Skip to main content

Polysaccharide-Based Nanoparticles: Nanocarriers for Sustained Delivery of Drugs

  • Chapter
  • First Online:
Advanced Biopolymeric Systems for Drug Delivery

Abstract

Polysaccharides are considered as the most promising natural materials for their unique physicochemical properties and excellent biocompatibility. They are biodegradable, non-toxic, abundant, and inexpensive biopolymeric precursors for preparing materials of choice in various industries. Many biomedical applications of polysaccharide nanomaterials (PNM) have been explored. PNM have the potential to be used as nanometric carriers for the sustained/controlled delivery of drugs. Sustained delivery through PNM has improved the utility of many drugs like 5 aminosalicylic acid, diclofenac sodium, ranitidine hydrochloride, and hormonal drugs while alleviating their toxic side effects. This chapter summarizes the recent developments in the field of PNM based drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, C., Gao, X., Chen, Z., Chen, Y., Chen, H.: Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymer 9, 689–722 (2017). https://doi.org/10.3390/polym9120689

    Article  CAS  Google Scholar 

  2. Hutchinson, J.E.: Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2, 395–402 (2008). https://doi.org/10.1021/nn800131j

    Article  CAS  Google Scholar 

  3. Chou, K.S., Ren, C.Y.: Synthesis of nanosized silver particles by chemical reduction method. Mat. Chem. Phys. 64, 241–246 (2000). https://doi.org/10.1016/S0254-0584(00)00223-6

    Article  CAS  Google Scholar 

  4. Visaveliya, N., Köhler, J.M.: Control of shape and size of polymer nanoparticles aggregates in a single-Step microcontinuous flow process: a case of flower and spherical shapes. Langmuir 30, 12180–12189 (2014). https://doi.org/10.1021/la502896s

    Article  CAS  Google Scholar 

  5. Luo, C.J., Okubo, T., Edirisinghe, M.T.: Preparation of polymeric nanoparticles by novel electrospray nanoprecipitation. Polym. Int. 64, 183–185 (2015). https://doi.org/10.1002/pi.4822

    Article  CAS  Google Scholar 

  6. Letchford, K., Burt, H.: A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259–269 (2007). https://doi.org/10.1016/j.ejpb.2006.11.009

    Article  CAS  Google Scholar 

  7. Nakabayashi, K., Kojima, M., Inagi, S., Hirai, Y., Atobe, M.: Size-controlled synthesis of polymer nanoparticles with tandem acoustic emulsification followed by soap-free emulsion polymerization. ACS Macro. Lett. 2, 482–484 (2013). https://doi.org/10.1021/mz4001817

    Article  CAS  Google Scholar 

  8. Snigdha, K., Singh, B.K., Mehta, A.S., Tiwari, R.P., Dutta, P.K.: Self-assembling N-(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine hydrogel as novel drug carrier. Int. J. Bio. Macrom. 93, 1639–1646 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.072

    Article  CAS  Google Scholar 

  9. Nadia, A.O., Pitombeira, Neto, J.G.V., Silva, D.A., Feitosa, J.P.A., Paula, H.C.B., Paula, R.C.M.: Self-assembled nanoparticles of acetylated cashew gum: characterization and evaluation as potential drug carrier. Carbohydr. Polym. 117, 610–615 (2015). https://doi.org/10.1016/j.carbpol.2014.09.087

  10. Pandey, S., Goswami, G.K., Nanda, K.K.: Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr. Polym. 94, 229–234 (2013). https://doi.org/10.1016/j.carbpol.2013.01.009

    Article  CAS  Google Scholar 

  11. Guru, P.R., Bera, H., Das, M., Hasnain, M.S., Nayak, A.K.: Aceclofenac-loaded Plantago ovata F. huskmucilage-Znþ2-pectinate controlled-release matrices. Starch Staerke. 70, 1700–1736 (2018). https://doi.org/10.1002/star.201700136

  12. Sinha, P., Ubaidulla, U., Nayak, A.K.: Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release. Int. J. Biol. Macromol. 72, 1069–1075 (2015). https://doi.org/10.1016/j.ijbiomac.2014.10.002

    Article  CAS  Google Scholar 

  13. Nayak, A.K., Ansari, M.T., Sami, F., Bera, H., Hasnain, M.S.: Cashew gum in drug delivery applications. In: M.S. Hasnain, A.K. Nayak (eds.) Natural Polysaccharides in Drug Delivery and Biomedical Applications, pp. 263–283. Academic Press Elsevier. EBook ISBN: 9780128170564 (2019)

    Google Scholar 

  14. Anirudhan, S.T., Peethambaran, L., Divya, Nim, J.: Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem. Eng. J. 284, 1259–1269 (2016). https://doi.org/10.1016/j.cej.2015.09.057

  15. Kumari, A., Yadav, S.K., Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointer. 75, 1–18 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  Google Scholar 

  16. Maan, G.K., Bajpai, J., Bajpai, A.K.: Investigation of in vitro release of cisplatin from electrostatically crosslinked chitosan-alginate nanoparticles. Synth. React. Inorg. Met. Nano-Metal Chem. 46, 1532–1540 (2016). https://doi.org/10.1080/15533174.2015.1137012

    Article  CAS  Google Scholar 

  17. Kumari, V.S.: Novel nanosystems for herbal drug delivery. World J. Pharm. Pharm. Sci. 6, 1447–1463 (2017)

    Google Scholar 

  18. Putra, A., Siswanta, D., Suratman, A.: Improving the slow release system using chitosan-alginate nanoparticles with various methods for curcumin. Am. Chem. Sci. J. 14, 1–10 (2016). https://doi.org/10.9734/ACSJ/2016/25989

  19. Nalinia, T., Bashab, S.K., Sadiq, A.M.M., Kumarid, V.S., Kaviyarasue, K.: Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation. J. Drug Deliv. Sci. Tech. 52, 65–72 (2019). https://doi.org/10.1016/j.jddst.2019.04.002

  20. Severino, P., Silva, C.F., Andrade, L.N., Oliveira, D.L., Campos, J., Souto, E.B.: Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des. 25, 1312–1334 (2019). https://doi.org/10.2174/1381612825666190425163424

    Article  CAS  Google Scholar 

  21. Cacicedo, M.L., Castro, M.C., Servetas, I., Bosnea, L., Boura, K.: Progress in bacterial cellulose matrices for biotechnological applications. Biores. Tech. 213, 172–180 (2016). https://doi.org/10.1016/j.biortech.2016.02.071

    Article  CAS  Google Scholar 

  22. Yang, J., Li, J.: Self-assembled cellulose materials for biomedicine: A review. Carbohyd. Polym. 181, 264–274 (2018). https://doi.org/10.1016/j.carbpol.2017.10.067

    Article  CAS  Google Scholar 

  23. Kondaveeti, S., Damato, T.C., Carmona-Ribeiro, A.M., Sierakowski, M.R., Petri, D.F.S.: Sustainable hydroxypropyl methylcellulose/xyloglucan/gentamicin films with antimicrobial properties. Carbohyd. Polym. 165, 285–293 (2017). https://doi.org/10.1016/j.carbpol.2017.02.066

    Article  CAS  Google Scholar 

  24. Yang, Y., Guo, Y., Sun, R., Wang, X.: Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft linoleic acid nanomicelles. Carbohyd. Polym. 145, 56–63 (2016). https://doi.org/10.1016/j.carbpol.2016.03.012

    Article  CAS  Google Scholar 

  25. Quiñones, J.P., Mardare, C.C., Hasse, A.W., Brüggemann, O.: Testosterone-and vitamin-grafted cellulose ethers for sustained release of camptothecin. Carbohyd. Polym. 206, 641–652 (2019). https://doi.org/10.1016/j.carbpol.2018.12.085

    Article  CAS  Google Scholar 

  26. Sun, X., Liu, C., Omer, A.M., Lu, W., Zhang, S., Jiang, X., Wu, H., Yu, D., Ouyang, X.K.: pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int. J. Bio. Macromol. 128, 468–479 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.140

    Article  CAS  Google Scholar 

  27. Shafiei-Irannejad, V., Rahimi, M., Zarei, M., Dinparast-isaleh, R., Bahrambeigi, S., Alihemmati, A., Shojaei, S., Ghasemi, Z., Yousefi, B.: Polyelectrolyte carboxymethyl cellulose for enhanced delivery of doxorubicin in MCF7 breast cancer cells: toxicological evaluations in mice model. Pharm. Res. 36(5), 68 (2019). https://doi.org/10.1007/s11095-019-2598-3

    Article  CAS  Google Scholar 

  28. Cacicedo, M.L., Islan, G.A., León, I.E., Álvarez, V.A., Chourpa, I., Allard-Vannier, E., García-Aranda, N., Díaz-Riascos, Z.V., Fernández, Y., Schwartz, S., Jr., Abasolo, I.: Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment. Colloids Surf. B: Biointerf. 170, 596–608 (2018). https://doi.org/10.1016/j.colsurfb.2018.06.056

  29. Li, N., Lu, W., Yu, J., Xiao, Y., Liu, S., Gan, L., Huang, J.: Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: a fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release. Mater. Sci. Eng. C. 91, 179–189 (2018). https://doi.org/10.1016/j.msec.2018.04.099

    Article  CAS  Google Scholar 

  30. Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S.M., Ramezani, M., Alibolandi, M.: Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohyd. Polym. 197, 157–166 (2018). https://doi.org/10.1016/j.carbpol.2018.05.092

    Article  CAS  Google Scholar 

  31. Sarkar, C., Chowdhuri, A.R., Garai, S., Chakraborty, J., Sahu, S.K.: Three-dimensional cellulose-hydroxyapatite nanocomposite enriched with dexamethasone loaded metal–organic framework: a local drug delivery system for bone tissue engineering. Cellulose 26, 7253–7269 (2019). https://doi.org/10.1007/s10570-019-02618-3

    Article  CAS  Google Scholar 

  32. Darbasizadeh, B., Fatahi, Y., Feyzi-barnaji, B., Arabi, M., Motasadizadeh, H., Farhadnejad, H., Moraffah, F., Rabiee, N.: Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM):Fabrication, characterization and in-vitro release and anti-bacterial properties. Int. J. Biol. Macromol. 141, 1137–1146 (2019). https://doi.org/10.1016/j.ijbiomac.2019.09.060

    Article  CAS  Google Scholar 

  33. Chung, J.Y., Ko, J.H., Lee, Y.J., Choi, H.S., Kim, Y.H.: Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose. J. Control Rel. 276, 42–49 (2019). https://doi.org/10.1016/j.jconrel.2018.02.028

    Article  CAS  Google Scholar 

  34. Orasugh, J.T., Saha, N.R., Sarkar, G., Rana, D., Mishra, R., Mondal, D., Ghosh, S.K., Chattopadhyay, D.: Synthesis of methylcellulose/cellulose nano-crystals nanocomposites: material properties and study of sustained release of ketorolac tromethamine. Carbohyd. Polym. 188, 168–180 (2018). https://doi.org/10.1016/j.carbpol.2018.01.108

    Article  CAS  Google Scholar 

  35. Thomas, D., Latha, M.S., Thomas, K.K.: Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J. Drug Del. Sci. Tech. 46, 392–399 (2018). https://doi.org/10.1016/j.jddst.2018.06.004

  36. Zheng, Z., Liu, Y., Huang, W., Mo, Y., Lan, Y., Guo, R., Cheng, B.: Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. Artif. Cells, Nanomed. Biotechnol. 46, 493–501 (2018). https://doi.org/10.1080/21691401.2018.1460372

    Article  CAS  Google Scholar 

  37. Rakhshaei, R., Namazi, H.: A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater. Sci. Eng., C 73, 456–464 (2017). https://doi.org/10.1016/j.msec.2016.12.097

    Article  CAS  Google Scholar 

  38. Lin, N., Gèze, A., Wouessidjewe, D., Huang, J., Dufresne, A.: Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs co-delivery. ACS Appl. Mater. Interf. 8, 6880–6889 (2016). https://doi.org/10.1021/acsami.6b00555

    Article  CAS  Google Scholar 

  39. You, J., Cao, J., Zhao, Y., Zhang, L., Zhou, J., Chen, Y.: Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforeced cationic cellulose injectable hydrogels. Biomacromol 17, 2839–2848 (2016). https://doi.org/10.1021/acs.biomac.6b00646

    Article  CAS  Google Scholar 

  40. Singh, V., Joshi, S., Malviya, T.: Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Int. J. Biol. Macromol. 112, 390–398 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.184

    Article  CAS  Google Scholar 

  41. Han, J., Borjihan, G., Bai, R., Chen, X., Jing, X.: Synthesis and characterization of starch piperinic ester and its self-assembly of nanospheres. J. Appl. Polym. Sci. 108, 523–528 (2008). https://doi.org/10.1002/app.27661

    Article  CAS  Google Scholar 

  42. Odeniyi, M.A., Adepoju, A.O., Jaiyeoba, K.T.: Native and modified Digitaria exilis starch nanoparticles as a carrier system for the controlled release of naproxen. Starch-Stärke 71, 1900067 (2019). https://doi.org/10.1002/star.201900067

    Article  CAS  Google Scholar 

  43. Li, J., Yang, Y., Lu, L., Ma, Q., Zhang, J.: Preparation, characterization and systemic application of self-assembled hydroxyethyl starch nanoparticles-loaded flavonoid Morin for hyperuricemia therapy. Int. J. Nanomed. 13, 21–29 (2018). https://doi.org/10.2147/IJN.S158585

    Article  Google Scholar 

  44. Li, X., Ge, S., Yang, J., Chang, R., Liang, C., Xiong, L., Zhao, M., Li, M., Sun, Q.: Synthesis and study the properties of StNPs/gum nanoparticles for salvianolic acid B-oral delivery system. Food Chem. 229, 111–119 (2017). https://doi.org/10.1016/j.foodchem.2017.02.059

    Article  CAS  Google Scholar 

  45. El-Naggar, M.E., El-RafieM, H., El-Sheikh, M.A., El-Feky, G.S., Hebeish, A.: Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int. J. Biol. Macromol. 81, 718–729 (2015). https://doi.org/10.1016/j.ijbiomac.2015.09.005

    Article  CAS  Google Scholar 

  46. Das, D., Das, R., Mandal, J., Ghosh, A., Pal, S.: Dextrin crosslinked with Poly (lactic acid): a novel hydrogel for controlled drug release application. J. Appl. Polym. Sci. 131, 40039–40051 (2014). https://doi.org/10.1002/app.40039

    Article  CAS  Google Scholar 

  47. Das, D., Ghosh, P., Ghosh, A., Haldar, C., Dhara, S., Panda, A.B., Pal, S.: Stimulus-responsive, biodegradable, biocompatible, covalently cross-linked hydrogel based on dextrin and poly(n-isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS Appl. Mater. Interf. 7, 14338–14351 (2015). https://doi.org/10.1021/acsami.5b02975

    Article  CAS  Google Scholar 

  48. Dodi, G., Pala, A., Barbu, E., Peptananriu, D., Hritcu, D., Popa, M.I., Tamba, B.I.: Carboxymethyl guar gum nanoparticles for drug delivery applications: preparation and preliminary in-vitro investigations. Mater. Sci. Eng., C 63, 628–636 (2016). https://doi.org/10.1016/j.msec.2016.03.032

    Article  CAS  Google Scholar 

  49. Goyal, A.K., Garg, T., Rath, G., Gupta, U.D., Gupta, P.: Chemotherapeutic evaluation of guar gum coated chitosan nanoparticle against experimental tuberculosis. J. Biomed. Nanotechnol. 12, 450–463 (2016). https://doi.org/10.1166/jbn.2016.2180

    Article  CAS  Google Scholar 

  50. Yuan, X., Praphakar, R.A., Munusamy, M.A., Alarfaj, A.A.: Mucoadhesive guar gum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin delivery. Carbohydr. Polym. 206, 1–10 (2019). https://doi.org/10.1016/j.carbpol.2018.10.098

    Article  CAS  Google Scholar 

  51. Dutta, K., Das, B., Mondal, D., Adhikari, A., Rana, D., Chattopadhyay, A.K., Banerjee, R., Mishra, R., Chattopadhyay, D.: An ex-situ approach to fabricate nanosilica reinforced polyacrylamide grafted guargum nanocomposites as an efficient biomaterial for transdermal drug delivery application. NJC 1–10 (2017). https://doi.org/10.1039/C7NJ01713H

  52. Lachowicz, D., Mielczarek, P., Wirecka, R., Berent, K., Karewicz, A., Szuwarzyński, M., Zapotoczny, S.: Nanohydrogels based on self-assembly of cationic pullulan and anionic dextran derivatives for efficient delivery of Piroxicam. Pharmaceutics 11(12), 622 (2019). https://doi.org/10.3390/pharmaceutics11120622

    Article  CAS  Google Scholar 

  53. Mehawed, S., Soliman, A., Founi, M., Vanderesse, R., Acherar, S., Ferji, K., Babin, J., LucSix, J.: Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids Surf., B 182, 110393 (2019). https://doi.org/10.1016/j.colsurfb.2019.110393

    Article  CAS  Google Scholar 

  54. Bakrania, A.K., Variyaa, B.C., Rathod, L.V., Patela, S.S.: DEAE-Dextran coated paclitaxel nanoparticles act as multifunctional nano system for intranuclear delivery to triple negative breast cancer through VEGF and NOTCH1 inhibition. Eur. J. Pharm. Biopharm. 122, 37–48 (2018). https://doi.org/10.1016/j.ejpb.2017.10.007

    Article  CAS  Google Scholar 

  55. Zhang, M., Liu, J., Kuang, Y., Li, Q., Zheng, D.W., Song, Q., Chen, H., Chen, X., Xu, Y., Li, C., Jiang, B.: Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int. J. Biol. Macromol. 98, 691–700 (2017). https://doi.org/10.1016/j.ijbiomac

    Article  CAS  Google Scholar 

  56. Mittal., N., Kaur, G.: Leucaenaleucocephala (Lam.) galactomannan nanoparticles: optimization and characterization for ocular delivery in glaucoma treatment. Int. J. Bio. Macromol. 139, 1252–1262 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.107

  57. Bernela, M., Ahuja, M., Thakur, R.: Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles. Carbohyd. Polym. 143, 18–24 (2016). https://doi.org/10.1016/j.carbpol.2016.01.055

    Article  CAS  Google Scholar 

  58. Mahmoodzadeh, F., Ghorbani, M., Jannata, B.: Glutathione and pH-responsive chitosan-based nanogel as an efficient nanoplatform for controlled delivery of doxorubicin. J. Drug Deliv. Sci. Technol. 54, 101315–101324 (2019). https://doi.org/10.1016/j.jddst.2019.101315

    Article  CAS  Google Scholar 

  59. Zhang, L., Wang, J., Caihua, N., Zhang, Y., Shi, G.: Preparation of polyelectrolyte complex nanoparticles of chitosan and poly (2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release. Mater. Sci. Eng. C. 58, 724–729 (2016). https://doi.org/10.1016/j.msec.2015.09.044

    Article  CAS  Google Scholar 

  60. Craciuna, A.M., Tartau, L.M., Pinteala, M., Marin, L.: Nitrosalicyl-imine-chitosan hydrogels based drug delivery systems for long term sustained release in local therapy. J Colloid. Interf. Sci. 536, 196–207 (2018). https://doi.org/10.1016/j.jcis.2018.10.048

    Article  CAS  Google Scholar 

  61. Mahato, K.K., Yadav, I., Singh, R.K., Monika., Singh, B.N., Singh, S.K., Ray, B., Kumar, M., Misra, N.: Polyvinyl alcohol/Chitosan Lactate composite hydrogel for controlled drug delivery. Mater. Res. Exp. 6, 11–55 (2019). https://doi.org/10.1088/2053-1591/ab4fbd

  62. Hanna, D.H., Saad, G.R.: Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery. Bioorg. Chem. 84, 115–124 (2019). https://doi.org/10.1016/j.bioorg.2018.11.036

    Article  CAS  Google Scholar 

  63. Shariatinia, Z., Zahraee, Z.: Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J. Colloid Interf. Sci. 501, 60–76 (2017). https://doi.org/10.1016/j.jcis.2017.04.036

    Article  CAS  Google Scholar 

  64. Goycoolea, F.M., Pistonea, S., Young, A., Smistad, G., Hiorth, M.: Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur. J. Pharm. Sci. 96, 381–389 (2017). https://doi.org/10.1016/j.ejps.2016.10.012

    Article  CAS  Google Scholar 

  65. Kavianinia, I., Plieger, P.G., Cave, N.J., Gopakumar, G., Dunowska, M., Kandilec, N.G., Harding, D.R.: Design and evaluation of a novel chitosan-based system for colon-specific drug delivery. Int. J. Biol. Macromol. 85, 539–546 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.003

    Article  CAS  Google Scholar 

  66. Mohammadpour, F., Hadizadeh, F., Tafaghodi, M., Sadri, K., Kalani, M.R., Gholami, L., Mahmoudi, A., Chamani, J.: Preparation, in vitro and in vivo evaluation of PLGA/Chitosan based nano-complex as a novel insulin delivery formulation. Int. J. Pharm. 572, 118710–118740 (2019). https://doi.org/10.1016/j.ijpharm.2019.118710

    Article  CAS  Google Scholar 

  67. Wang, R., Shou, D., Lv, O., Kong, Y., Deng, L., Shen, J.: pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 103, 248–253 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.06

    Article  CAS  Google Scholar 

  68. Sougata, J., Sen, K.K.: Chitosan-Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int. J. Biol. Macromol. 102, 878–884 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.097

    Article  CAS  Google Scholar 

  69. Che, Y., Dongping, L., Liu, Y., Yue, Z., Zhao, J., Ma, Q., Zhang, Q., Tan, Y., Yue, Q., Meng, F.: Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J. Polym. Res. 25, 169–186 (2018). https://doi.org/10.1007/s10965-018-1568-5

  70. Bai, X., Bao, Z., Bi, S., Li, Y., Yu, X., Hu, S., Tian, M., Zhang, X., Cheng, X., Chen, X.: Chitosan-based Thermo/pH double sensitive hydrogel for controlled drug delivery. Macromol. Biosci. 17003059–17003071 (2018). https://doi.org/10.1002/mabi.201700305

  71. Tran, T.V., Phuong, T.H.D., Tran, N.Q., Nguyen, C.K., Nguyen, D.H.: Polymeric chitosan based nanogels as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Nanotechnol. 15, 188–198 (2018). https://doi.org/10.1504/IJNT.2018.089567

    Article  CAS  Google Scholar 

  72. Bary, E.M.A., Harmal, A.N., Saeed, A., Gouda, M.A.: Design, synthesis, characterization, swelling and in vitro drug release behaviour of composite hydrogel beads based on methotrexate and chitosan incorporating antipyrine moiety. Polym. Plast. Technol. Eng. 57, 1906–1914 (2018). https://doi.org/10.1080/03602559.2018.1447126

    Article  CAS  Google Scholar 

  73. Olayinka, J., Bukoye, H.O., Oyewole, M., Olalekan, A., Ibrahim, A., Onyenekwe, P.C.: Influence of formulation parameters on encapsulation and release characteristics of curcumin loaded in chitosan-based drug delivery carriers. J. Drug Deliv. Sci. Tec. 45, 11–19 (2018). https://doi.org/10.1016/j.jddst.2018.02.001

    Article  CAS  Google Scholar 

  74. Woraphatphadung, T., Sajomsang, W., Rojanarata, T., Ngawhirunpat, T., Tonglairoum, P., Opanasopit, P.: Development of Chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS Pharm. Sci. Tech. 19, 3–13 (2017). https://doi.org/10.1208/s12249-017-0906

    Article  Google Scholar 

  75. Tan, C., Xie, J., Zhang, X., Cai, J., Xia, S.: Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 57, 236–245 (2016). https://doi.org/10.1016/j.foodhyd.2016.01.021

    Article  CAS  Google Scholar 

  76. Jittima, L.A., Pitakchatwong, C., Ratnatilaka, P., Bhuket, N., Muangnoi, C., Rojsitthisak, P., Chirachanchai, S., Wang, Q., Rojsitthisak, P.: Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr. Polym. 181, 1119–1127 (2018). https://doi.org/10.1016/j.carbpol.2017.11.027

    Article  CAS  Google Scholar 

  77. Mendesa, A.C., Gorzelanny, C., Halter, N., Schneider, S.W., Chronakis, J.S.: Hybrid electrospun Chitosan-Phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm. 510, 48–56 (2016). https://doi.org/10.1016/j.ijpharm.2016.06.016

    Article  CAS  Google Scholar 

  78. Hill, M., Twigg, M., Sheridan, E.A., Hardy, J.G., Elborn, J.S., Clifford, C., Christopher, T., Scott, J., Migau, M.E.: Alginate/Chitosan particle-based drug delivery systems for pulmonary applications. Pharm. Commun. 11(8), 379–392 (2019). https://doi.org/10.3390/pharmaceutics11080379

    Article  CAS  Google Scholar 

  79. Kono, H., Teshirogi, T.: Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int. J. Biol. Macromol. 72, 299–308 (2015). https://doi.org/10.1016/j.ijbiomac.2014.08.030

    Article  CAS  Google Scholar 

  80. Smidsrød, O., Braek, S.G.: Alginate as immobilization matrix for cells. Trends Biotechnol. (1990). https://doi.org/10.1016/0167-7799(90)90139-O

    Article  Google Scholar 

  81. Sorasitthiyanukarn, F.N., Ratnatilaka, Na Bhuket, P., Muangnoi, C., Rojsitthisak, P., Rojsitthisak, P.: Chitosan/alginate nanoparticles as a promising carrier of novel curcumin diethyl diglutarate. Int. J. Biol. Macromol. 131, 1125–1136 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.120

  82. Joseph, J.J., Sangeetha, D., Shivashankar, M.: In vitro release and cytotoxic studies of novel alginate nanocarrier for the antitumor drug: Sunitinib. Regenerative Eng. Soc. 5, 220–227 (2019). https://doi.org/10.1007/s40883-018-0090-y

    Article  CAS  Google Scholar 

  83. Silva, D.A., Feitosa, J.P.A., Paula, H.C.B., Paula, R.C.M.: Synthesis and characterization of cashew gum/acrylic acid nanoparticles. Mater. Sci. Eng., C. 29, 437–440 (2009). https://doi.org/10.1016/j.msec.2008.08.029

  84. Dias, S.F.L., Nogueira, S.S., Dourado, F.F., Guimaraes, M.A., Pitombeira, N.A.O., Gobbo, G.G., Primo, F.L., Paula, R.C.M., Feitosa, J.P.A., Tedesco, A.C., Nunes, L.C.C., Leite, J.R.S.A., da Silva.: Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr. Polym. 143, 254–261 (2016). https://doi.org/10.1016/j.carbpol.2016.02.004

  85. Xua, W., Jina, W., Lina, L., Zhanga, C., Li, Z., Li, Y., Songa, R., Li, B.: Green synthesis of xanthan conformation-based silver nanoparticles: antibacterial and catalytic application. Carbohydr. Polym. 101, 961–967 (2014). https://doi.org/10.1016/j.carbpol.2013.10.032

    Article  CAS  Google Scholar 

  86. Mao, C.F., Klinthong, W., Zeng, Y.C., Chen, C.H.: On the interaction between konjac glucomannan and xanthan in mixed gels: an analysis based on the cascade model. Carbohydr. Polym. 89, 98–103 (2012). https://doi.org/10.1016/j.carbpol.2012.02.056

    Article  CAS  Google Scholar 

  87. Malviya, T., Shehala, Dwivedi, L.M., Joshi, S., Gupta, S., Singh, V.: Synthesis and characterization of xanthan gum based nanoparticles for colon targeted drug delivery of mesalamine. J. Appl. Chem. 8(3), 1053–1065 (2019)

    Google Scholar 

  88. Choi, S., Chung, M.H.: A review on the relationship between Aloevera components and their biological effects. Sem. Integr. Med. 1(1), 53–62 (2003). https://doi.org/10.1016/S1543-1150(03)00005

    Article  Google Scholar 

  89. Chokboribal, J., Tachaboonyakiat, W., Sangvanich, P., Ruangpornvisuti, V., Jettanacheawchankit, S., Thunyakitpisal, P.: Deacetylation affects the physicalproperties and bioactivity of acemannan, an extracted polysaccharide from Aloevera. Carbohydr. Polym. 133, 556–566 (2015). https://doi.org/10.1016/j.carbpol.2015.07.039

    Article  CAS  Google Scholar 

  90. Chow, J., Williamson, D.A., Yates, K.M., Goux, W.J.: Chemical characterization of the immuno modulating polysaccharide of Aloevera. L. Carbohydr. Res. 340, 1131–1142 (2005). https://doi.org/10.1016/j.carres.2005.02.016

    Article  CAS  Google Scholar 

  91. Malviya, T., Joshi, S., Dwivedi, L.M., Baranwal, K., Shehala., Pandey, A.K., Singh, V.: Synthesis of Aloevera/Acrylonitrile based Nanoparticles for targeted drug delivery of 5-Aminosalicylic acid. Int. J. Biol. Macromol. 106, 930–939 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.085

Download references

Acknowledgements

Dr. Tulika Malviya gratefully acknowledges financial support from SERB, New Delhi, India in the form of a research grant (No: SB/FT/CS-119/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V. et al. (2020). Polysaccharide-Based Nanoparticles: Nanocarriers for Sustained Delivery of Drugs. In: Nayak, A., Hasnain, M. (eds) Advanced Biopolymeric Systems for Drug Delivery. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46923-8_7

Download citation

Publish with us

Policies and ethics