Skip to main content

Role of Beneficial Microbes in the Molecular Phytotoxicity of Heavy Metals

  • Chapter
  • First Online:
Cellular and Molecular Phytotoxicity of Heavy Metals

Abstract

Growth in industrialisation, agriculture, fertilisers and mining areas has caused the increase in the concentration of heavy metals in the soil. This increase leads to toxicity in plants directly and humans indirectly when these plants are consumed. In order to have control on the increasing concentration of these heavy metals various phytoremedial methods have been used where hyperaccumulating plants help in the removal of these metals from the soil. Efficiency of these methods can be enhanced by using beneficial microbes such as rhizobacteria and endophytic bacteria. These microorganisms live in symbiotic relation with the plants and help in fast and easy uptake of metals either by degrading them into less toxic forms or by stabilising them in the soil. Various mechanisms are used by these microbes which help in the process of heavy metal removal from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Jebara M (2018) Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 58(7):579–589

    Google Scholar 

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224

    Google Scholar 

  • Adegbesan BO, Adenuga GA (2007) Effect of lead exposure on liver lipid peroxidative and antioxidant defense systems of protein-undernourished rats. Biol Trace Elem Res 116:219–225

    Article  CAS  PubMed  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Public Health Service. U.S. Department of Health and Human Services, Toxicological Profile for Lead, Atlanta

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological Profile for Arsenic TP-92/09. Center for Disease Control, Atlanta, Georgia

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2008) Draft Toxicological Profile for Cadmium. Center for Disease Control, Atlanta, Georgia

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science 26(1):1–20

    Article  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51. https://doi.org/10.1016/j.jgeb.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed A (2018) Micro-remediation of chromium contaminated soils. PeerJ, 6, e6076

    Google Scholar 

  • Akhtar MJ, Ullah S, Ahmad I, Rauf A, Nadeem SM, Khan MY et al (2018a) Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere 190:234–242

    Google Scholar 

  • Akhtar N, Hussain A, Riaz A, Aftab M (2018b) Biremediation of heavy metal stress by rhizobium chickpea symbiosis. J Agric Res 56(1):27–34

    Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorpnon of copperod by C. vulgaris and Z. ramigera. Environ Technol 13(6):579–586

    Article  CAS  Google Scholar 

  • Al-Sulaimani HS, Al-Wahaibi YM, Al-Bahry S, Elshafie A, Al-Bemani AS, Joshi SJ, Zargari S (2010, January) Experimental investigation of biosurfactants produced by Bacillus species and their potential for MEOR in Omani oil field. In: SPE EOR conference at oil & gas West Asia. Society of Petroleum Engineers

    Google Scholar 

  • Anum S, Khan SM, Chaudhary HJ, Ahmad Z, Afza R (2019) Phytoremediation of nickel polluted ecosystem through selected ornamental plant species in the presence of bacterium Kocuria rhizophila. Biorem J 23(3):215–226

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Atagana HI (2008) Compost bioremediation of hydrocarbon-contaminated soil inoculated with organic manure. Afr J Biotechnol 7(10)

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of Heavy Metal Phytoremediation by Alnus firma with Endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Google Scholar 

  • Bai HJ, Zhang ZM, Yang GE, Li BZ (2008) Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresour Technol 99(16):7716–7722

    Article  CAS  PubMed  Google Scholar 

  • Balakumar P, Kaur T, Singh M (2008) Potential target sites to modulate vascular endothelial dysfunction: current perspectives and future directions. Toxicology 245(1–2):49–64

    Article  CAS  PubMed  Google Scholar 

  • Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigments in black gram Vigna mungo (L.) Hepper. Bull Environ Contam Toxicol 74:1126–1133

    Google Scholar 

  • Breusegem FV, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838

    Article  CAS  PubMed  Google Scholar 

  • Bundy JG, Paton GI, Campbell CD (2002) Microbial communities in different soil types do not converge after diesel contamination. J Appl Microbiol 92(2):276–288

    Article  CAS  PubMed  Google Scholar 

  • Chaperon S, Sauvé S (2008) Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Ecotoxicol Environ Saf 70(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Article  CAS  Google Scholar 

  • Chen LM, Kao CH (1999) Effect of excess copper on rice leaves: evidence for involvement of lipid peroxidation. Bot Bull Acad Sin 40:283–287

    CAS  Google Scholar 

  • Chen Y, Yang W, Chao, Y, Wang, S, Tang YT, Qiu, RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant and Soil 413(1–2):203–216.

    Google Scholar 

  • Chia SE, Yap E, Chia KS (2004) Delta-aminolevulinic acid dehydratase (ALAD) polymorphism and susceptibility of workers exposed to inorganic lead and its effects on neurobehavioral functions. Neurotoxicology 25:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Dadrasnia A, Salmah I, Emenike CU, Shahsavari N (2015) Remediation of oil contaminated media using organic material supplementation. Pet Sci Technol 33(9):1030–1037

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  PubMed  Google Scholar 

  • De-Mattia G, Bravi MC, Laurenti O, De-Luca O, Palmeri A, Sabatucci A, Mendico G, Ghiselli A (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46(2):120–125

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamyl cysteine synthetase expression. Nat Biotechnol 20(11):1140

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54(3):163–172

    Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2012) Chromium-induced alterations in photosynthesis and associated attributes in Indian mustard. J Environ Biol 33:239–244

    CAS  PubMed  Google Scholar 

  • Dogra V, Kaur G, Kumar R, Prakash C (2018) The importance of plant-microbe interaction for the bioremediation of dyes and heavy metals. In: Phytobiont and ecosystem restitution. Springer, Singapore, pp 433–457

    Chapter  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103(1):60–76

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya ML, Das H, Meena VD (2014) Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ Monit Assess 186(5):2957–2963

    Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. International Journal of Recycling of Organic Waste in Agriculture 5(3):185–194

    Article  Google Scholar 

  • Dotaniya ML, Rajendiran S, Dotaniya CK, Solanki P, Meena VD, Saha JK, Patra AK (2018) Microbial assisted phytoremediation for heavy metal contaminated soils. In: Phytobiont and ecosystem restitution. Springer, Singapore, pp 295–317

    Chapter  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  PubMed  CAS  Google Scholar 

  • Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168

    Article  CAS  Google Scholar 

  • EPA U (1998) A Citizen’s Guide to Phytoremediation. EPA 542-F-98-011. Technology Innology office, Office of Solid Waste and Emergency Response, Washington, DC: http://clu-in.org/products/citguide/photo2.htm

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99(13):5296–5308

    Article  CAS  PubMed  Google Scholar 

  • Fatima H, Ahmed A (2018) Micro-remediation of chromium contaminated soils. PeerJ 6:e6076 https://doi.org/10.7717/peerj.6076

  • Flora SJS, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead chemistry, analytical aspects, environmental impacts and health effects. Elsevier Publication, Netherlands, pp 158–228

    Google Scholar 

  • Flora SJS, Flora G, Saxena G, Mishra M (2007) Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol Biol 5:24–46

    Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  PubMed  Google Scholar 

  • Franciscato C, Silva LM, Duarte FA, Oliveira CS, Ineu RP, Flores EMM, Dressler VL, Piexoto NC, Pereira ME (2011) Delayed biochemical changes induced by mercury intoxication are prevented by zinc exposure. Ecotoxicol Environ Saf 74:480–486

    Article  CAS  PubMed  Google Scholar 

  • Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307

    Article  CAS  PubMed  Google Scholar 

  • Galan C, Garcia BL, Troyano A, Vilaboa NE, Fernandez C, Blas DE et al (2001) The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur J Cell Biol 80:312–320

    Article  CAS  PubMed  Google Scholar 

  • Galun M, Galun E, Siegel BZ, Keller P, Lehr H, Siegel SM (1987) Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water Air Soil Pollut 33(3–4):359–371

    Article  CAS  Google Scholar 

  • Gaonkar T, Bhosle S (2013) Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93(9):1835–1843

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi Z, Ghaderian SM, Rodríguez-Garrido B, Prieto-Fernández Á, Kidd PS (2018) Plant species-specificity and effects of bioinoculants and fertilization on plant performance for nickel phytomining. Plant Soil 425(1–2):265–285

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Goering PL, Fisher BR, Noren BT, Papaconstantinou A, Rojko JL, Marler RJ (2000) Mercury induces regional and cell-specific stress protein expression in rat kidney. Toxicol Sci 53:447–457

    Article  CAS  PubMed  Google Scholar 

  • Green R, Erickson L, Govindaraju R, Kalita P (1997) Modeling the effects of vegetation on heavy metals containment: 12th conference on hazardous waste research, Kansas City, Missouri, pp 476–487

    Google Scholar 

  • Guertin J (2005) Toxicity and health effects of chromium (all oxidation states). In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium (VI) Handbook. CRC Press, Boca Raton, FL, pp 216–234

    Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375(1–2):205–214

    Article  CAS  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1(1):14

    Google Scholar 

  • Hare V, Chowdhary P, Baghel VS (2017) Influence of bacterial strains on Oryza sativa grown under arsenic tainted soil: accumulation and detoxification response. Plant Physiol Biochem 119:93–102

    Article  CAS  PubMed  Google Scholar 

  • Harris DL, Lottermoser BG (2006) Evaluation of phosphate fertilizers for ameliorating acid mine waste. Appl Geochem 21(7):1216–1225

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257

    Article  CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23(2):272–281

    Google Scholar 

  • Hideaki S, Yasutake A, Hirashima T, Takamure Y, Kitano T, Waalkes MP et al (2008) Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats. Toxicol In Vitro 22:338–343

    Article  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HS, Chang WC, Chen CJ (2002) Involvement of reactive oxygen species in arsenite-induced downregulation of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. Free Radic Biol Med 33:864–873

    Article  CAS  PubMed  Google Scholar 

  • IARC, International Agency for Research on Cancer (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. In: International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans, vol 58. IARC Scientific Publications, Lyon, pp 119–237

    Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K et al (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defence system of antioxidants. Int J Mol Sci 16:29592–29630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang MQ, Jin XY, Lu XQ, Chen ZL (2010) Adsorption of Pb (II), cd (II), Ni (II) and cu (II) onto natural kaolinite clay. Desalination 252(1–3):33–39

    Article  CAS  Google Scholar 

  • Kabala K‚ Janicka-Russak M, Burzski M, Obus G (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. J Plant Physiol 165: 278–288

    Article  CAS  PubMed  Google Scholar 

  • Kamran MA, Eqani SAMAS, Bibi S, Xu RK, Monis MFH, Katsoyiannis A et al (2016) Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicol Environ Saf 126:256–263

    Article  CAS  PubMed  Google Scholar 

  • Kandziora-Ciupa M, Ciepał R, Nadgorska-Socha A, Barczyk G (2013) A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas. Environ Sci Pollut Res Int 20:4920–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanmani P, Aravind J, Preston D (2012) Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol 9(1):183–193

    Article  CAS  Google Scholar 

  • Kendal DH, Victor DK, Nathaniel LW, George JW (2000) Expression of Arabidopsis in Tobacco. Altered Metal Accumulation and Increased Manganese Tolerance. Plant Physiol 124(1):125–134

    Google Scholar 

  • Khan N, Bano A (2018) Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. Int J Phytoremediation 20(5):405–414

    Article  CAS  PubMed  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):5855

    Google Scholar 

  • Khatun S, Ali MB, Hahn E, Paek K (2008) Copper toxicity in Withaniasomnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64(3):279–285

    Article  CAS  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109(1):47–50

    Google Scholar 

  • Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2000) Remediation of metal-and radionuclides-contaminated soils by in situ stabilization techniques. In: Environmental restoration of metals-contaminated soils. Lewis Publishers, New York, pp 21–60

    Google Scholar 

  • Lambert M, Pierzinski G, Erickson L, Schnoor JERRY (1997) Remediation of lead-, zinc-and cadmium contaminated soils. Issues in Environmental Science and Technology (United Kingdom)

    Google Scholar 

  • Lambert M, Leven BA, Green RM (2000). New methods of cleaning up heavy metal in soils and water. Environmental science and technology briefs for citizens. Kansas State University, Manhattan

    Google Scholar 

  • Lanphear BP, Matte TD, Rogers J et al (1998) The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res 79:51–68

    Article  CAS  PubMed  Google Scholar 

  • Lazarević S, Janković-Častvan I, Jovanović D, Milonjić S, Janaćković D, Petrović R (2007) Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl Clay Sci 37(1–2):47–57

    Article  CAS  Google Scholar 

  • Liang L, Liu W, Sun Y, Huo X, Li S, Zhou Q (2016) Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ Rev 25(3):269–281

    Article  CAS  Google Scholar 

  • Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92(3):315–326

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Kao CH (2007) Proline accumulation induced by excess nickel in detached rice leaves. Biol Plant 51(2):351–354

    Article  CAS  Google Scholar 

  • Liu D, Kottke I (2004) Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosci 29:329–335

    Google Scholar 

  • Liu W, Luo Y, Teng Y, Li Z, Christie P (2009) Prepared bed bioremediation of oily sludge in an oilfield in northern China. J Hazard Mater 161(1):479–484

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in plant science, 7, 918

    Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93(7):1386–1392

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant 51(3):589–592

    Article  Google Scholar 

  • McGoldrick TA, Lock EA, Rodilla V, Hawksworth GM (2003) Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells. Arch Toxicol 77:365–370

    Article  CAS  PubMed  Google Scholar 

  • McMurray CT, Tainer JA (2003) Cancer, cadmium and genome integrity. Nat Genet 34:239–241

    Article  CAS  PubMed  Google Scholar 

  • Meisrimler CN, Planchon S, Renaut J, Sergeant K, Lüthje S (2011) Alteration of plas membrane-bound redox systems of iron deficient pea roots by chitosan. J Proteome 74:1437–1449

    Google Scholar 

  • Mishra D, Mehta A, Flora SJS (2008) Reversal of hepatic apoptosis with combined administration of DMSA and its analogues in Guinea pigs: role of glutathione and linked enzymes. Chem Res Toxicol 21:400–407

    Article  CAS  PubMed  Google Scholar 

  • Moreira EG, Vassilieff I, Vassilieff VS (2001) Developmental lead exposure: behavioral alterations in the short and long term. Neurotoxicol Teratol 23:489–495

    Article  CAS  PubMed  Google Scholar 

  • Moreira H, Marques AP, Franco AR, Rangel AO, Castro PM (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21(16):9742–9753

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Abraham J (2011) Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. Afr J Biotechnol 10(56):11948–11955

    Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Article  Google Scholar 

  • National Research Council (2001) Arsenic in drinking water. Update 2001. The National Academies Press, Washington, DC

    Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2018) Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution. In: Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation, pp 1–10

    Google Scholar 

  • Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:334. https://doi.org/10.4172/2155-6199.1000334

    Article  CAS  Google Scholar 

  • Pan C, Chen J, Wu K, Zhou Z Cheng T (2018a) Heavy metal contaminated soil imitation biological treatment overview. In IOP conference series: materials science and engineering (Vol. 301, No. 1, p. 012113). IOP Publishing

    Google Scholar 

  • Patlolla A, Barnes C, Yedjou C, Velma V, Tchounwou PB (2009) Oxidative stress, DNA damage and antioxidant enzyme activity induced by hexavalent chromium in Sprague Dawley rats. Environ Toxicol 24(1):66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polti MA, Atjián MC, Amoroso MJ, Abate CM (2011) Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int Biodeterior Biodegradation 65(8):1175–1181

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158(1):18–23

    Article  CAS  PubMed  Google Scholar 

  • Puccetti E, Ruthardt M (2004) Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia 18:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Radhika V, Subramanian S, Natarajan KA (2006) Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies. Water Res 40(19):3628–3636

    Google Scholar 

  • Rajendiran S, Coumar MV, Kundu S, Dotaniya AM, Rao AS (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci:911–920

    Google Scholar 

  • Rajendiran S, Coumar V, Dotaniya ML, Kumar A (2016) Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Appl Ecol Environ Res 14(2):265–281

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology advances, 30(6):1562–1574

    Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11

    Article  Google Scholar 

  • Roychowdhury R, Roy M, Zaman S, Mitra A (2019) Bioremediation Potential of microbes towards heavy metal contamination

    Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Soil and its role in the ecosystem. In: Soil pollution-an emerging threat to agriculture. Springer, Singapore, pp 11–36

    Chapter  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66(1):92–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar BA (2005) Mercury in the environment: effects on health and reproduction. Rev Environ Health 20:39–56

    PubMed  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  PubMed  Google Scholar 

  • Schnoor J (1997) Phytoremediation: Groundwater Remediation Technologies Analysis Center Technology Evaluation Report TE-98-01, 37

    Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RK, Agarwal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26(2):301–313

    CAS  PubMed  Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66(7):3083–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Rana S, Thakkar A, Baldi A, Murthy RSR, Sharma RK (2016) Physical, chemical and phytoremediation technique for removal of heavy metals. Journal of Heavy Metal Toxicity and Diseases 1(2):1–15

    Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  CAS  PubMed  Google Scholar 

  • Son MH, Kang KW, Lee CH, Kim SG (2001) Potentiation of arsenic-induced cytotoxicity by sulfur amino acid deprivation (SAAD) through activation of ERK1/2, p38 kinase and JNK1: the distinct role of JNK1 in SAAD-potentiated mercury toxicity. Toxicol Lett 121:45–55

    Article  CAS  PubMed  Google Scholar 

  • Soni SK, Singh R, Singh M, Awasthi A, Wasnik K, Kalra A (2014) Pretreatment of Cr (VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum. Arch Environ Contam Toxicol 66(4):616–627

    Article  CAS  PubMed  Google Scholar 

  • Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012) Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol Trace Elem Res 149:86–96

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Xiong Z, Chu L, Li W, Soares MA, White JF Jr, Li H (2019) Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic microbacterium sp. (strain BXGe71). J Hazard Mater 370:225–231

    Article  CAS  PubMed  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 33–52

    Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • Thakur LS, Semil P (2013) Removal of arsenic in aqueous solution by low cost adsorbent: a short review. Int J ChemTech Res 5(3):1299–1308

    CAS  Google Scholar 

  • Thompson IP, Van Der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7(7):909–915

    Article  CAS  PubMed  Google Scholar 

  • Tochounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. National Institute of Health 101:133–164

    Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115(3):203–211

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Uche E C (2013) Leachate toxicity assessment and bioremediation of leachate contaminated soil (Doctoral dissertation, University of Malaya)

    Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24(2):129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172

    Google Scholar 

  • Waalkes MP, Liu J, Ward JM, Diwan BA (2004) Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology 198:31–38

    Article  CAS  PubMed  Google Scholar 

  • Wang XF, Xing ML, Shen Y, Zhu X, Xu LH (2006) Oral administration of Cr (VI) induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology 228:16–23

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48(11):3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    Google Scholar 

  • Watjen W, Beyersmann D (2004) Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. Biometals 17:65–78

    Article  PubMed  Google Scholar 

  • Wu SL, Chen BD, Sun YQ, Ren BH, Zhang X, Wang YS (2014) Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr (VI)-contaminated soils. Environ Toxicol Chem 33(9):2105–2113

    Google Scholar 

  • Yi M, Yi H, Li H, Wu L (2010) Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environ Toxicol 25:124–129

    Google Scholar 

  • Zahir A, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    Article  CAS  PubMed  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    Article  CAS  Google Scholar 

  • Zhao Y, Wang L, Shen HB, Wang ZX, Wei QY, Chen F (2007) Association between delta-aminolevulinic acid dehydratase (ALAD) polymorphism and blood lead levels: a meta-regression analysis. J Toxicol Environ Health 70:1986–1994

    Article  CAS  Google Scholar 

  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50(14):7290–7304

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kour, J. et al. (2020). Role of Beneficial Microbes in the Molecular Phytotoxicity of Heavy Metals. In: Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A. (eds) Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45975-8_13

Download citation

Publish with us

Policies and ethics