Skip to main content

Thick-Shell Core/Shell Quantum Dots

  • Chapter
  • First Online:
Core/Shell Quantum Dots

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 28))

  • 958 Accesses

Abstract

Due to the Auger effect, traditional core/shell quantum dots exhibit emission intermittency, which affects the application of quantum dots on lasers. A thick shell could effectively inhibit the Auger nonradiation process, which makes the quantum dots have high optical gain. In addition, the thick shell can effectively eliminate the influence of the external environment on the excitons in the nucleus, thus greatly improving the optical and chemical stability of the quantum dots. Therefore, a number of research groups, including our research group, have conducted extensive research on thick-shell core/shell quantum dots. This chapter will review the important works of this kind of quantum dots according to the following contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norris, D.J., Sacra, A., Murray, C.B., et al.: Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett. 72(16), 2612–2615 (1994)

    ADS  Google Scholar 

  2. Wang, L.W., Califano, M., Zunger, A., et al.: Pseudopotential theory of Auger processes in CdSe quantum dots. Phys. Rev. Lett. 91(5), 056404 (2003)

    ADS  Google Scholar 

  3. Kharchenko, V.A., Rosen, M.: Auger relaxation processes in semiconductor nanocrystals and quantum wells. J. Fluoresc. 70, 158–169 (1996)

    Google Scholar 

  4. Reiss, P., Protière, M., Li, L.: Core/Shell semiconductor Nanocrystals. Small. 5(2), 154–168 (2009)

    Google Scholar 

  5. Ghosh, Y., Mangum, B.D., Casson, J.L., et al.: New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 134(23), 9634–9643 (2012)

    Google Scholar 

  6. Chen, Y., Vela, J., Htoon, H., et al.: “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130(15), 5026–5027 (2008)

    Google Scholar 

  7. Galland, C., Brovelli, S., Bae, W.K., et al.: Dynamic hole blockade yields two-color quantum and classical light from dot-in-bulk nanocrystals. Nano Lett. 13(1), 321–328 (2013)

    ADS  Google Scholar 

  8. Liao, C., Fan, K., Xu, R., et al.: Laser-annealing-made amplified spontaneous emission of “giant” CdSe/CdS core/shell nanocrystals transferred from bulk-like shell to quantum-confined core. Photonics Res. 3(5), 200–205 (2015)

    Google Scholar 

  9. Mahler, B., Spinicelli, P., Buil, S., et al.: Towards non-blinking colloidal quantum dots. Nat. Mater. 7(8), 659–664 (2008)

    ADS  Google Scholar 

  10. Talapin, D.V., Mekis, I., Götzinger, S., et al.: CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B. 108(49), 18826–18831 (2004)

    Google Scholar 

  11. Xie, R., Kolb, U., Li, J., et al.: Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127(20), 7480–7488 (2005)

    Google Scholar 

  12. Pinchetti, V., Meinardi, F., Camellini, A., et al.: Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano. 10(7), 6877–6887 (2016)

    Google Scholar 

  13. Kim, S., Fisher, B., Eisler, H., et al.: Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125(38), 11466–11467 (2003)

    Google Scholar 

  14. Javaux, C., Mahler, B., Dubertret, B., et al.: Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nat. Nanotechnol. 8(3), 206–212 (2013)

    ADS  Google Scholar 

  15. Cihan, A.F., Kelestemur, Y., Guzelturk, B., et al.: Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission. J. Phys. Chem. Lett. 4(23), 4146–4152 (2013)

    Google Scholar 

  16. Zhang, L., Liao, C., Lv, B., et al.: Single-mode lasing from “Giant” CdSe/CdS core-shell quantum dots in distributed feedback structures. ACS Appl. Mater. Interfaces. 9(15), 13293–13303 (2017)

    Google Scholar 

  17. Zhang, L., Li, H., Liao, C., et al.: New insights into the multiexciton dynamics in phase-pure thick-Shell CdSe/CdS quantum dots. J. Phys. Chem. C. 122(43), 25059–25066 (2018)

    Google Scholar 

  18. Omogo, B., Gao, F., Bajwa, P., et al.: Reducing blinking in small core−multishell quantum dots by carefully balancing confinement potential and induced lattice strain: the “goldilocks” effect. ACS Nano. 10(4), 4072–4082 (2016)

    Google Scholar 

  19. Li, J.J., Wang, Y.A., Guo, W., et al.: Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125(41), 12567–12575 (2003)

    Google Scholar 

  20. Yu, W.W., Qu, L., Guo, W., et al.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854–2860 (2003)

    Google Scholar 

  21. Blackman, B., Battaglia, D.M., Mishima, T.D., et al.: Control of the morphology of complex semiconductor nanocrystals with a type II heterojunction, dots vs peanuts, by thermal cycling. Chem. Mater. 19(15), 3815–3821 (2007)

    Google Scholar 

  22. Li, X., Shen, D., Yang, J., et al.: Successive layer-by-layer strategy for multi-Shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25(1), 106–112 (2013)

    Google Scholar 

  23. Chen, O., Zhao, J., Chauhan, V.P., et al.: Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12(5), 445–451 (2013)

    ADS  Google Scholar 

  24. Christodoulou, S., Vaccaro, G., Pinchetti, V., et al.: Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. J. Mater. Chem. C. 2(17), 3439–3447 (2014)

    Google Scholar 

  25. Marco, C., Tangi, A., Raquel, G., et al.: “Flash” synthesis of CdSe/CdS core–shell quantum dots. Chem. Mater. 26(2), 1154–1160 (2014)

    Google Scholar 

  26. Xu, R., Liao, C., Zhang, H., et al.: “Flash” synthesis of “giant” Mn-doped CdS/ZnS nanocrystals for high photostability. RSC Adv. 5(108), 88921–88927 (2015)

    Google Scholar 

  27. Xu, R., Huang, B., Wang, T., et al.: Bright and high-photostable inner-Mn-doped core/giant-shell quantum dots. Superlattice. Microst. 111, 665–670 (2017)

    ADS  Google Scholar 

  28. Chen, H.Y., Maiti, S., Son, D.H., et al.: Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals. ACS Nano. 6(1), 583–591 (2012)

    Google Scholar 

  29. Huang, B., Xu, R., Zhuo, N., et al.: “Giant” red and green core/shell quantum dots with high color purity and photostability. Superlattice. Microst. 91, 201–207 (2016)

    ADS  Google Scholar 

  30. Huang, B., Yang, H., Zhang, L., et al.: Effect of surface/interfacial defects on photostability of thick-shell CdZnSeS/ZnS quantum dots. Nanoscale. 10(38), 18331–18340 (2018)

    Google Scholar 

  31. Garcia-Santamaria, F., Chen, Y.F., Vela, J., et al.: Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9(10), 3482–3488 (2009)

    ADS  Google Scholar 

  32. Park, Y.S., Malko, A.V., Vela, J., et al.: Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy. Phys. Rev. Lett. 106(18), 187401 (2011)

    ADS  Google Scholar 

  33. Nasilowski, M., Spinicelli, P., Patriarche, G., et al.: Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15(6), 3953–3958 (2015)

    ADS  Google Scholar 

  34. Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., et al.: Quantization of multiparticle Auger rates in semiconductor quantum dots. Science. 287(5455), 1011–1013 (2000)

    ADS  Google Scholar 

  35. Jain, A., Voznyy, O., Hoogland, S., et al.: Atomistic design of CdSe/CdS core-shell quantum dots with suppressed Auger recombination. Nano Lett. 16(10), 6491–6496 (2016)

    ADS  Google Scholar 

  36. Garcia-Santamaria, F., Brovelli, S., Viswanatha, R., et al.: Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. Nano Lett. 11(2), 687–693 (2011)

    ADS  Google Scholar 

  37. Liao, C., Xu, R., Xu, Y., et al.: Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots. J. Phys. Chem. Lett. 7(24), 4968–4976 (2016)

    Google Scholar 

  38. Efros, A.L., Efros, A.L.: Interband absorption of light in a semiconductor sphere. Semiconductors. 16(7), 772–775 (1982)

    Google Scholar 

  39. Miller, D.A.B., Chemla, D.S., Damen, T.C., et al.: Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect. Phys. Rev. Lett. 53(22), 2173–2176 (1984)

    ADS  Google Scholar 

  40. Empedocles, S.A., Bawendi, M.G.: Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science. 278(5346), 2114–2117 (1997)

    ADS  Google Scholar 

  41. Park, K.W., Deutsch, Z., Li, J.J., et al.: Single molecule quantum-confined stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano. 6(11), 10013–10023 (2012)

    Google Scholar 

  42. Kuo, Y., Li, J., Michalet, X., et al.: Characterizing the quantum-confined stark effect in semiconductor quantum dots and nanorods for single-molecule electrophysiology. ACS Photonics. 5(12), 4788–4800 (2018)

    Google Scholar 

  43. Achtstein, A.W., Prudnikau, A.V., Ermolenko, M.V., et al.: Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. ACS Nano. 8(8), 7678–7686 (2014)

    Google Scholar 

  44. Zhang, L., Lv, B., Yang, H., Xu, R., et al.: Quantum confined stark effect in ensemble of phase-pure CdSe/CdS quantum dots. Nanoscale. 11(26), 12619–12625 (2019)

    Google Scholar 

  45. Xu, Y., Chen, Q., Zhang, C., et al.: Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 138(11), 3761–3768 (2016)

    Google Scholar 

  46. Todescato, F., Fortunati, I., Gardin, S., et al.: Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots. Adv. Funct. Mater. 22(2), 337–344 (2012)

    Google Scholar 

  47. Marceddu, M., Saba, M., Quochi, F., et al.: Auger recombination and optical gain in CdSe/CdS nanocrystals. Nanotechnology. 23(1), 015201 (2012)

    ADS  Google Scholar 

  48. Zavelani-Rossi, M., Lupo, M.G., Tassone, F., et al.: Suppression of biexciton Auger recombination in CdSe/CdS Dot/Rods: role of the electronic structure in the carrier dynamics. Nano Lett. 10(8), 3142–3150 (2010)

    ADS  Google Scholar 

  49. Lim, J., Park, Y.S., Klimov, V.I.: Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17(1), 42–49 (2018)

    ADS  Google Scholar 

  50. Moreels, I., Raino, G., Gomes, R., et al.: Nearly temperature-independent threshold for amplified spontaneous emission in colloidal CdSe/CdS quantum dot-in-rods. Adv. Mater. 24(35), OP231–OP235 (2012)

    Google Scholar 

  51. Kiraz, A., Chen, Q., Fan, X.: Optofluidic lasers with aqueous quantum dots. ACS Photonics. 2(6), 707–713 (2015)

    Google Scholar 

  52. Chan, Y., Steckel, J.S., Snee, P.T., et al.: Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86(7), 073102 (2005)

    ADS  Google Scholar 

  53. Snee, P.T., Chan, Y., Nocera, D.G., et al.: Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv. Mater. 17(9), 1131–1136 (2005)

    Google Scholar 

  54. Saliba, M., Wood, S.M., Patel, J.B., et al.: Structured organic−inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28(5), 923–929 (2016)

    Google Scholar 

  55. Park, Y.S., Bae, W.K., Baker, T., et al.: Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15(11), 7319–7328 (2015)

    ADS  Google Scholar 

  56. Stasio, F.D., Grim, J.Q., Lesnyak, V., et al.: Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods. Small. 11(11), 1328–1334 (2015)

    Google Scholar 

  57. Kozlov, O.V., Park, Y., Roh, J., et al.: Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science. 365(6454), 672–675 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Xiang, W., Zhang, J. (2020). Thick-Shell Core/Shell Quantum Dots. In: Tong, X., M. Wang, Z. (eds) Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-46596-4_6

Download citation

Publish with us

Policies and ethics