) Fractional crystallization by gas antisolvent technique: theory and experiments. AIChE J 44:2149–2158

    Article  CAS  Google Scholar 

  • Catchpole OJ, Grey J, Mitchell K, Lan J (2004) Supercritical antisolvent fractionation of propolis tincture. J Supercrit Fluids 29:97–106

    Article  CAS  Google Scholar 

  • Chang SC, Lee MJ, Lin HM (2008) Role of phase behavior in micronization of lysozyme via a supercritical anti-solvent process. Chem Eng J 139:416–425

    Article  CAS  Google Scholar 

  • Chen YM, Tang M, Chen YP (2010) Recrystallization and micronization of sulfathiazole by applying the supercritical antisolvent technology. Chem Eng J 165:358–364

    Article  CAS  Google Scholar 

  • Chinnarasu C, Montes A, Fernandez-Ponce MT, Casas L, Mantell C, Pereyra C, de la Ossa EJM, Pattabhi S (2015) Natural antioxidant fine particles recovery from Eucalyptus globulus leaves using supercritical carbon dioxide assisted processes. J Supercrit Fluids 101:161–169

    Article  CAS  Google Scholar 

  • Cho Y-C, Cheng J-H, Hsu S-L, Hong S-E, Lee T-M, Chang C-MJ (2011) Supercritical carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly recovered by elution chromatography from Nannochloropsis oculata. Sep Purif Technol 78:274–280

    Article  CAS  Google Scholar 

  • Crystec Pharma. Supercritical fluid processing for controlled particle formation. Available at: http://www.crystecpharma.com/index.php?id=23. Accessed: Apr 2013

  • Debenedetti PG, Tom JW, Yeo SD (1993) Rapid expansion of supercritical solutions (RESS): fundamentals and applications. Fluid Phase Equilib 82:311–318

    Article  CAS  Google Scholar 

  • Guamán-Balcázar MC, Montes A, Pereyra C, de la Ossa EM (2017) Precipitation of mango leaves antioxidants by supercritical antisolvent process. J Supercrit Fluids 128:218–226

    Article  CAS  Google Scholar 

  • Huang T-L, Lin JC-T, Chyau C-C, Lin K-L, Chang C-MJ (2013) Purification of lignans from Schisandra chinensis fruit by using column fractionation and supercritical antisolvent precipitation. J Chromatogr A 1282:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kalani M, Yunus R, Abdullah N (2011) Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L- polylactide. Int J Nanomed 6:1101–1105

    Article  CAS  Google Scholar 

  • Kim MS, Lee S, Park JS, Woo JS, Hwang SJ (2007) Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters. PowderTechnology 177:64–70

    CAS  Google Scholar 

  • Kim MS, Song HS, Park HJ, Hwang SJ (2012) Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process. Chem Pharm Bull 60:543–547

    Article  CAS  PubMed  Google Scholar 

  • Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7:353–361

    Article  CAS  Google Scholar 

  • Liau BC, Shen CT, Liang FP, Hong SE, Hsu SL, Jong TT, Chang CMJ (2010) Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. J Supercrit Fluids 55:169–175

    Article  CAS  Google Scholar 

  • Majerik V, Badens GCE, Horváth G, Szokonya L, Bosc N, Teillaud E (2007) Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. J Supercrit Fluids 40:101–110

    Article  CAS  Google Scholar 

  • Martı́n A, Cocero MJ (2004) Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process. J Supercrit Fluids 32:203–219

    Google Scholar 

  • Montes A, Gordillo MD, Pereyra C, Ossa EJM (2012) Polymer and ampicillin co- precipitation by supercritical antisolvent process. J Supercrit Fluids 63:92–98

    Article  CAS  Google Scholar 

  • Natolino A, Da Porto C, Rodríguez-Rojo S, Moreno T, Cocero MJ (2016) Supercritical antisolvent precipitation of polyphenols from grape marc extract. J Supercrit Fluids 118:54–63

    Article  CAS  Google Scholar 

  • Nerome H, Machmudah S, Wahyudiono Fukuzato R, Higashiura T, Youn Y-S, Lee Y-W, Goto M (2013) Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids 83:97–103

    Article  CAS  Google Scholar 

  • Park HJ, Kim MS, Lee S, Kim JS, Woo JS, Park JS, Hwang SJ (2007) Recrystallization of fluconazole using the supercritical antisolvent (SAS) process. Int J Pharm 328:152–160

    Google Scholar 

  • Pasquali I, Bettini (2008) Are pharmaceutics really going supercritical? Int J Pharm 364:176–187

    Google Scholar 

  • Perretti G, Virgili C, Troilo A, Marconi O, Regnicoli GF, Fantozzi P (2013) Supercritical antisolvent fractionation of lignans from the ethanol extract of flaxseed. J Supercrit Fluids 75:94–100

    Article  CAS  Google Scholar 

  • Petermann M (2018) Supercritical fluid-assisted sprays for particle generation. J Supercrit Fluids 134:234–243

    Article  CAS  Google Scholar 

  • Prosapio V, De Marco I, Reverchon E (2018) Supercritical antisolvent coprecipitation mechanisms. J Supercrit Fluids 138:247–258

    Article  CAS  Google Scholar 

  • Prosapio V, Reverchon E, De Marco I (2015) Control of powders morphology in the supercritical antisolvent technique using solvent mixtures. Chem Eng Trans 43:763–768

    Google Scholar 

  • Reverchon E, Caputo G, De Marco I (2003) Role of phase behavior and atomization in the supercritical antisolvent precipitation. Ind Eng Chem Res 42:6406–6414

    Article  CAS  Google Scholar 

  • Reverchon E (1999) Supercritical antisolvent precipitation of micro- and nano-particles. J Supercrit Fluids 15:1–21

    Article  CAS  Google Scholar 

  • Rossmann M, Braeuer A, Leipertz A, Schluecker E (2012) Supersaturation as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. In: 10th international symposium on supercritical fluids (ISSF). ISSF 2012 proceedings. RSC—advancing the chemical sciences. Supercritical fluids: realising potential. Available at: http://www.rsc.org/chemistryworld/Issues/2005/February/supercriticalfluids.asp Accessed Apr 2013

  • Shariati A, Peters CJ (2003) Recent developments in particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7:371–383

    Article  CAS  Google Scholar 

  • Shekunov BY, York P (2000) Crystallization processes in pharmaceutical technology and drug delivery design. J Cryst Growth 211:122–136

    Article  CAS  Google Scholar 

  • Skala D, Orlovic A (2006) Particle production using supercritical fluids. In: Hsu J-P, Spasic AM (eds) Micro-, nano-, and Atto-Engineering. Taylor & Francis Group

    Google Scholar 

  • Subra P, Jestin P (1999) Powders elaboration in supercritical media: comparison with conventional routes. Powder Technol 103:2–9

    Article  CAS  Google Scholar 

  • Tabernero A, González-Garcinuño Á, Galán Miguel A, Martín del Valle Eva M (2016) Survey of supercritical fluid techniques for producing drug delivery systems for a potential use in cancer therapy. Rev Chem Eng 32

    Google Scholar 

  • Tabernero A, Valle EMM, Galán MA (2012) Supercritical fluids for pharmaceutical particle engineering: methods, basic fundamentals and modeling. Chem Eng Process 60:9–25

    Article  CAS  Google Scholar 

  • Temelli F (2018) Perspectives on the use of supercritical particle formation technologies for food ingredients. J Supercrit Fluids 134:244–251

    Article  CAS  Google Scholar 

  • Thiering R, Dehghani F, Foster NR (2001) Current issues relating to anti-solvent micronisation techniques and their extension to industrial scales. J Supercrit Fluids 21:159–177

    Article  CAS  Google Scholar 

  • Uzun IN, Sipahigil O, Dinçer S (2011) Coprecipitation of Cefuroxime Axetil–PVP composite microparticles by batch supercritical antisolvent process. J Supercrit Fluids 55:1059–1106

    Article  CAS  Google Scholar 

  • Varughese P, Li J, Wang W, Winstead D (2010) Supercritical antisolvent processing of γ- Indomethacin: effects of solvent, concentration, pressure and temperature on SAS processed Indomethacin. Powder Technol 201:64–69

    Article  CAS  Google Scholar 

  • Visentin A, Rodríguez-Rojo S, Navarrete A, Maestri D, Cocero MJ (2012) Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J Food Eng 109:9–15

    Article  CAS  Google Scholar 

  • Wang W, Liu G, Wu J, Jiang Y (2013) Co-precipitation of 10-hydroxycamptothecin and poly(l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent. J Supercrit Fluids 74:137–144

    Article  CAS  Google Scholar 

  • Weidner E, Knez Z, Novak Z (1995) Int Pat Publ WO 95/21688

    Google Scholar 

  • Yang, L, Huang JM, Zu YG, Ma CH, Wang H, Sun XW, Sun Z (2011) Preparation and radical scavenging activities of polymeric procyanidins nanoparticles by a supercritical antisolvent (SAS) process. Food Chem 128:1152–1159

    Google Scholar 

  • Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34:287–308

    Article  CAS  Google Scholar 

  • York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2:430–440

    Article  CAS  PubMed  Google Scholar 

  • York P, Kompella UB, Shekunov BY (2004) Supercritical fluid technology for drug product development. Marcel-Dekker, New York

    Book  Google Scholar 

Download references

Acknowledgements

Diego T. Santos thanks CNPq (processes 401109/2017-8; 150745/2017-6) for the post-doctoral fellowship. Ricardo A. C. Torres thanks Capes for their doctorate assistantship. Ádina L. Santana thanks CAPES (1764130) for the post-doctoral fellowship. M. Angela A. Meireles thanks CNPq for the productivity grant (302423/2015-0). The authors acknowledge the financial support from CNPq (process 486780/2012-0) and FAPESP (processes 2012/10685-8; 2015/13299-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego T. Santos .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, D.T. et al. (2020). Supercritical Fluid Biorefining Using Supercritical CO2 as an Antisolvent for Micronization, Coprecipitation, and Fractionation: Fundamentals, Processing, and Effect of Process Conditions. In: Supercritical Fluid Biorefining. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-47055-5_1

Download citation

Publish with us

Policies and ethics