Skip to main content

Fundamentals of Nanotechnology and Nanobiotechnology

  • Chapter
  • First Online:
Nanobiotechnology: A Multidisciplinary Field of Science

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is a multidisciplinary field of science which integrates chemistry, engineering sciences, physics, and materials science altogether. It is the science whose main purpose is to design, characterize, and produce nanoscaled materials with controlled shapes and sizes. It deals with materials with dimensions less than 100 nm. These materials are referred to as nanomaterials, nanoparticles, nanocomposites, or nanostructures. Such materials possess outstanding mechanical, electrical, optical, functional, and magnetic properties. During the last few decades, these nanomaterials have arisen as smart and multifunctional ones. Different synthesis routes of nanomaterials have been under investigation by researchers around the globe including physical, chemical, and biological synthesis approaches. Despite the high control over the size and shape of nanomaterials via the chemical and physical synthesis methodologies, there are major concerns regarding the release of hazardous toxic byproducts which usually accompany the process of synthesis. Hence, this contributed to the rise of the nanobiotechnology. From that point, green, biological entities have been evaluated and employed to overcome such risky synthesis approaches. Apart from providing an overview on the historical arise of nanotechnology and nanomaterials, this chapter also includes an account of nanomaterials’ classification and characteristic features. A special emphasis is provided regarding the physical, chemical and biological synthesis procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artioli G, Angelini I, Polla A (2008) Crystals and phase transitions in protohistoric glass materials. Phase Transit 81:233–252

    CAS  Google Scholar 

  • Arulmani S, Anandan S, Ashokkumar M (2018) Introduction to advanced nanomaterials. In: Nanomaterials for green energy. Elsevier, Cambridge, MA, pp 1–53

    Google Scholar 

  • Balasooriya ER, Jayasinghe CD, Jayawardena UA et al (2017) Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J Nanomater 2017, Article ID 5919836:1–10. https://doi.org/10.1155/2017/5919836

    Article  CAS  Google Scholar 

  • Balcerzak M, Jakubowicz J, Kachlicki T, Jurczyk M (2015) Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. J Power Sources 280:435–445

    Google Scholar 

  • Ball AS, Patil S, Soni S (2019) Introduction into nanotechnology and microbiology. Methods Microbiol 46:1–18

    CAS  Google Scholar 

  • Balzani V (2005) Nanoscience and nanotechnology: a personal view of a chemist. Small 1:278–283

    CAS  PubMed  Google Scholar 

  • Basu PK (1997) Theory of optical processes in semiconductors: bulk and microstructures. Clarendon press, Oxford

    Google Scholar 

  • Bayda S, Hadla M, Palazzolo S et al (2017) Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy. J Control Release 248:144–152

    CAS  PubMed  Google Scholar 

  • Beasley MM, Bartelink EJ, Taylor L, Miller RM (2014) Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. J Archaeol Sci 46:16–22

    CAS  Google Scholar 

  • Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans A 1:2943–2951

    CAS  Google Scholar 

  • Bhadeshia H (1997) Recrystallisation of practical mechanically alloyed iron-base and nickel- base superalloys. Mater Sci Eng A 223:64–77

    Google Scholar 

  • Bidabadi ARS, Enayati MH, Dastanpoor E et al (2013) Nanocrystalline intermetallic compounds in the Ni–Al–Cr system synthesized by mechanical alloying and their thermodynamic analysis. J Alloys Compd 581:91–100

    Google Scholar 

  • Binnig G, Gerber C, Stoll E et al (1987) Atomic resolution with atomic force microscope. Europhys Lett 3:1281–1286

    CAS  Google Scholar 

  • Birnbaum AJ, Pique A (2011) Laser induced extraplanar propulsion for three-dimensional microfabrication. Appl Phys Lett 98:134101

    Google Scholar 

  • Borsella E, D’Amato R, Terranova G et al (2011) Synthesis of nanoparticles by laser pyrolysis: from research to applications. Energia Ambiente Innov 4:54–64

    Google Scholar 

  • Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc London Ser A 89:248–277

    CAS  Google Scholar 

  • Brun N, Mazerolles L, Pernot M (1991) Microstructure of opaque red glass containing copper. J Mater Sci Lett 10:1418–1420

    CAS  Google Scholar 

  • Bumb A, Brechbiel MW, Choyke PL et al (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19:335601–335608

    Google Scholar 

  • Bumbrah GS, Sharma RM (2016) Raman spectroscopy – basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 6:209–215

    Google Scholar 

  • Chaber R, Łach K, Szmuc K et al (2017) Application of infrared spectroscopy in the identification of Ewing sarcoma: a preliminary report. Infrared Phys Technol 83:200–205

    CAS  Google Scholar 

  • Chen Y, Li CP, Chen H, Chen Y (2006) One-dimensional nanomaterials synthesized using high- energy ball milling and annealing process. Sci Technol Adv Mater 7:839–846

    CAS  Google Scholar 

  • Cheville NF, Stasko J (2014) Techniques in electron microscopy of animal tissue. Vet Pathol 51:28–41

    CAS  PubMed  Google Scholar 

  • Chirayil CJ, Abraham J, Mishra RK et al (2017) Instrumental techniques for the characterization of nanoparticles. Elsevier Inc, Amsterdam, pp 1–36

    Google Scholar 

  • Clogston JD, Patri AK (2011) Zeta potential measurement. In: Characterization of nanoparticles intended for drug delivery. Springer, New York, pp 63–70

    Google Scholar 

  • Dent G, Smith E (2005) Modern Raman spectroscopy: a practical approach. Wiley, London

    Google Scholar 

  • Deshayes S, Maurizot V, Clochard M-C et al (2010) Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation. Radiat Phys Chem 79:208–213

    CAS  Google Scholar 

  • Dobkin D, Zuraw MK (2003) Principles of chemical vapor deposition. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Dominguez G, Mcleod AS, Gainsforth Z et al (2014) Nanoscale infrared spectroscopy as a non- destructive probe of extraterrestrial samples. Nat Commun 5:5445–5446

    CAS  PubMed  Google Scholar 

  • Drexler KE (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci 78:5275–5278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282

    CAS  PubMed  Google Scholar 

  • El-Aswar EI, Zahran MM, El-Kemary M (2019) Optical and electrochemical studies of silver nanoparticles biosynthesized by Haplophyllum tuberculatum extract and their antibacterial activity in wastewater treatment. Mater Res Express 6:105016–105032

    Google Scholar 

  • El-Gendy NS, Omran BA (2019) Green synthesis of nanoparticles for water treatment. In: Nano and bio-based technologies for wastewater treatment. Wiley, Hoboken, pp 205–263

    Google Scholar 

  • Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131:875–885

    CAS  PubMed  Google Scholar 

  • Fellers TJ, Davidson MW (2007) Introduction to confocal microscopy. J Investig Dermatol 132:1–5

    Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. California Institute of Technology Eng Sci Mag 23:22–36

    Google Scholar 

  • Foord JS, Davies GJ, Tsang WT (1997) Chemical beam epitaxy and related techniques. Wiley, Chichester; New York

    Google Scholar 

  • Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup—a roman nanotechnology. Gold Bull 40:270–277

    CAS  Google Scholar 

  • Gentili E, Tabaglio L, Aggogeri F (2005) Review on micromachining techniques. In: AMST’05 advanced manufacturing systems and technology. Springer, Vienna, pp 387–396

    Google Scholar 

  • Ghosh PK (1983) Introduction to photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  • González AL, Noguez C, Beránek J, Barnard AS (2014) Size, shape, stability, and color of plasmonic silver nanoparticles. J Phys Chem C 118:9128–9136

    Google Scholar 

  • Groza JR (1999) Nanosintering. Nanostruct Mater 12:987–992

    Google Scholar 

  • Guo KW (2013) An overview of green nanotechnology. In: Bio-nanotechnology: a revolution in food, biomedical and health sciences. Blackwell Publishing Ltd, Oxford, pp 311–354

    Google Scholar 

  • Häkkinen H, Abbet S, Sanchez A et al (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem Int Ed 42:1297–1300

    Google Scholar 

  • Hambardzumyan A, Molinari M, Dumelie N et al (2011) Structure and optical properties of plant cell wall bio-inspired materials: cellulose–lignin multilayer nanocomposites. C R Biol 334:839–850

    CAS  PubMed  Google Scholar 

  • Height MJ, Mädler L, Pratsinis SE, Krumeich F (2006) Nanorods of ZnO made by flame spray pyrolysis. Chem Mater 18:572–578

    CAS  Google Scholar 

  • Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16:262–271

    CAS  Google Scholar 

  • Hess H, Jaeger L (2010) Nanobiotechnology editorial overview. Curr Opin Biotechnol 21:373–375

    CAS  PubMed  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson-McDaniel D, Barrett CA, Sharafi A et al (2013) Nanoscience of an ancient pigment. J Am Chem Soc 135:1677–1679

    Google Scholar 

  • Joshi M, Vandana P (2008) Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 346:124–132

    Google Scholar 

  • Kalam A, Al-Sehemi AG, Assiri M et al (2018) Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys 8:1046–1053

    Google Scholar 

  • Kirti S, Bhandari VM, Jena J et al (2018) Exploiting functionalities of biomass in nanocomposite development: application in dye removal and disinfection along with process intensification. Clean Technol Environ Policy 20:981–994

    Google Scholar 

  • Koch CC, Cavin OB, McKamey CG et al (1983) Preparation of “amorphous’’ Ni60Nb40 by mechanical alloying. Appl Phys Lett 43:1017–1019

    Google Scholar 

  • Kolasinski R (2005) Oblique angle sputtering yield measurements for ion thruster grid materials. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 3526)

    Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331:1–10

    Google Scholar 

  • Kumar U, Panda D, Biswas KG (2018) Non-lithographic copper-wire based fabrication of micro-fluidic reactors for biphasic flow applications. Chem Eng J 344:221–227

    Google Scholar 

  • Kumar S, Biswas A (2019) A unified TOPSIS approach to MADM problems in interval-valued intuitionistic fuzzy environment. In Computational Intelligence: Theories, Applications and Future Directions-Volume II, Springer, Singapore, pp 435–447

    Google Scholar 

  • Kumar A, Khandelwal M, Gupta SK et al (2019) Fourier transform infrared spectroscopy: Data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures. In Data Processing Handbook for Complex Biological Data Sources (pp. 77–96). Academic Press

    Google Scholar 

  • Kurland HD, Grabow J, Staupendahl G et al (2007) Magnetic iron oxide nanopowders produced by CO2 laser evaporation. J Magn Magn Mater 311:73–77

    Google Scholar 

  • Kurland H-D, Grabow J, Staupendahl G et al (2009) Magnetic iron oxide nanopowders produced by CO2 laser evaporation—‘in situ’ coating and particle embedding in a ceramic matrix. J Magn Magn Mater 321:1381–1385

    Google Scholar 

  • Lalwani G, Henslee AM, Farshid B et al (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14:900–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon TG (2016) A comparison of repetitive corrugation and straightening and high-pressure torsion using an Al-Mg-Sc alloy. Integr Med Res 5:353–359

    Google Scholar 

  • Lapovok RYE (2005) The role of back-pressure in equal channel. J Mater Sci 40:341–346

    CAS  Google Scholar 

  • Lavigne J-P, Espinal P, Dunyach-Remy C et al (2013) Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med 51:257–270

    CAS  PubMed  Google Scholar 

  • Leonhardt U (2007) Optical metamaterials: invisibility cup. Nat Photonics 1:207–208

    CAS  Google Scholar 

  • Liang Y, Li Y, Wang H et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Google Scholar 

  • Liu G, Li Z, Xu L et al (2018) The dynamics and adsorption of Cd (II) onto hydroxyapatite attapulgite composites from aqueous solution. J Sol-Gel Sci Technol 87:269–284

    CAS  Google Scholar 

  • López-Lorente ÁI, Mizaikoff B (2016) Recent advances on the characterization of nanoparticles using infrared spectroscopy. TrAC Trends Anal Chem 84:97–106

    Google Scholar 

  • Lowe CR (2000) Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 10:428–434

    CAS  PubMed  Google Scholar 

  • MacArthur BKE (2016) The use of annular dark-field scanning transmission electron microscopy for quantitative characterisation. Johnson Matthey Technol Rev 60:117–131

    CAS  Google Scholar 

  • Mailer AG, Clegg PS, Pusey PN (2015) Particle sizing by dynamic light scattering: non-linear cumulant analysis. J Phys Condens Matter 27:145102–114511

    PubMed  Google Scholar 

  • Manju S, Sreenivasan K (2010) Functionalised nanoparticles for targeted drug delivery. In: Biointegration of medical implant materials. Elsevier, Duxford, pp 267–297

    Google Scholar 

  • Marvin LF, Roberts MA, Fay LB (2003) Matrix-assisted laser desorption/ionization time-of- flight mass spectrometry in clinical chemistry. Clin Chim Acta 337:11–21

    CAS  PubMed  Google Scholar 

  • Matsushima N, Yamauchi J (2019) First-principles X-ray photoelectron spectroscopy binding energy shift calculation for boron and aluminum defects in 3C-silicon carbide. Jpn J Appl Phys 58:031001–031012

    CAS  Google Scholar 

  • Meulendijks N, van Ee R, Stevens R et al (2018) Flow cell coupled dynamic light scattering for real-time monitoring of nanoparticle size during liquid phase bottom-up synthesis. Appl Sci 8:108–118

    Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445

    Google Scholar 

  • Miklaszewski A, Jurczyk MU, Jurczyk K, Jurczyk M (2011) Plasma surface modification of titanium by TiB precipitation for biomedical applications. Surf Coat Technol 206:330–337

    CAS  Google Scholar 

  • Mogoşanu GD, Grumezescu AM, Bejenaru LE, Bejenaru C (2016) Natural and synthetic polymers for drug delivery and targeting. In: Nanobiomaterials in drug delivery. Elsevier, San Diego, pp 229–284

    Google Scholar 

  • Mohan Bhagyaraj S, Oluwafemi OS (2018) Nanotechnology: the science of the Invisible. Elsevier Ltd, India, pp 1–18

    Google Scholar 

  • Mori S, Shitara Y (1994) Tribochemical activation of gold surface by scratching. Appl Surf Sci 78:269–273

    CAS  Google Scholar 

  • Mullen DG, Fang M, Desai A et al (2010) A quantitative assessment of nanoparticle− ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 4:657–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai I, Numako C, Hosono H, Yamasaki K (2004) Origin of the red color of Satsuma copper- ruby glass as determined by EXAFS and optical absorption spectroscopy. J Am Ceram Soc 82:689–695

    Google Scholar 

  • Nalamalpu A, Kurd N, Deval A, et al (2015) Broadwell: a family of IA 14nm processors. In: 2015 Symposium on VLSI Circuits (VLSI Circuits). IEEE, Intel Corporation, Hillsboro, OR, USA, pp C314–C315

    Google Scholar 

  • Nayfeh MH (2018) Fundamentals and applications of nano silicon in plasmonics and fullerenes: current and future trends. Elsevier, Amsterdam

    Google Scholar 

  • Nelson DJ, Strano M (2006) Richard Smalley: saving the world with nanotechnology. Nat Nanotechnol 1:96–98

    CAS  PubMed  Google Scholar 

  • Niespodziana K, Jurczyk K, Jakubowicz J, Jurczyk M (2010) Fabrication and properties of titanium–hydroxyapatite nanocomposites. Mater Chem Phys 123:160–165

    CAS  Google Scholar 

  • Nixon WC (1971) The general principles of scanning electron microscopy. Philos Trans R Soc Lond Ser B Biol Sci 261:45–50

    Google Scholar 

  • Omran BA, Nassar HN, Fatthallah NA et al (2018a) Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. J Appl Microbiol 125:370–382

    CAS  PubMed  Google Scholar 

  • Omran BA, Nassar HN, Fatthallah NA et al (2018b) Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles. Energy Sources, Part A Recover Utilization and Environmental Effects 40:227–236

    CAS  Google Scholar 

  • Omran BA, Nassar HN, Younis SA et al (2019a) Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria. J Appl Microbiol 126:138–154

    CAS  PubMed  Google Scholar 

  • Omran BA, Nassar HN, Younis SA et al (2019b) Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404: optimization, characterization and antimicrobial activity. J Appl Microbiol 128:438–457

    PubMed  Google Scholar 

  • Pardis N, Talebanpour B, Ebrahimi R, Zomorodian S (2011) Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression ( CEC ). Mater Sci Eng A 528:7537–7540

    CAS  Google Scholar 

  • Pasquini A, Picotto GB, Pisani M (2005) STM carbon nanotube tips fabrication for critical dimension measurements. Sensors Actuators A Phys 123:655–659

    Google Scholar 

  • Paul S, Chugh A (2011) Assessing the role of Ayurvedic ‘bhasms’ as ethno-nanomedicine in the metal based nanomedicine patent regime. J Intellectual Property Rights 16:509–515

    Google Scholar 

  • Pilot R, Signorini R, Durante C et al (2019) A review on surface-enhanced Raman scattering. Biosensors 9:57–156

    CAS  PubMed Central  Google Scholar 

  • Prasad Yadav T, Manohar Yadav R, Pratap Singh D (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2:22–48

    Google Scholar 

  • Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502

    CAS  Google Scholar 

  • Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials. Elsevier, SPi Global, India, pp 121–139

    Google Scholar 

  • Rastogi A, Singh P, Haraz FA, Barhoum A (2018) Biological synthesis of nanoparticles: an environmentally benign approach. In: Fundamentals of Nanoparticles. Elsevier Inc, Typeset by Thomson Digital, India, pp 571–604

    Google Scholar 

  • Raza M, Kanwal Z, Rauf A et al (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:74–89

    PubMed Central  Google Scholar 

  • Rittner MN, Abraham T (1998) Nanostructured materials: an overview and commercial analysis. JOM J Miner Met Mater Soc 50:37–38

    Google Scholar 

  • Rosochowski A (2005) Processing metals by severe plastic deformation. In: Solid state phenomena. Trans Tech Publications, Stäfa, pp 13–22

    Google Scholar 

  • Rytwo G (2008) Clay minerals as an ancient nanotechnology: historical uses of clay organic interactions, and future possible perspectives. Macla 9:15–17

    Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ et al (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4488

    CAS  PubMed  Google Scholar 

  • Schaming D, Remita H (2015) Nanotechnology: from the ancient time to nowadays. Found Chem 17:187–205

    CAS  Google Scholar 

  • Shinde M, Qureshi N, Rane S et al (2017) Instantaneous synthesis of faceted iron oxide nanostructures using microwave solvothermal assisted combustion technique. J Nanosci Nanotechnol 17:5024–5030

    CAS  Google Scholar 

  • Skoog DA, Holler FJ, Crouch SR (2017) Principles of instrumental analysis. Cengage Learning Asia Pte Ltd, Singapore

    Google Scholar 

  • Solero GAG (2017) Synthesis of nanoparticles through flame spray pyrolysis: experimental apparatus and preliminary results. Nanosci Nanotechnol 7:21–25

    CAS  Google Scholar 

  • Sondhi SM, Rani R, Gupta PP et al (2009) Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3, 4-diaryl-2-imino-4- thiazolines. Mol Divers 13:357–366

    CAS  PubMed  Google Scholar 

  • Stötzel C, Kurland H-D, Grabow J et al (2013) Control of the crystal phase composition of Fe x O y nanopowders prepared by CO2 laser vaporization. Cryst Growth Des 13:4868–4876

    Google Scholar 

  • Sunil BR, Sunil BR (2015) Repetitive corrugation and straightening of sheet metals. Lasers Mater Manuf Process 30:1261–1270

    Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano- technology’. In: Proceedings of the international conference on production engineering. Japan Society of Precision Engineering, Tokyo, pp 18–23

    Google Scholar 

  • Titus D, Samuel JJE, Roopan SM (2019) Nanoparticle characterization techniques. In: Green synthesis characterization and applications of nanoparticles, Micro and nano technologies. Elsevier Inc, Amsterdam, pp 303–319

    Google Scholar 

  • Tiwari P, Srivastava M, Mishra R et al (2018) Economic use of waste Musa paradisiaca peels for effective control of mild steel loss in aggressive acid solutions. J Environ Chem Eng 6:4773–4783

    CAS  Google Scholar 

  • Tok AIY, Boey FYC, Zhao XL (2006) Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J Mater Process Technol 178:270–273

    CAS  Google Scholar 

  • Toth LS, Gu C (2014) ScienceDirect tutorial review ultrafine-grain metals by severe plastic deformation. Mater Charact 92:1–14

    CAS  Google Scholar 

  • Tulinski M, Jurczyk M (2012) Nanostructured nickel-free austenitic stainless steel composites with different content of hydroxyapatite. Appl Surf Sci 260:80–83

    CAS  Google Scholar 

  • Tulinski M, Jurczyk M (2017) Nanomaterials synthesis methods. In: Metrology and standardization of nanotechnology, pp 75–98

    Google Scholar 

  • Ullattil SG, Thelappurath AV, Tadka SN et al (2017) A sol-solvothermal processed ‘black TiO2’as photoanode material in dye sensitized solar cells. Sol Energy 155:490–495

    Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visweswara Rao P, Hua Gan S (2015) Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab 16:371–375

    Google Scholar 

  • Vossen JL, Kern W, Kern W (1991) Thin film processes II. Gulf Professional Publishing, Oxford

    Google Scholar 

  • Wagner R, Moon R, Pratt J et al (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22:455703–455713

    PubMed  Google Scholar 

  • Walter P, Welcomme E, Hallégot P et al (2006) Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett 6:2215–2219

    CAS  PubMed  Google Scholar 

  • Wan J, Lacey SD, Dai J et al (2016) Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem Soc Rev 45:6742–6765

    CAS  PubMed  Google Scholar 

  • Wang J, Wu S, Suo X-K, Liao H (2019) The processes for fabricating nanopowders. In: Advanced nanomaterials and coatings by thermal spray, Micro and nano technologies. Elsevier Inc, San Diego

    Google Scholar 

  • Zhang H, Yang J, Wang S et al (2014) Film thickness dependence of microstructure and superconductive property of PLD prepared YBCO layers. Physica C 499:54–56

    CAS  Google Scholar 

  • Zsigmondy R (1914) Influence of the quantity of peptising agent on the properties of hydrosols. Hydrosols of stannic acid. Z Anorg Chem 89:210

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omran, B.A. (2020). Fundamentals of Nanotechnology and Nanobiotechnology. In: Nanobiotechnology: A Multidisciplinary Field of Science. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-46071-6_1

Download citation

Publish with us

Policies and ethics