Skip to main content

Carotenoids and Bone Health

  • Chapter
  • First Online:
Carotenoids: Structure and Function in the Human Body

Abstract

Carotenoids are symmetrical tetraprenoid units consisting of highly unsaturated liner C40 hydrocarbon chains as key structural element. Epidemiological studies suggest a direct relationship with higher ingestion of carotenoids containing foods and reduced chances of osteoporosis. Bone remodeling is continuous process controlled by osteoclasts and osteoblasts. The inequality in bone remolding leads to osteoporosis. Osteoporosis decreases bone mass and transformation in bone configuration. Oxidative stress induces apoptosis of osteocytes and osteoblasts and escalates osteoclastogenesis leading to bone resorption. Lot of studies suggest potential capacity of carotenoids in inhibiting bone loss by reducing oxidative stress. The chapter discusses their mechanics and kinetics in various bone disorders and describes various limitations in the cure and avoidance of bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S-i et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 95(7):3597–3602

    Article  CAS  PubMed  Google Scholar 

  2. Wheater PR (2006) Wheater’s functional histology: a text and colour atlas, 5th edn. Churchill Livingstone, New York

    Google Scholar 

  3. Guntur A, Rosen C (2012) Bone as an endocrine organ. Endocr Pract 18(5):758–762

    Article  PubMed  PubMed Central  Google Scholar 

  4. Orimo H, Hayashi Y, Fukunaga M, Sone T, Fujiwara S, Shiraki M et al (2001) Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab 19(6):331

    Article  CAS  PubMed  Google Scholar 

  5. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116(5):1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Endo Y, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ (2005) Gender differences in patients with hip fracture: a greater risk of morbidity and mortality in men. J Orthop Trauma 19(1):29–35

    Article  PubMed  Google Scholar 

  7. Kim L, Rao AV, Rao LG (2003) Lycopene II—effect on osteoblasts: the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food 6(2):79–86

    Article  CAS  PubMed  Google Scholar 

  8. Looker A, Isfahani NS, Fan B, Shepherd J (2017) Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos Int 28(6):1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnell O, Kanis J (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Wang N, Gao Y, Zhou Z, Liu W, Pan C et al (2017) β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway. Life Sci 174:15–20

    Article  CAS  PubMed  Google Scholar 

  11. Matsumoto Y, Tousen Y, Ishimi Y (2018) β-Carotene prevents bone loss in hind limb unloading mice. J Clin Biochem Nutr 63(1):42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Wang Y, Liu W-D, Wang F, Yin Z-S (2014) Hip fractures in Hefei, China: the Hefei osteoporosis project. J Bone Miner Metab 32(2):206–214

    Article  CAS  PubMed  Google Scholar 

  14. Arceo-Mendoza RM, Camacho P (2015) Prediction of fracture risk in patients with osteoporosis: a brief review. Women Health 11(4):477–484

    Article  CAS  Google Scholar 

  15. Group Roa WS (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  16. Cooper C, Campion G, Melton L (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289

    Article  CAS  PubMed  Google Scholar 

  17. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D et al (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42(6):1235–1239

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Song C, Song X, Zhang X, Li X (2017) Carotenoids and risk of fracture: a meta-analysis of observational studies. Oncotarget 8(2):2391

    Article  PubMed  Google Scholar 

  19. Dai Z, Wang R, Ang LW, Low YL, Yuan JM, Koh WP (2014) Protective effects of dietary carotenoids on risk of hip fracture in men: the Singapore Chinese Health Study. J Bone Miner Res 29(2):408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB (2018) Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 36(6):1633–1648

    Article  CAS  PubMed  Google Scholar 

  21. Das SK, Ren R, Hashimoto T, Kanazawa K (2010) Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264. 7 cells. J Agric Food Chem 58(10):6090–6095

    Article  CAS  PubMed  Google Scholar 

  22. Pattison DJ, Symmons DP, Lunt M, Welch A, Bingham SA, Day NE et al (2005) Dietary β-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study. Am J Clin Nutr 82(2):451–455

    Article  CAS  PubMed  Google Scholar 

  23. Stahl W, Nicolai S, Briviba K, Hanusch M, Broszeit G, Peters M et al (1997) Biological activities of natural and synthetic carotenoids: induction of gap junctional communication and singlet oxygen quenching. Carcinogenesis 18(1):89–92

    Article  CAS  PubMed  Google Scholar 

  24. Hirata N, Ichimaru R, Tominari T, Matsumoto C, Watanabe K, Taniguchi K et al (2019) Beta-cryptoxanthin inhibits lipopolysaccharide-induced osteoclast differentiation and bone resorption via the suppression of inhibitor of NF-κB kinase activity. Nutrients 11(2):368

    Article  CAS  PubMed Central  Google Scholar 

  25. Yamaguchi M, Uchiyama S (2004) β-Criptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol Cell Biochem 258(1-2):137–144

    Article  CAS  PubMed  Google Scholar 

  26. Yamaguchi M, Uchiyama S (2003) Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: the unique anabolic effect of β-cryptoxanthin. Biol Pharm Bull 26(8):1188–1191

    Article  CAS  PubMed  Google Scholar 

  27. Uchiyama S, Yamaguchi M (2005) β-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells. Int J Mol Med 15(4):675–681

    CAS  PubMed  Google Scholar 

  28. Park G, Horie T, Fukasawa K, Ozaki K, Onishi Y, Kanayama T et al (2017) Amelioration of the development of osteoarthritis by daily intake of β-cryptoxanthin. Biol Pharm Bull 40(7):1116–1120

    Article  CAS  PubMed  Google Scholar 

  29. Ozaki K, Okamoto M, Fukasawa K, Iezaki T, Onishi Y, Yoneda Y et al (2015) Daily intake of β-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice. J Pharmacol Sci 129(1):72–77

    Article  CAS  PubMed  Google Scholar 

  30. Yamaguchi M, Weitzmann MN (2009) The bone anabolic carotenoid β-cryptoxanthin enhances transforming growth factor-β1-induced SMAD activation in MC3T3 preosteoblasts. Int J Mol Med 24(5):671–675

    Article  CAS  PubMed  Google Scholar 

  31. Uchiyama S, Yamaguchi M (2004) Inhibitory effect of β-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 67(7):1297–1305

    Article  CAS  PubMed  Google Scholar 

  32. Uchiyama S, Sumida T, Yamaguchi M (2004) Oral administration of β-cryptoxanthin induces anabolic effects on bone components in the femoral tissues of rats in vivo. Biol Pharm Bull 27(2):232–235

    Article  CAS  PubMed  Google Scholar 

  33. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764

    Article  CAS  Google Scholar 

  34. Rao LG, Krishnadev N, Banasikowska K, Rao AV (2003) Lycopene I—effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food 6(2):69–78

    Article  CAS  PubMed  Google Scholar 

  35. Mackinnon E, Venket Rao A, Rao L (2011) Dietary restriction of lycopene for a period of one month resulted in significantly increased biomarkers of oxidative stress and bone resorption in postmenopausal women. J Nutr Health Aging 15(2):133–138

    Article  CAS  PubMed  Google Scholar 

  36. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Yano M (2012) High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: prospective cohort study. PLoS One 7(12)

    Google Scholar 

  37. Russo C, Ferro Y, Maurotti S, Salvati MA, Mazza E, Pujia R et al (2020) Lycopene and bone: an in vitro investigation and a pilot prospective clinical study. J Transl Med 18(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sommerburg O, Keunen JE, Bird AC, Van Kuijk FJ (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82(8):907–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tominari T, Matsumoto C, Watanabe K, Hirata M, Grundler FM, Inada M et al (2017) Lutein, a carotenoid, suppresses osteoclastic bone resorption and stimulates bone formation in cultures. Biosci Biotechnol Biochem 81(2):302–306

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Huang C, Zhu J, Gao K, Fang J, Li H (2018) Lutein suppresses oxidative stress and inflammation by Nrf2 activation in an osteoporosis rat model. Med Sci Monit 24:5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeda H, Tominari T, Hirata M, Watanabe K, Matsumoto C, Grundler FM et al (2017) Lutein enhances bone mass by stimulating bone formation and suppressing bone resorption in growing mice. Biol Pharm Bull 40(5):716–721

    Article  CAS  PubMed  Google Scholar 

  42. Bovier ER, Hammond BR (2017) The macular carotenoids lutein and zeaxanthin are related to increased bone density in young healthy adults. Foods 6(9):78

    Article  PubMed Central  Google Scholar 

  43. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women: the Framingham Osteoporosis Study. Am J Clin Nutr 89(1):416–424

    Article  CAS  PubMed  Google Scholar 

  44. Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28(4):317–321

    Article  CAS  PubMed  Google Scholar 

  45. Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561:3–12

    Article  CAS  PubMed  Google Scholar 

  46. Sumantran VN, Zhang R, Lee DS, Wicha MS (2000) Differential regulation of apoptosis in normal versus transformed mammary epithelium by lutein and retinoic acid. Cancer Epidemiol Prev Biomarkers 9(3):257–263

    CAS  Google Scholar 

  47. Dabouian A, Bakhshi H, Irani S, Pezeshki-Modaress M (2018) β-Carotene: a natural osteogen to fabricate osteoinductive electrospun scaffolds. RSC Adv 8(18):9941–9945

    Article  CAS  Google Scholar 

  48. Astley SB, Hughes DA, Wright AJ, Elliott RM, Southon S (2004) DNA damage and susceptibility to oxidative damage in lymphocytes: effects of carotenoids in vitro and in vivo. Br J Nutr 91(1):53–61

    Article  CAS  PubMed  Google Scholar 

  49. Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor-to forkhead box O-mediated transcription. J Biol Chem 282(37):27298–27305

    Article  CAS  PubMed  Google Scholar 

  50. Cao W-t, Zeng F-f, Li B-l, Lin J-s, Liang Y-y, Chen Y-m (2018) Higher dietary carotenoid intake associated with lower risk of hip fracture in middle-aged and elderly Chinese: a matched case-control study. Bone 111:116–122

    Article  CAS  PubMed  Google Scholar 

  51. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Ando F, Yano M (2008) Bone mineral density in post-menopausal female subjects is associated with serum antioxidant carotenoids. Osteoporos Int 19(2):211–219

    Article  CAS  PubMed  Google Scholar 

  52. Hayhoe R, Lentjes M, Luben R, Khaw K, Welch A (2015) Dietary carotenoid intake is positively associated with bone density in individuals of the EPIC-Norfolk cohort. Proc Nutr Soc 74(OCE5)

    Google Scholar 

  53. Yang, Zhang, Penniston, Binkley, Tanumihardjo (2008) Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. Int J Vitam Nutr Res 78(3):105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288(1):275–279

    Article  CAS  PubMed  Google Scholar 

  55. Yeo H, McDonald JM, Zayzafoon M (2006) NFATc1: a novel anabolic therapeutic target for osteoporosis. Ann N Y Acad Sci 1068(1):564–567

    Article  CAS  PubMed  Google Scholar 

  56. Kwak HB, Lee BK, Oh J, Yeon J-T, Choi S-W, Cho HJ et al (2010) Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression. Bone 46(3):724–731

    Article  CAS  PubMed  Google Scholar 

  57. Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP (2011) Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol 7(8):447

    Article  CAS  PubMed  Google Scholar 

  58. Rood JA, Van Horn S, Drake FH, Gowen M, Debouck C (1997) Genomic organization and chromosome localization of the human cathepsin K gene (CTSK). Genomics 41(2):169–176

    Article  CAS  PubMed  Google Scholar 

  59. Han J, Luo T, Gu Y, Li G, Jia W, Luo M (2009) Cathepsin K regulates adipocyte differentiation: possible involvement of type I collagen degradation. Endocr J 56(1):55–63

    Article  CAS  PubMed  Google Scholar 

  60. Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N et al (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 25(5):937–947

    PubMed  Google Scholar 

  61. Kim DE, Cho SH, Park HM, Chang YK (2016) Relationship between bone mineral density and dietary intake of β-carotene, vitamin C, zinc and vegetables in postmenopausal Korean women: a cross-sectional study. J Int Med Res 44(5):1103–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yavropoulou M, Yovos J (2008) Osteoclastogenesis--current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8(3):204–216

    CAS  PubMed  Google Scholar 

  63. Fujikawa Y, Quinn J, Sabokbar A, McGee J, Athanasou N (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137(9):4058–4060

    Article  CAS  PubMed  Google Scholar 

  64. Maggio D, Polidori MC, Barabani M, Tufi A, Ruggiero C, Cecchetti R et al (2006) Low levels of carotenoids and retinol in involutional osteoporosis. Bone 38(2):244–248

    Article  CAS  PubMed  Google Scholar 

  65. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Matsumoto H, Ando F et al (2009) Synergistic interaction of cigarette smoking and alcohol drinking with serum carotenoid concentrations: findings from a middle-aged Japanese population. Br J Nutr 102(8):1211–1219

    Article  CAS  PubMed  Google Scholar 

  66. New SA (2003) Intake of fruit and vegetables: implications for bone health. Proc Nutr Soc 62(4):889–899

    Article  PubMed  Google Scholar 

  67. Michaëlsson K, Lithell H, Vessby B, Melhus H (2003) Serum retinol levels and the risk of fracture. N Engl J Med 348(4):287–294

    Article  PubMed  Google Scholar 

  68. Feskanich D, Singh V, Willett WC, Colditz GA (2002) Vitamin A intake and hip fractures among postmenopausal women. JAMA 287(1):47–54

    Article  CAS  PubMed  Google Scholar 

  69. Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E (2002) Retinol intake and bone mineral density in the elderly: the Rancho Bernardo Study. J Bone Miner Res 17(8):1349–1358

    Article  CAS  PubMed  Google Scholar 

  70. Barker ME, McCloskey E, Saha S, Gossiel F, Charlesworth D, Powers HJ et al (2005) Serum retinoids and β-carotene as predictors of hip and other fractures in elderly women. J Bone Miner Res 20(6):913–920

    Article  CAS  PubMed  Google Scholar 

  71. Opotowsky AR, Bilezikian JP (2004) Serum vitamin A concentration and the risk of hip fracture among women 50 to 74 years old in the United States: a prospective analysis of the NHANES I follow-up study. Am J Med 117(3):169–174

    Article  CAS  PubMed  Google Scholar 

  72. Stephensen CB, Gildengorin G (2000) Serum retinol, the acute phase response, and the apparent misclassification of vitamin A status in the third National Health and Nutrition Examination Survey. Am J Clin Nutr 72(5):1170–1178

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Li Y (2002) Relationships of estrogen receptor gene polymorphism with bone metabolism in postmenopausal women. J Tongi Univ (Med Sci)(Chin) 23:1–4

    Google Scholar 

  74. Ribaya-Mercado JD, Solon FS, Solon MA, Cabal-Barza MA, Perfecto CS, Tang G et al (2000) Bioconversion of plant carotenoids to vitamin A in Filipino school-aged children varies inversely with vitamin A status. Am J Clin Nutr 72(2):455–465

    Article  CAS  PubMed  Google Scholar 

  75. Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS et al (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82(3):581–588

    Article  CAS  PubMed  Google Scholar 

  76. G-d C, Zhu Y-Y, Cao Y, Liu J, W-q S, Z-m L et al (2015) Association of dietary consumption and serum levels of vitamin A and β-carotene with bone mineral density in Chinese adults. Bone 79:110–115

    Article  Google Scholar 

  77. Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50(1):221–226

    Article  PubMed  Google Scholar 

  78. Sung LC, Chao HH, Chen CH, Tsai JC, Liu JC, Hong HJ et al (2015) Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 42(6):632–639

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alotaibi O. Modhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zia-Ul-Haq, M., Riaz, M., Modhi, A.O. (2021). Carotenoids and Bone Health. In: Zia-Ul-Haq, M., Dewanjee, S., Riaz, M. (eds) Carotenoids: Structure and Function in the Human Body. Springer, Cham. https://doi.org/10.1007/978-3-030-46459-2_21

Download citation

Publish with us

Policies and ethics