Skip to main content

Role of Carotenoids in Photosynthesis

  • Chapter
  • First Online:
Carotenoids: Structure and Function in the Human Body

Abstract

Carotenoids act as light harvesting accessory pigments in the photosynthetic process. These absorb light to drive photosynthesis as well as protect the photosynthetic machinery from damage due to high intensity of light. This light energy is transferred to the reaction center through either by fluorescence resonance energy transfer or electron exchange between carotenoids and chlorophyll molecules. Both of these energy transfer processes occur due to triplet excited state and singlet excited state of carotenoids respectively. Here, it has been demonstrated through spectroscopic studies that how carotenoids affect the reaction centre while transferring the energy. High intensity of light as well as low intensity of light also affects the process and rate of photosynthesis as well as the physical appearance of the plant. We have attempted to briefly describe the experiments and interpretations by other scientists that dealt with the question of how energy is transferred from the original location of photon absorption in the photosynthetic antenna system into the reaction centers and where it is converted into useful chemical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flores-Hidalgo M, Torres-Rivas F, Monzon-Bensojo J, Escobedo-Bretado M, Glossman Mitnik D, Barraza Jimenez D (2017) Electronic structure of carotenoids in natural and artificial photosynthesis. Carotenoids. https://doi.org/10.5772/67636

  2. Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley Blackwell, Oxford

    Google Scholar 

  3. Polıvka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43:1125–1134

    PubMed  PubMed Central  Google Scholar 

  4. Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10(7):492–501

    CAS  PubMed  Google Scholar 

  5. Fuciman M, Keşan G, LaFountain AM, Frank HA, Polívka T (2015) Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J Phys Chem B 119(4):1457–1467

    CAS  PubMed  Google Scholar 

  6. Berera R, Herrero C, van Stokkum IHM, Vengris M, Kodis G, Palacios RE, Kennis JTM (2006) A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proc Natl Acad Sci 103(14):5343–5348

    CAS  PubMed  Google Scholar 

  7. Cogdell RJ (1978) Carotenoids in photosynthesis. Philos Trans R Soc B Biol Sci 284(1002):569–579

    CAS  Google Scholar 

  8. Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    CAS  PubMed  Google Scholar 

  9. Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    CAS  PubMed  Google Scholar 

  10. Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    CAS  PubMed  Google Scholar 

  11. Hashimoto H, Uragami C, Cogdell RJ (2016) Carotenoids and photosynthesis. Subcell Biochem 79:111–139

    CAS  PubMed  Google Scholar 

  12. Krinsky NI (1989) Antioxidant function of carotenoids. Free Radic Biol Med 7:617–635

    CAS  PubMed  Google Scholar 

  13. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Google Scholar 

  14. Joyard J, Ferro M, Masselon C, Seigneurin-Bernya D, Salvia D, Garin J et al (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    CAS  PubMed  Google Scholar 

  15. Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    CAS  PubMed  Google Scholar 

  16. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  17. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Ann Rev Plant Biol 66:161–186

    CAS  Google Scholar 

  18. Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50(8):728–760

    CAS  PubMed  Google Scholar 

  19. Lemmens L, Colle I, Van Buggenhout S, Palmero P, Van-Loey A, Hendrickx M (2014) Carotenoid bioaccessibility in fruit and vegetable based food products as affected by product (micro) structural characteristics and the presence of lipids: a review. Trends Food Sci Technol 38:125–135

    CAS  Google Scholar 

  20. Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid associated proteins. Trends Plant Sci 4:232–235

    CAS  PubMed  Google Scholar 

  22. Haskell MJ (2013) Provitamin A carotenoids as a dietary source of vitamin A. In: Tanumihardjo SA (ed) Carotenoids and human health, 1st edn. Springer, New York, pp 249–260. https://doi.org/10.1007/978-1-62703203-2-15

    Chapter  Google Scholar 

  23. Croft H, Chen JM (2018) Leaf pigment content. In: Comprehensive remote sensing. Elsevier, Oxford, pp 117–142

    Google Scholar 

  24. Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25(3):279–293

    CAS  PubMed  Google Scholar 

  25. Collini E (2019) Carotenoids in photosynthesis: the revenge of the “accessory” pigments. Chemistry 5(3):494–495

    CAS  Google Scholar 

  26. Frank H, Violette CA, Trautman JK, Shreve AP, Owens TG, Albrecht AC (1991) Photosynthetic carotenoids: structure and photochemistry. Pure Appl Chem 63:109–114

    CAS  Google Scholar 

  27. Hudson B, Kohler B (1974) Linear polyene electronic structure and spectroscopy. Annu Rev Phys Chem 25(1):437–460

    CAS  Google Scholar 

  28. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states− from solution to natural and artificial systems. Chem Rev 104(4):2021–2072

    PubMed  Google Scholar 

  29. Krueger BP, Scholes GD, Jimenez R, Fleming GR (1998) Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J Phys Chem B 102(12):2284–2292

    CAS  Google Scholar 

  30. Ritz T, Damjanović A, Schulten K, Zhang JP, Koyama Y (2000) Efficient light harvesting through carotenoids. Photosynth Res 66(1–2):125–144

    CAS  PubMed  Google Scholar 

  31. Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54(1):57–87

    CAS  PubMed  Google Scholar 

  32. Frank HA, Brudvig GW (2004) Redox functions of carotenoids in photosynthesis†. Biochemistry 43(27):8607–8615

    CAS  PubMed  Google Scholar 

  33. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428(6980):287–292

    CAS  PubMed  Google Scholar 

  34. Peterman EJ, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69(6):2670–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  35. French CS (1937) The rate of CO2 assimilation by purple bacteria at various wave lengths of light. J Gen Physiol 21(1):71–87

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 35:1–8

    CAS  PubMed  Google Scholar 

  37. Nuijs AM, van Grondelle R, Joppe HLP, van Bochove AC, Duysens LN (1985) Singlet and triplet excited carotenoid and antenna bacteriochlorophyll of the photosynthetic purple bacterium Rhodospirillum rubrum as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta (BBA)-Bioenergetics 810(1):94–105

    CAS  Google Scholar 

  38. Haxo FT, Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33(4):389–422

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Goedheer JC (1969) Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim Biophys Acta (BBA)-Bioenergetics 172(2):252–265

    CAS  Google Scholar 

  40. Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta (BBA)- Bioenergetics 811(4):325–355

    CAS  Google Scholar 

  41. Dallinger RF, Woodruff WH, Rodgers MAJ (1981) The lifetime of the excited singlet state of β-carotene: consequences to photosynthetic light harvesting. Photochem Photobiol 33(2):275–277

    CAS  Google Scholar 

  42. Gonen O, Levanon H, Patterson LK (1981) Orientation and energy transfer in chlorophyll monolayers diluted with hexadecane. Fluorescence and sensitized fluorescence. Israel J Chem 21(4):271–276

    CAS  Google Scholar 

  43. Sineshchekov VA, Litvin FF, Das M (1972) Chlorophyll a and carotenoid aggregates and energy migration in monolayers and thin films. Photochem Photobiol 15(2):187–197

    CAS  PubMed  Google Scholar 

  44. Moore AL, Dirks G, Gust D, Moore TA (1980) Energy transfer from carotenoid polyenes to porphyrins: a light-harvesting antenna. Photochem Photobiol 32(5):691–695

    CAS  Google Scholar 

  45. Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69(3):561–568

    CAS  Google Scholar 

  46. Davidson E, Cogdell RJ (1981) Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas sphaeroides R26. Biochim Biophys Acta (BBA)-Bioenergetics 635(2):295–303

    CAS  Google Scholar 

  47. Cogdell RJ, Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta (BBA)-Bioenergetics 895(2):63–79

    CAS  Google Scholar 

  48. Pizarro L, Stange C (2009) Light-dependent regulation of carotenoid biosynthesis in plants. Ciencia e Investigación Agraria 36(2):143–162

    Google Scholar 

  49. Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7(7):1027

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta (BBA)-Bioenergetics 894(2):198–208

    CAS  Google Scholar 

  51. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta (BBA)-Bioenergetics 1020(1):1–24

    CAS  Google Scholar 

  52. Rees D, Young A, Noctor G, Britton G, Horton P (1989) Enhancement of the ΔpH-dependent dissipation of excitation energy in spinach chloroplasts by light-activation: correlation with the synthesis of zeaxanthin. FEBS Lett 256(1–2):85–90

    CAS  Google Scholar 

  53. Noctor G, Rees D, Young A, Horton P (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts. Biochim Biophys Acta (BBA)-Bioenergetics 1057(3):320–330

    CAS  Google Scholar 

  54. Demmig-Adams B, Winter K, Krüger A, Czygan FC (1989) Light response of CO2 assimilation, dissipation of excess excitation energy, and zeaxanthin content of sun and shade leaves. Plant Physiol 90(3):881–886

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    CAS  PubMed  Google Scholar 

  56. Felt L, Pacakova V, Stulik K, Volka K (2005) Reliability of carotenoid analysis: a review. Curr Anal Chem 1:93–102

    Google Scholar 

  57. Polivka T, Sundstrom V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Rev 104:2021–2072

    CAS  PubMed  Google Scholar 

  58. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  59. Andersson PO, Gillbro T, Ferguson L, Cogdell RJ (1991) Absorption spectral shifts of carotenopids related to medium polarizability. Photochem Photobiol 54(3):353–360

    CAS  Google Scholar 

  60. Lichtenthaler HK (1987) [34] chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Plant Cell Membr 148:350–382

    CAS  Google Scholar 

  61. Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) Non destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant 106(1):135–141

    CAS  Google Scholar 

  62. Merzlyak MN, Gitelson A (1995) Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acerplatanoides L.). J Plant Physiol 145(3):315–320

    CAS  Google Scholar 

  63. Datt B (1998) Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+ b, and total carotenoid content in eucalyptus leaves. Remote Sens Environ 66(2):111–121

    Google Scholar 

  64. Gitelson A, Merzlyak MN (1994) Quantitative estimation of chlorophyll-ausing reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol B Biol 22(3):247–252

    CAS  Google Scholar 

  65. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298

    Google Scholar 

  66. Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18(12):2691–2697

    Google Scholar 

  67. Gitelson AA, Merzlyak MN (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol 148(3–4):494–500

    CAS  Google Scholar 

  68. Merzlyak MN, Gitelson AA, Chivkunova OB, Solovchenko AE, Pogosyan SI (2003) Russ J Plant Physiol 50(5):704–710

    CAS  Google Scholar 

  69. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lichtenthaler HK, Buschmann C (2001) Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr Protocol Food Anal Chem 1(1):F4–F2

    Google Scholar 

  71. Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C, Meier D (1982) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Zeitschrift für Naturforschung C 37(5–6):464–475

    Google Scholar 

  72. Sommerburg O, Zang LY, Van Kuijk FJ (1997) Simultaneous detection of carotenoids and vitamin E in human plasma. J Chromatogr B Biomed Sci Appl 695(2):209–215

    CAS  PubMed  Google Scholar 

  73. Handelman GJ, Snodderly DM, Krinsky NI, Russett MD, Adler AJ (1991) Biological control of primate macular pigment. Biochemical and densitometric studies. Invest Ophthalmol Vis Sci 32(2):257–267

    CAS  PubMed  Google Scholar 

  74. Craft NE, Soares JH (1992) Relative solubility, stability, and absorptivity of lutein and. beta.-carotene in organic solvents. J Agric Food Chem 40(3):431–434

    CAS  Google Scholar 

  75. Hager A (1970) Ausbildung von Maxima im Absorptionsspektrum von Carotinoiden im Bereich um 370 nm; Folgen for die Interpretation bestimmter Wirkungsspektren. Planta 91(1):38–53

    CAS  PubMed  Google Scholar 

  76. Buchwald M, Jencks WP (1968) Optical properties of astaxanthin solutions and aggregates. Biochemistry 7(2):834–843

    CAS  PubMed  Google Scholar 

  77. Cario G, Franck J (1923) Uber sensibilisierte Fluoreszenz von Gasen. Zeitschrift Fur Physik 17(1):202–212

    CAS  Google Scholar 

  78. Frank HA, Cogdell RJ (1993) Photochemistry and functions of carotenoids. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Springer, London, pp 252–326

    Google Scholar 

  79. Frank HA, Violette CA, Trautman JK, Shreve AP, Owens TG, Albrecht AC (1991) Carotenoids in photosynthesis: structure and photochemistry. Pure Appl Chem 63(1):109–114

    CAS  Google Scholar 

  80. Kamen MD (1986) On creativity of eye and ear: a commentary on the career of TW Engelmann. Proc Am Philos Soc 130:232–246

    CAS  PubMed  Google Scholar 

  81. Warburg O, Negelein E (1923) Über den Einfluss der Wellenlänge auf den Energie Umsatz bei der Kohlensauereassimilation. Z Phys Chem 106:191–121

    CAS  Google Scholar 

  82. Montfort C (1936) Carotinoide, Photosynthese und Quantentheorie. Jahrb Wiss Botan 83:725–772

    CAS  Google Scholar 

  83. Montfort C (1941) Die Ausnutzung grünen Lichtes bei braunen Zellen im Hinblick auf den Energiegewinn durch den Fucoxanthin-Eiweisskomplex. Planta 32(1):118–120

    CAS  Google Scholar 

  84. Emerson R, Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chrococcus and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25(4):579–595

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Emerson R, Lewis CM (1943) The dependence of quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30:165–178

    CAS  Google Scholar 

  86. Dutton HJ, Manning (1941) Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. American Journal of Botany 28:516–526

    CAS  Google Scholar 

  87. Wassink EC, Kersten JAH (1945) Photosynthesis and fluorescence of the chlorophylls of diatoms. Enzymologia 11:282–312

    CAS  Google Scholar 

  88. Tanada T (1951) The photosynthetic efficiency of carotenoid pigments in navicula minima. Am J Bot 38(4):276–283

    CAS  Google Scholar 

  89. Haxo F, Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33(4):389–422

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Croce R, Remelli R, Varotto C, Breton J, Bassi R (1999) The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett 456:1–6

    CAS  PubMed  Google Scholar 

  91. Croce R, Weiss S, Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274(42):29613–29623

    CAS  PubMed  Google Scholar 

  92. Hobe S, Niemeier H, Bander A, Paulsen H (2000) Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Eur J Biochem 267:616–624

    CAS  PubMed  Google Scholar 

  93. Grabowski B, Cunningham FX, Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci 98(5):2911–2916

    CAS  PubMed  Google Scholar 

  94. Croce R, Cinque G, Holzwarth AR, Bassi R (2000) The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants. Photosynth Res 64(2–3):221–231

    CAS  PubMed  Google Scholar 

  95. Valkunas L, Cervinskas V, Trinkunas G, Müller MG, Holzwarth AR (1999) Effects of excited state mixing on transient absorption spectra in dimers. Application to photosynthetic light-harvesting complex II. J Chem Phys 111:3121–3132

    CAS  Google Scholar 

  96. Valkunas L, Cervinskas V, Trinkunas G, Müller MG, Holzwarth AR (1998) Excited state mixing effects in transient absorption spectra of photosynthetic light-harvesting complex II. In: Garab G (ed) Photosynthesis: mechanism and effects/XI. International congress photosynthesis Budapest, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 281–284

    Google Scholar 

  97. Croce R, Muller MG, Bassi R, Holzwarth AR (2001) Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. Biophys J 80:901–915

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bondarev SL, Knyukshto VN (1994) Fluorescence from the S1 (2 1Ag) state of all-trans-β-carotene. Chem Phys Lett 225(4–6):346–350

    CAS  Google Scholar 

  99. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21(5):836–850

    CAS  Google Scholar 

  100. Zurdo J, Fernandez-Cabrera C, Ramirez JM (1993) A structural role of the carotenoid in the light-harvesting II protein of Rhodobacter capsulatus. Biochem J 290(2):531–537

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gust D, Moore TA, Moore AL, Devadoss C, Liddell PA, Hermant R et al (1992) Triplet and singlet energy transfer in carotene-porphyrin dyads: role of the linkage bonds. J Am Chem Soc 114(10):3590–3603

    CAS  Google Scholar 

  102. Hartwich G, Scheer H, Aust V, Angerhofer A (1995) Absorption and ADMR studies on bacterial photosynthetic reaction centres with modified pigments. Biochim Biophys Acta (BBA)-Bioenergetics 1230(3):97–113

    Google Scholar 

  103. Christensen RL (1985) Electronic energy levels in long Polyenes: S2-So emission. J Am Chem Soc 107(14):4117–4122

    Google Scholar 

  104. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta (BBA)-Bioenergetics 1020(1):1–24

    CAS  Google Scholar 

  105. Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta (BBA)-Bioenergetics 1187(1):1–65

    CAS  Google Scholar 

  106. Frank HA, Cogdell RJ (1993) The photochemistry and function of carotenoids in photosynthesis. In: Carotenoids in photosynthesis. Springer, Dordrecht, pp 252–326

    Google Scholar 

  107. Fujiwara M, Hayashi H, Tasumi M, Kanaji M, Koyama Y, Satoh K (1987) Structural studies on a photosystem II reaction-center complex consisting of D-1 and D-2 polypeptides and cytochrome b-559 by resonance Raman spectroscopy and high-performance liquid chromatography. Chem Lett 16(10):2005–2008

    Google Scholar 

  108. Cogdell RJ, Hipkins MF, MacDonald W, Truscott TG (1981) Energy transfer between the carotenoid and the bacteriochlorophyll within the B-800–850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta (BBA)-Bioenergetics 634:191–202

    CAS  Google Scholar 

  109. Peterman EJ, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69(6):2670–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Young AJ, Frank HA (1996) Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J Photochem Photobiol B Biol 36(1):3–15

    CAS  Google Scholar 

  111. Bondarev SL, Knyukshto VN (1994) Fluorescence from the S1 (2 1Ag) state of all-trans-β-carotene. Chem Phys Lett 225(4–6):346–350

    CAS  Google Scholar 

  112. Frank HA, Farhoosh R, Aldema ML, DeCoster B, Christensen RL, Gebhard R, Lugtenburg J (1993) Carotenoid to bacteriochlorophyll singlet energy transfer in carotenoid incorporated b850 light harvesting complexes of Rhodobacter sphaeroides R–26.1. Photochem Photobiol 57(1):49–55

    CAS  PubMed  Google Scholar 

  113. DeCoster B, Christensen RL, Gebhard R, Lugtenburg J, Farhoosh R, Frank HA (1992) Low-lying electronic states of carotenoids. Biochim Biophys Acta Protein Struct Mol Enzymol 1102(1):107–114

    CAS  Google Scholar 

  114. Harry AF, Farhoosh R, Gebhard R, Lugtenburg J, Gosztola D, Wasielewski MR (1993) The dynamics of the S1 excited states of carotenoids. Chem Phys Lett 207(1):88–92

    Google Scholar 

  115. Ronald KC, Craig SL, Julius CN, Rebek J (2000) Detection and mechanistic studies of multicomponent assembly by fluorescence resonance energy transfer. J Am Chem Soc 122(33):7876–7882

    Google Scholar 

  116. Cano-Raya C, Fernández-Ramos MD, Capitán-Vallvey LF (2006) Fluorescence resonance energy transfer disposable sensor for copper (II). Anal Chim Acta 555(2):299–307

    CAS  Google Scholar 

  117. Perrin J (1927) Fluorescence et induction moléculaire par résonance. C R Hebd Seances Acad Sci 184:1097–1100

    CAS  Google Scholar 

  118. Jang S (2007) Generalization of the Förster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling. J Chem Phys 127(17):174710

    PubMed  Google Scholar 

  119. Andrews DL, Rodríguez J (2007) Resonance energy transfer: spectral overlap, efficiency, and direction. J Chem Phys 127(8):084509

    PubMed  Google Scholar 

  120. Latt SA, Cheung HT, Blout ER (1965) Energy transfer. A system with relatively fixed donor-acceptor separation. J Am Chem Soc 87(5):995–1003

    CAS  PubMed  Google Scholar 

  121. Broussard JA, Green KJ (2017) Research techniques made simple: methodology and applications of Förster resonance energy transfer (FRET) microscopy. J Investig Dermatol 137(11):185–191

    Google Scholar 

  122. Dos Remedios CG, Miki M, Barden JA (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J Muscle Res Cell Motil 8(2):97–117

    CAS  PubMed  Google Scholar 

  123. Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–175

    Google Scholar 

  124. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 6(2):55–75. (English translation ‘Intermolecular energy migration and fluorescence’ is available from Professor RS Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York)

    Google Scholar 

  125. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Part II.B. 1 of modern quantum chemistry: Istanbul lectures. Part III. Action of light and organic crystals. Academic, New York, pp 93–137

    Google Scholar 

  126. Knox RS (1975) Excitation energy transfer and migration: theoretical considerations. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 183–221

    Google Scholar 

  127. Van-Grondelle R, Amesz J (1986) Excitation energy transfer in photosynthetic systems. In: Govindjee AJ, Fork DC (eds) Light emission by plants and Bacteria. Academic, Orlando, pp 191–223

    Google Scholar 

  128. Dale RE, Eisinger J, Blumberg WE (1979) The orientation freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–194

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lewis FD, Zhang L, Zuo X (2005) Orientation control of fluorescence resonance energy transfer using DNA as a helical scaffold. J Am Chem Soc 127:10002–10003

    CAS  PubMed  Google Scholar 

  130. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    CAS  PubMed  Google Scholar 

  131. Jablonski AZ (1935) Über den Mechanismus des Photolumineszenz von Farbstoffphosphoren. Z Phys 94:38–46

    CAS  Google Scholar 

  132. Haas E, Katchalski-Katzir E, Steinberg IZ (1978) Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry 17:5064–5070

    CAS  PubMed  Google Scholar 

  133. Jimenez R, Dikshit SN, Bradforth SE, Fleming GR (1996) Electronic excitation transfer in the LH2 complex ofRhodobacter sphaeroides. J Phys Chem 100(16):6825–6834

    CAS  Google Scholar 

  134. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    CAS  PubMed  Google Scholar 

  135. Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162

    CAS  Google Scholar 

  136. Vass I (1997) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 931–949

    Google Scholar 

  137. Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47

    Google Scholar 

  138. Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf form and photosynthesis. Do leaf structure and orientation interact to regulate internal light and carbon dioxide? Bioscience 47:785–793

    Google Scholar 

  139. Adams WW, Demmig-Adams B, Rosenstiel TN, Ebbert V (2001) Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. Photosynth Res 67:51–62

    CAS  PubMed  Google Scholar 

  140. Anderson JM, Chow WS, Park Y-I (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    CAS  PubMed  Google Scholar 

  141. Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811:325–355

    CAS  Google Scholar 

  142. Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    CAS  Google Scholar 

  143. Anderson JM, Chow WS, Park Y-I (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    CAS  PubMed  Google Scholar 

  144. Nagy F, Schafer E (2006) Photomorphogenesis in plants and bacteria. Springer, Dordrecht

    Google Scholar 

  145. Berenschot AS, Quecini V (2014) A reverse genetics approach identifies novel mutants in light responses and anthocyanin metabolism in petunia. Physiol Mol Biol Plants 20:1–13

    CAS  PubMed  Google Scholar 

  146. Wang L, Deng F, Ren WJ, Yang WY (2012) Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L.). PLoS One 8:e68220

    Google Scholar 

  147. Demao J, Xia L (2001) Cultivar differences in photosynthetic tolerance to Photooxidation and shading in Rice (Oryza Sativa L.). Photosynthetica 39:167–175

    Google Scholar 

  148. Janardhan KV, Murty KS (1980) Effect of low light during vegetative stage on photosynthesis and growth attributes in rice. Indian J Plant Physiol 23:156–162

    CAS  Google Scholar 

  149. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:728–749

    Google Scholar 

  150. Ishida K (1989) Influence of respiration rate and metabolic substances on nodal position of first flower bud of eggplant seedlings. Engei Gakkai Zasshi 58:657–664

    Google Scholar 

  151. Vol N (1996) Stress and stress recovering by grapevines. Botanica Helvatica 106:73–84

    Google Scholar 

  152. Callejonferre AJ, Manzanoagugliaro F, Dıazperez M, Carreñoortega A, Perezalonso J (2009) Effect of shading with aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouse conditions. Span J Agric Res 7:41–49

    Google Scholar 

  153. Proebsting P (1986) Effect of different artificial shading times and natural light intensities on the fruit quality of ‘Bing’ sweet cherry. J Am Soc Hortic Sci 111:360–363

    Google Scholar 

  154. Liu Q, Wu X, Chen B, Ma J, Gao J (2014) Effects of low light on agronomic and physiological characteristics of Rice including grain yield and quality. Rice Sci 21:243–251

    Google Scholar 

  155. Zhu P, Yang SM, Ma J, Li SX, Chen Y (2008) Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid Rice combination. Acta Agron Sin 34:2003–2009

    CAS  Google Scholar 

  156. Meng L, Chen WF, Li LX, Xu ZJ, Liu LX, Sun JW (2002) Influence of low light on stomatal characters in Rice leaves. J Shenyang Agric Univer 33:87–89

    Google Scholar 

  157. Yang D, Duan LS, Xie HA, Li ZH, Huang TX (2011) Effect of pre-flowering light deficiency on biomass accumulation and physio-logical characteristics of rice. Chin J Eco-Agric 19:347–352

    CAS  Google Scholar 

  158. Yang FJ (2007) Effect of light stress on the content of chloroplast pigment and Taxol in the leaves of Taxus chinensis var.mairei. Bulletin of Botanical Research 27:556–558

    Google Scholar 

  159. Ma ZQ, Li SS, Zhang MJ, Jiang SH, Xiao YL (2010) Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of Anoectochilus plants. HortScience 45:863–867

    Google Scholar 

  160. Singh VP, Dey SK, Murty KS (1988) Effect of low light stress on growth and yield of rice. Indian J Plant Physiol 31:84–91

    Google Scholar 

  161. Liu Q, Wu X, Chen B, Ma J, Gao J (2014) Effects of low light on agronomic and physiological characteristics of Rice including grain yield and quality. Rice Sci 21(5):243–251

    Google Scholar 

  162. Li YC, Lin TC, Martin CE (2015) Leaf anthocyanin, photosynthetic light-use efficiency, and ecophysiology of the South African succulent Anacampseros rufescens (Anacampserotaceae). S Afr J Bot 99:122–128

    CAS  Google Scholar 

  163. Sui X, Mao S, Wang L, Zhang B, Zhang Z (2012) Effect of low light on the characteristics of photosynthesis and chlorophyll a fluorescence during leaf development of sweet pepper. J Integr Agric 11(10):1633–1643

    CAS  Google Scholar 

  164. Bell GE, Danneberger TK (1999) Temporal shade on creeping Bentgrass Turf. Crop Sci 39(4):1142–1146

    Google Scholar 

  165. Zhu H, Li X, Zhai W, Liu Y, Gao Q, Liu J, Ren L, Chen H, Zhu Y (2017) Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS One 12(6):1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Sharif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zulfiqar, S., Sharif, S., Saeed, M., Tahir, A. (2021). Role of Carotenoids in Photosynthesis. In: Zia-Ul-Haq, M., Dewanjee, S., Riaz, M. (eds) Carotenoids: Structure and Function in the Human Body. Springer, Cham. https://doi.org/10.1007/978-3-030-46459-2_5

Download citation

Publish with us

Policies and ethics