Skip to main content

Prokaryotic Microbial Synthesis of Nanomaterials (The World of Unseen)

  • Chapter
  • First Online:
Nanobiotechnology: A Multidisciplinary Field of Science

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Since the most important aspect of nanobiotechnology is to biologically synthesize environmentally-friendly, biocompatible, low-cost, green and non-hazardous nano-sized particles, prokaryotic microbial synthesis of nanomaterials has been one of the most studied biological synthesis approach. Bacteria and actinomycetes serve as prokaryotic microbial nano-bio-factories which boost a significant potential to synthesize nanoparticles without the need to harsh, toxic, and expensive chemicals as well as high pressure and temperature which are commonly employed in conventional chemical and physical processes. Nanomaterials can be biosynthesized either intracellularly or extracellularly. This chapter discusses in depth the recent investigations carried out by worldwide researchers in which different bacterial and actinomycetes strains are exploited as biological factories for nanoparticle production. The leading mechanisms behind the microbial synthesis of nanoparticles are provided in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 42:301–312

    Google Scholar 

  • Afzal B, Yasin D, Husain S et al (2019) Biocatalysis and agricultural biotechnology screening of cyanobacterial strains for the selenium nanoparticles synthesis and their anti-oxidant activity. Biocatal Agric Biotechnol 21:101307–103114

    Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S et al (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28:313–318

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI et al (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–830

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI et al (2003c) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    CAS  Google Scholar 

  • Ahmed E, Kalathil S, Shi L et al (2018) Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc 22:919–929

    CAS  Google Scholar 

  • Akpan EI, Shen X, Wetzel B, Friedrich K (2019) Design and synthesis of polymer nanocomposites. In: Polymer composites with functionalized nanoparticles, synthesis, properties, and applications, Micro and nano technologies. Elsevier Inc, Amsterdam, pp 47–83

    Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086

    CAS  PubMed  Google Scholar 

  • Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012) Electrochemically active biofilms: facts and fiction. A review. Biofouling 28:789–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139

    CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces 70:142–146

    Google Scholar 

  • Bai H-J, Yang B-S, Chai C-J et al (2011) Green synthesis of silver nanoparticles using Rhodobacter sphaeroides. World J Microbiol Biotechnol 27:2723–2728

    Google Scholar 

  • Baker S, Satish S (2015) Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A Mol Biomol Spectrosc 150:691–695

    Google Scholar 

  • Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: invisible nanofactories. J Pharm Res 6:383–388

    CAS  Google Scholar 

  • Bakhshi M, Hosseini MR (2016) Synthesis of CdS nanoparticles from cadmium sulfate solutions using the extracellular polymeric substances of B. licheniformis as stabilizing agent. Enzym Microb Technol 95:209–216

    CAS  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L et al (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    PubMed  Google Scholar 

  • Barreto ML, Teixeira MG (2008) Dengue no Brasil: situação epidemiológica e contribuições para uma agenda de pesquisa. Estud avançados 22:53–72

    Google Scholar 

  • Baygar T, Sarac N, Ugur A, Karaca IR (2019) Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem 86:254–258

    CAS  PubMed  Google Scholar 

  • Becker N, Petric D, Zgomba M et al (2010) Mosquitoes and their control. Springer, Dordrecht/New York/Heidelberg

    Google Scholar 

  • Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Saha I, Mukhopadhyay A et al (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol 3:59–64

    Google Scholar 

  • Bintrim SB, Donohue TJ, Handelsman J et al (1997) Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci 94:277–282

    CAS  PubMed  Google Scholar 

  • Bizuye A, Bii C, Erastus G, Maina N (2017) Antibacterial metabolite prospecting from Actinomycetes isolated from waste damped soils from Thika, central part of Kenya. Asian Pac J Trop Dis 7:757–764

    Google Scholar 

  • Buszewski B, Railean-Plugaru V, Pomastowski P et al (2016) Antimicrobial activity of biosilver nanoparticles produced by novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51:1–10

    Google Scholar 

  • Buszewski B, Railean-Plugaru V, Pomastowski P et al (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51:45–54

    CAS  PubMed  Google Scholar 

  • Calvano CD, Italiano F, Catucci L et al (2014) The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress. Biometals 27:65–73

    CAS  PubMed  Google Scholar 

  • Canfield DE (2005) The sulfur cycle. In: Canfield DE, Thamdrup B, Kristensen E (eds) Aquatic geomicrobiology, Advances in marine biology, vol 48. Academic, Amsterdam/London

    Google Scholar 

  • Chandra G, Bhattacharjee I, Chatterjee S (2010) A review on Anopheles subpictus Grassi—a biological vector. Acta Trop 115:142–154

    PubMed  Google Scholar 

  • Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheaburu-Yilmaz CN, Karasulu HY, Yilmaz O (2019) Nanoscaled dispersed systems used in drug-delivery applications. In: Polymeric nanomaterials in nanotherapeutics, Micro and nano technologies. Elsevier Inc, Amsterdam, pp 437–468

    Google Scholar 

  • Clark DP, Pazdernik NJ, Clark DP, Pazdernik NJ (2016) Chapter 7: Nanobiotechnology. In: Biotechnology, United States of America, pp 219–248

    Google Scholar 

  • Costo R, Bello V, Robic C et al (2011) Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir 28:178–185

    Google Scholar 

  • Das VL, Thomas R, Varghese RT et al (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS11 isolated from industrialized area. 3 Biotech 4:121–126

    Google Scholar 

  • Dawson A, Kamat PV (2001) Semiconductor− metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci 89:5685–5689

    CAS  PubMed  Google Scholar 

  • Desai PP, Prabhurajeshwar C, Chandrakanth KR (2016) Hydrothermal assisted biosynthesis of silver nanoparticles from Streptomyces sp. GUT 21 (KU500633) and its therapeutic antimicrobial activity. J Nanostruct Chem 6:235–246

    CAS  Google Scholar 

  • Dhanda V, Kaul HN (1980) Mosquito vectors of Japanese encephalitis virus and their bionomics in India. Proc Indian Natl Sci Acad B 46B:759–768

    Google Scholar 

  • Doehlemann G, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. Microbiol Spectr 5:1–23

    Google Scholar 

  • Dong A, Prestrelski SJ, Allison SD, Carpenter JF (1995) Infrared spectroscopic studies of lyophilization and temperature-induced protein aggregation. J Pharm Sci 84:415–424

    CAS  PubMed  Google Scholar 

  • Drexler KE (2004) Nanotechnology: from Feynman to funding. Bull Sci Technol Soc 24:21–27

    Google Scholar 

  • Durán N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Google Scholar 

  • Edwards PP, Thomas JM (2007) Gold in a metallic divided Staten – from faraday to present-day nanoscience. Angew Chem Int Ed 46:5480–5486

    CAS  Google Scholar 

  • El-Gendy NS, Omran BA (2019) Green synthesis of nanoparticles for water treatment. In: Nano and bio-based technologies for wastewater treatment. Beverly, MA Scrivener Publishing, LLC Hoboken, United States, pp 205–263

    Google Scholar 

  • Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interf Sci 189:1–20

    Google Scholar 

  • Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F (2018) Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol 270:1–11

    CAS  PubMed  Google Scholar 

  • Fernández JG, Fernández-Baldo MA, Berni E et al (2016) Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem 51:1306–1313

    Google Scholar 

  • Fouda A, Hassan SE-D, Abdo AM, El-Gamal MS (2019) Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol Trace Elem Res 195:1–18

    Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B: Biointerfaces 74:191–195

    Google Scholar 

  • Golińska P, Wypij M, Rathod D et al (2016) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 56:541–556

    PubMed  Google Scholar 

  • Gowramma B, Keerthi U, Rafi M, Rao DM (2015) Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech 5:195–201

    CAS  PubMed  Google Scholar 

  • Gram C (1884) Ueber die isolirte Farbung der Schizomyceten in Schnitt-und Trockenpraparaten. Fortschritte der Med 2:185–189

    Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R et al (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B: Biointerfaces 74:328–335

    CAS  PubMed  Google Scholar 

  • Hassan SE-D, Salem SS, Fouda A et al (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci 11:262–270

    CAS  Google Scholar 

  • Hassan SED, Fouda A, Radwan AA et al (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393

    CAS  PubMed  Google Scholar 

  • He S, Guo Z, Zhang Y et al (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    CAS  Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480

    Google Scholar 

  • Headrick DH, Goeden RD (2001) Biological control as a tool for ecosystem management. Biol Control 21:249–257

    Google Scholar 

  • Huang K, Ma H, Liu J et al (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6:4483–4493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes-a review. Colloids Surf B: Biointerfaces 121:474–483

    CAS  PubMed  Google Scholar 

  • Huo S, Jin S, Ma X et al (2014) Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 8:5852–5862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006

    CAS  PubMed  Google Scholar 

  • Ingle A, Gade A, Pierrat S et al (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Google Scholar 

  • Iranifam M, Fathinia M, Sadeghi Rad T et al (2013) A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta 107:263–269

    CAS  PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    CAS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:Article ID 359316, 18 pages. https://doi.org/10.1155/2014/359316

    Article  Google Scholar 

  • Italiano F, Rinalducci S, Agostiano A et al (2012) Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate. Biometals 25:939–949

    CAS  PubMed  Google Scholar 

  • Italiano F, Agostiano A, Belviso BD et al (2018) Interaction between the photosynthetic anoxygenic microorganism Rhodobacter sphaeroides and soluble gold compounds. From toxicity to gold nanoparticle synthesis. Colloids Surf B: Biointerfaces 172:362–371

    CAS  PubMed  Google Scholar 

  • Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T (2016) Geomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. In: Advances in applied microbiology. Elsevier, Amsterdam, pp 1–77

    Google Scholar 

  • James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 80(257):37–39

    Google Scholar 

  • Jeyaraj M, Murugan M, Anthony KJP, Gurunathan S (2015) An environmentally friendly and green approach for synthesis and applications of silver nanoparticles. In: Nanomaterials for environmental protection. Wiley, Hoboken, pp 313–327

    Google Scholar 

  • Juibari MM, Yeganeh LP, Abbasalizadeh S (2015) Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain thermo-BF for extracellular biosynthesis of functionalized gold nanoparticles. Bionanosciecne 5:233–241

    Google Scholar 

  • Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Insect pathology. Elsevier, San Diego, pp 265–349

    Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem 13:1482–1485

    CAS  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D et al (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153

    CAS  PubMed  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–511

    CAS  PubMed  Google Scholar 

  • Khadivi Derakhshan F, Dehnad A, Salouti M (2012) Extracellular biosynthesis of gold nanoparticles by metal resistance bacteria: Streptomyces griseus. Synth React Inorg MetOrg NanoMetal Chem 42:868–871

    CAS  Google Scholar 

  • Khan MM, Ansari SA, Lee J-H et al (2013) Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustain Chem Eng 2:423–432

    Google Scholar 

  • Khan ME, Khan MM, Cho MH (2015a) Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Adv 5:26897–26904

    CAS  Google Scholar 

  • Khan ME, Khan MM, Cho MH (2015b) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39:8121–8129

    CAS  Google Scholar 

  • Kibret M, Guerrero-Garzón JF, Urban E et al (2018) Streptomyces spp. from Ethiopia producing antimicrobial compounds: characterization via bioassays, genome analyses, and mass spectrometry. Front Microbiol 9:1270–1983

    PubMed  PubMed Central  Google Scholar 

  • Killham K, Prosser JI (2015) The bacteria and archaea, 4th edn. Elsevier Inc., London

    Google Scholar 

  • Kimber RL, Lewis EA, Parmeggiani F et al (2018) Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: application for click chemistry. Small 14:1–8

    Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    CAS  PubMed  Google Scholar 

  • Klempner MS, Unnasch TR, Hu LT (2007) Taking a bite out of vector-transmitted infectious diseases. N Engl J Med 356:2567–2569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korbekandi H, Mohseni S, Jouneghani RM et al (2016) Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 44:235–239

    CAS  PubMed  Google Scholar 

  • Kulkarni RR, Shaiwale NS, Deobagkar DN, Deobagkar DD (2015) Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int J Nanomedicine 10:963–974

    Google Scholar 

  • Kumaresan M, Vijai Anand K, Govindaraju K et al (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against Gram-positive and Gram-negative bacteria. Microb Pathog 124:311–315

    Google Scholar 

  • Li X, Chen S, Hu W et al (2009) In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76:509–512

    Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:Article ID 270974, 16 pages. https://doi.org/10.1155/2011/270974

    Article  CAS  Google Scholar 

  • Lloyd JR, Byrne JM, Coker VS (2011) Biotechnological synthesis of functional nanomaterials. Curr Opin Biotechnol 22:509–515

    CAS  PubMed  Google Scholar 

  • Mageswari A, Subramanian P, Ravindran V et al (2015) Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environ Sci Pollut Res 22:5383–5394

    CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:1–10

    Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K et al (2013) Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invent Today 5:119–125

    CAS  Google Scholar 

  • Malhotra A, Dolma K, Kaur N et al (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731

    CAS  PubMed  Google Scholar 

  • Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39:4459–4463

    CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K et al (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int 2013:Article ID 287638, 9 pages. https://doi.org/10.1155/2013/287638

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278

    CAS  PubMed  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2016) Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 42:209–221

    CAS  PubMed  Google Scholar 

  • Marimuthu S, Rahuman AA, Kirthi AV et al (2013) Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitol Res 112:4105–4112

    PubMed  Google Scholar 

  • Markus J, Mathiyalagan R, Kim YJ et al (2016) Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzym Microb Technol 95:85–93

    CAS  Google Scholar 

  • Mashrai A, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530–S1536

    Google Scholar 

  • Mathivanan K, Selva R, Chandirika JU et al (2019) Biologically synthesized silver nanoparticles against pathogenic bacteria : synthesis, calcination and characterization. Biocatal Agric Biotechnol 22:101373–101380

    Google Scholar 

  • Mohanta YK, Behera SK (2014) Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess Biosyst Eng 37:2263–2269–101380

    Google Scholar 

  • Morozkina EV, Zvyagilskaya RA (2007) Nitrate reductases: structure, functions, and effect of stress factors. Biochemist 72:1151–1160

    CAS  Google Scholar 

  • Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog 122:108–116

    CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Google Scholar 

  • Mukherjee P, Senapati S, Mandal D et al (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    CAS  PubMed  Google Scholar 

  • Mukhtar M, Herrel N, Amerasinghe FP et al (2003) Role of wastewater irrigation in mosquito breeding in South Punjab, Pakistan. Southeast Asian J Trop Med Public Health 34:72–80

    PubMed  Google Scholar 

  • Murphy CJ, Sundaresan A, Rao CNR, Murphy CJ (2008) Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J Mater Chem 18:2173–2176

    CAS  Google Scholar 

  • Naik MM, Prabhu MS, Samant SN et al (2017) Synergistic action of silver nanoparticles synthesized from silver resistant estuarine Pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens. Thalassas 33:73–80

    Google Scholar 

  • Najitha Banu A, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti(Diptera: Culicidae). Parasitol Res 113:311–316

    Google Scholar 

  • Nangia Y, Wangoo N, Goyal N et al (2009) A novel bacterial isolate Stenotrophomonas maltophiliaas living factory for synthesis of gold nanoparticles. Microb Cell Factories 8:1–7

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    CAS  Google Scholar 

  • Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92

    Google Scholar 

  • Noman M, Shahid M, Ahmed T, Khan MB (2019) Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 257:113514–113523

    Google Scholar 

  • Omran BA, Nassar HN, Fatthallah NA et al (2018) Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. J Appl Microbiol 125:370–382

    Google Scholar 

  • Omran BA, Nassar HN, Younis SA et al (2019) Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517 synthesized silver nanoparticles for the mitigation of halotolerant sulphate reducing bacteria. J Appl Microbiol 126:138–154

    CAS  PubMed  Google Scholar 

  • Ortega FG, Fernández-Baldo MA, Fernández JG et al (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine 10:2021–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otari SV, Patil RM, Nadaf NH et al (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94

    Google Scholar 

  • Oza G, Pandey S, Mewada A et al (2012a) Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 3:1405–1412

    CAS  Google Scholar 

  • Oza G, Pandey S, Shah R, Sharon M (2012b) Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobial assay. Pelagia Res Lib Adv Appl Sci Res 3:1776–1783

    CAS  Google Scholar 

  • Parikh RY, Singh S, Prasad BLV et al (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422

    Google Scholar 

  • Park TJ, Lee SY, Lee SJ et al (2006) Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal Chem 78:7197–7205

    CAS  PubMed  Google Scholar 

  • Peiris MK, Gunasekara CP, Jayaweera PM et al (2017) Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem Inst Oswaldo Cruz 112:537–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pepper IL, Gentry TJ (2015) Earth environments. In: Environmental microbiology. Elsevier, China, pp 59–88

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32–42

    Google Scholar 

  • Prakasham RS, Kumar BS, Kumar YS, Kumar KP (2014) Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J Microbiol 54:329–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    CAS  PubMed Central  Google Scholar 

  • Priyadarshini S, Gopinath V, Meera Priyadharsshini N et al (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B: Biointerfaces 102:232–237

    CAS  PubMed  Google Scholar 

  • Puigdollers AR, Illas F, Pacchioni G (2016) Structure and properties of zirconia nanoparticles from density functional theory calculations. J Phys Chem C 120:4392–4402

    CAS  Google Scholar 

  • Puja P, Kumar P (2019) A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 211:94–99

    CAS  PubMed  Google Scholar 

  • Punjabi K, Mehta S, Chavan R et al (2018) Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front Microbiol 9:1–11

    Google Scholar 

  • Quinteros MA, Bonilla JO, Alborés SV et al (2019) Biogenic nanoparticles : synthesis, stability and biocompatibility mediated by proteins of Pseudomonas aeruginosa. Colloids Surf B: Biointerfaces 184:110517–110523

    Google Scholar 

  • Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22:736–741

    CAS  PubMed  Google Scholar 

  • Raja DARK, Balasubramani CKG, Arul PDD (2019) Biosynthesis of gold and silver nanoparticles from the symbiotic bacterium, Photorhabdus luminescens of entomopathogenic nematode : larvicidal properties against three mosquitoes and Galleria mellonella larvae. J Clust Sci 30:1051–1063

    Google Scholar 

  • Rajeshkumar S, Naik P (2018) Synthesis and biomedical applications of cerium oxide nanoparticles – a review. Biotechnol Rep 17:1–5

    CAS  Google Scholar 

  • Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39

    CAS  PubMed  Google Scholar 

  • Rasool U, Hemalatha S (2017) Marine endophytic actinomycetes assisted synthesis of copper nanoparticles (CuNPs): characterization and antibacterial efficacy against human pathogens. Mater Lett 194:176–180

    CAS  Google Scholar 

  • Rathod D, Golinska P, Wypij M et al (2016) A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med Microbiol Immunol 205:435–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Res JMB, Shah R, Oza G et al (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2:485–492

    Google Scholar 

  • Rotich MC (2018) Bio-prospecting for broad spectrum antibiotic producing actinomycetes isolated from virgin soils in Kericho county, Master of Science

    Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun KS (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81:358–362

    CAS  PubMed  Google Scholar 

  • Sadhasivam S, Shanmugam P, Veerapandian M et al (2012) Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25:351–360

    CAS  PubMed  Google Scholar 

  • Salunke BK, Sawant SS, Lee SI, Kim BS (2015) Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99:5419–5427

    Google Scholar 

  • Sanjenbam P, Gopal JV, Kannabiran K (2014) Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp.VITPK1. J Mycol Med 24:211–219

    CAS  PubMed  Google Scholar 

  • Santo CE, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74:977–986

    CAS  Google Scholar 

  • Sapkal MR, Deshmukh AM (2008) Biosynthesis of gold nanoparticles by Streptomyces species. Res J Biotechnol 3:36–39

    Google Scholar 

  • Saratale GD, Saratale RG, Oh SE (2012) Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47:302–315

    Google Scholar 

  • Saratale RG, Karuppusamy I, Saratale GD et al (2018) A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B: Biointerfaces 170:20–35

    CAS  PubMed  Google Scholar 

  • Saravana Kumar P, Balachandran C, Duraipandiyan V et al (2015) Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl Nanosci 5:169–180

    CAS  Google Scholar 

  • Saravanan M, Kumar S, Mubarakali D (2018) Microbial pathogenesis synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pthogenes 116:221–226

    Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sen S, Chakraborty R, Sridhar C et al (2010) Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 3:91–100

    CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S et al (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8:7278–7308

    CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B et al (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    CAS  PubMed  Google Scholar 

  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V et al (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B: Biointerfaces 111:680–687

    CAS  PubMed  Google Scholar 

  • Shanthi S, David Jayaseelan B, Velusamy P et al (2016) Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb Pathog 93:70–77

    Google Scholar 

  • Singh AK, Nakate UT (2014) Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci World J 2014:Article ID 349457, 7 pages. https://doi.org/10.1155/2014/349457

    Article  CAS  Google Scholar 

  • Singh CP, Singh KN, Pandey MC (1996) Insect growth regulatory effect of neem derivative “Neemolin” on Spilosoma obligue Walker. Pestology 5:11–13

    Google Scholar 

  • Sintubin L, De Windt W, Dick J et al (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    CAS  PubMed  Google Scholar 

  • Sivalingam P, Joe J, Siva D et al (2012) Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloids Surf B: Biointerfaces 98:12–17

    Google Scholar 

  • Składanowski M, Wypij M, Laskowski D et al (2017) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28:59–79

    Google Scholar 

  • Sneha K, Sathishkumar M, Mao J et al (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162:989–996

    CAS  Google Scholar 

  • Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochem 44:1133–1138

    CAS  Google Scholar 

  • Sowani H, Mohite P, Munot H et al (2016) Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: mechanistic aspects and biological application. Process Biochem 51:374–383

    CAS  Google Scholar 

  • Sreedharan SM, Gupta S, Saxena AK, Singh R (2019) Macrophomina phaseolina: microbased biorefinery for gold nanoparticle production. Ann Microbiol 4000:435–445

    Google Scholar 

  • Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14:831–841

    Google Scholar 

  • Srivastava P, Braganca JM, Kowshik M (2014) In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol Prog 30:1480–1487

    CAS  PubMed  Google Scholar 

  • Subashini J, Kannabiran K (2013) Antimicrobial activity of Streptomyces sp. VITBT7 and its synthesized silver nanoparticles against medically important fungal and bacterial pathogens. Der Pharm Lett 5:192–200

    Google Scholar 

  • Subashini J, Gopiesh Khanna V, Kannabiran K (2014) Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species. Bioprocess Biosyst Eng 37:999–1006

    CAS  PubMed  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W et al (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152

    CAS  PubMed  Google Scholar 

  • Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R (2019) One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater Sci Eng C 105:110021–110031

    Google Scholar 

  • Syed B, Nagendra NP, Dhananjaya BL et al (2016) Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzym Microb Technol 95:128–136

    CAS  Google Scholar 

  • Tabrizi SG, Hamedi J, Mohammadipanah F (2013) Screening of soil actinomycetes against Salmonella serovar Typhi NCTC 5761 and characterization of the prominent active strains. Iran J Microbiol 5:356–365

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    CAS  Google Scholar 

  • Thenmozhi M, Kannabiran K, Kumar R, Gopiesh Khanna V (2013) Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. J Mycol Med 23:97–103

    Google Scholar 

  • Usmani M, Khan I, Bhat A et al (2017) Current trend in the application of nanoparticles for waste water treatment and purification: a review. Curr Org Synth 14:206–226

    CAS  Google Scholar 

  • Velmurugan P, Iydroose M (2014) Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess Biosyst Eng 37:1527–1534

    CAS  PubMed  Google Scholar 

  • Verma VC, Anand S, Ulrichs C, Singh SK (2013) Biogenic gold nanotriangles from Saccharomonospora sp., an endophytic actinomycetes of Azadirachta indica A. Juss. Int Nano Lett 3:1–7

    Google Scholar 

  • Vijayabharathi R, Sathya A, Gopalakrishnan S (2018) Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatal Agric Biotechnol 14:166–171

    Google Scholar 

  • Volpicella M, Costanza A, Palumbo O et al (2014) Rhodobacter sphaeroides adaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiol Ecol 88:345–357

    CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566

    CAS  PubMed  Google Scholar 

  • Waghmare SS, Deshmukh AM, Kulkarni SW, Oswaldo LA (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univers J Environ Res Technol 1:64–96

    CAS  Google Scholar 

  • Wang F, Li C, Sun L et al (2012) Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew Chem Int Ed 51:4872–4876

    CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Perspective prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci 87:4576–4579

    CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Sixth meeting of the technical advisory group on the global elimination of lymphatic Filariasis, Geneva, Switzerland, 20–23 September 2005. Wkly Epidemiol Rec Relev épidémiologique Hebd 80:401–408

    Google Scholar 

  • Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27:277–284

    PubMed  PubMed Central  Google Scholar 

  • Wypij M, Czarnecka J, Dahm H et al (2017) Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. J Basic Microbiol 57:793–800

    CAS  PubMed  Google Scholar 

  • Wypij M, Czarnecka J, Świecimska M et al (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34:23–36

    PubMed  PubMed Central  Google Scholar 

  • Yin Y, Yang X, Hu L et al (2016) Superoxide-mediated extracellular biosynthesis of silver nanoparticles by the fungus Fusarium oxysporum. Environ Sci Technol Lett 3:160–165

    CAS  Google Scholar 

  • Yoon K-Y, Byeon JH, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    CAS  PubMed  Google Scholar 

  • Zarina A, Nanda A (2014) Green approach for synthesis of silver nanoparticles from marine Streptomyces MS 26 and their antibiotic efficacy. J Pharm Sci Res 6:321–327

    Google Scholar 

  • Zhang H, Hu X (2019) Biosynthesis of au nanoparticles by a marine bacterium and enhancing their catalytic activity through metal ions and metal oxides. Biotechnol Prog 35:1–10

    Google Scholar 

  • Zhang H, Li Q, Lu Y et al (2005a) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    CAS  Google Scholar 

  • Zhang J, Wang H, Yan X, Zhang L (2005b) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099–1109

    CAS  PubMed  Google Scholar 

  • Zonooz NF, Salouti M, Shapouri R, Nasseryan J (2012) Biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 supernatant and process optimization for enhanced production. J Clust Sci 23:375–382

    CAS  Google Scholar 

  • Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omran, B.A. (2020). Prokaryotic Microbial Synthesis of Nanomaterials (The World of Unseen). In: Nanobiotechnology: A Multidisciplinary Field of Science. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-46071-6_2

Download citation

Publish with us

Policies and ethics