Skip to main content

Role of Furans as EDCs in Metabolic Disorders

  • Chapter
  • First Online:
  • 540 Accesses

Abstract

Furan is common compound that can be found in many products in pure form and as its derivatives. It is abundant in environment as in processed food, industrial process, pharmaceutical products and smoke. When furans are heated, they enhanced oxidative processes in lipids and proteins, and therefore play a toxic role in many cases. In many body systems furans are examined to cause toxic effects. It is commonly formed from four precursors amino acids, carbohydrates, ascorbic acids and PUFA. To detect the presence of furan and its amount in sample many methods have been involved. Most common of them are headspace analysis, headspace sampling by solid phase microextraction, and GCMS. As furan toxic effect is confirmed in many animals and it can be harmful to human health as well. The quantity of furan taken by humans are measured through quantification of furan in many food products. Many health agencies such as EFSA, FDA and IARC determine amount of furan in different foods. Further experiments were conducted to determine its harmful effects. Mouse and rats were mostly used in such tests. In rat metabolism of furan is tested and recorded that 80% of furan was eliminated through different pathways. Furan affects on digestive track is also determined. It mostly affects liver due to its prolonged presence in liver, but it was also observed to be harmful for kidneys. Some products are also tested to mitigate furan toxicity, apigenin and lycopene were found to be effective against furan toxicity. Moreover, furan itself was known to be effective against oxidative stress, which may cause many neurodegenerative disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.

    Article  CAS  Google Scholar 

  2. Bolger PM, Tao SS-H, Dinovi M. Hazards of dietary furan. Hoboken: Wiley; 2009. p. 117–33.

    Google Scholar 

  3. Vranová J, Ciesarová Z. Furan in food—a review. Czech J Food Sci. 2009;27(1):1–10.

    Article  Google Scholar 

  4. Wright DL. Furans as versatile synthons for target-oriented and diversity oriented synthesis. Prog Heterocycl Chem. 2005;17:1–32.

    Article  CAS  Google Scholar 

  5. Cancer IAfRo. IARC monographs on the evaluation of carcinogenic risks to humans. Dry cleaning, some chlorinated solvents and other industrial chemicals. IARC. 1995;63:443–65.

    Google Scholar 

  6. Crews C, Castle L. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci Technol. 2007;18(7):365–72.

    Article  CAS  Google Scholar 

  7. Bakhiya N, Appel KE. Toxicity and carcinogenicity of furan in human diet. Arch Toxicol. 2010;84(7):563–78.

    Article  CAS  Google Scholar 

  8. Maga JA, Katz I. Furans in foods. Crit Rev Food Sci Nutr. 1979;11(4):355–400.

    Article  CAS  Google Scholar 

  9. Santé-Lhoutellier V, Astruc T, Marinova P, Greve E, Gatellier P. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. J Agric Food Chem. 2008;56(4):1488–94.

    Article  Google Scholar 

  10. Chain EPoCitF, Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, et al. Risks for public health related to the presence of furan and methylfurans in food. EFSA J. 2017;15(10):e05005.

    Google Scholar 

  11. Gill S, Bondy G, Lefebvre DE, Becalski A, Kavanagh M, Hou Y, et al. Subchronic oral toxicity study of furan in Fischer-344 rats. Toxicol Pathol. 2010;38(4):619–30.

    Article  CAS  Google Scholar 

  12. Gill S, Kavanagh M, Barker M, Weld M, Vavasour E, Hou Y, et al. Subchronic oral toxicity study of furan in B6C3F1 Mice. Toxicol Pathol. 2011;39(5):787–94.

    Article  CAS  Google Scholar 

  13. Moser GJ, Foley J, Burnett M, Goldsworthy TL, Maronpot R. Furan-induced dose–response relationships for liver cytotoxicity, cell proliferation, and tumorigenicity (furan-induced liver tumorigenicity). Exp Toxicol Pathol. 2009;61(2):101–11.

    Article  CAS  Google Scholar 

  14. Capurro PU. Effects of exposure to solvents caused by air pollution with special reference to CCl 4 and its distribution in air. Clin Toxicol. 1973;6(1):109–24.

    Article  CAS  Google Scholar 

  15. Peterson LA. Reactive metabolites in the biotransformation of molecules containing a furan ring. Chem Res Toxicol. 2013;26(1):6–25.

    Article  CAS  Google Scholar 

  16. Maga JA. Furans in foods. CRC Crit Rev Food Sci Nutr. 1979;11(4):355–400.

    Article  CAS  Google Scholar 

  17. Noce R, Paredes BE, Pichler WJ, Krahenbuhl S. Acute generalized exanthematic pustulosis (AGEP) in a patient treated with furosemide. Am J Med Sci. 2000;320(5):331–3.

    Article  CAS  Google Scholar 

  18. Williams DP, Antoine DJ, Butler PJ, Jones R, Randle L, Payne A, et al. The metabolism and toxicity of furosemide in the Wistar rat and CD-1 mouse: a chemical and biochemical definition of the toxicophore. J Pharmacol Exp Ther. 2007;322(3):1208–20.

    Article  CAS  Google Scholar 

  19. Erve JC, Vashishtha SC, DeMaio W, Talaat RE. Metabolism of prazosin in rat, dog, and human liver microsomes and cryopreserved rat and human hepatocytes and characterization of metabolites by liquid chromatography/tandem mass spectrometry. Drug Metab Dispos. 2007;35(6):908–16.

    Article  CAS  Google Scholar 

  20. Larrey D, Vial T, Pauwels A, Castot A, Biour M, David M, et al. Hepatitis after germander (Teucrium chamaedrys) administration: another instance of herbal medicine hepatotoxicity. Ann Intern Med. 1992;117(2):129–32.

    Article  CAS  Google Scholar 

  21. Loeper J, Descatoire V, Letteron P, Moulis C, Degott C, Dansette P, et al. Hepatotoxicity of germander in mice. Gastroenterology. 1994;106(2):464–72.

    Article  CAS  Google Scholar 

  22. Wangensteen H, Molden E, Christensen H, Malterud KE. Identification of epoxybergamottin as a CYP3A4 inhibitor in grapefruit peel. Eur J Clin Pharmacol. 2003;58(10):663–8.

    Article  CAS  Google Scholar 

  23. Edwards DJ, Bellevue FH 3rd, Woster PM. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug Metab Dispos. 1996;24(12):1287–90.

    CAS  Google Scholar 

  24. Lin HL, Kent UM, Hollenberg PF. The grapefruit juice effect is not limited to cytochrome P450 (P450) 3A4: evidence for bergamottin-dependent inactivation, heme destruction, and covalent binding to protein in P450s 2B6 and 3A5. J Pharmacol Exp Ther. 2005;313(1):154–64.

    Article  CAS  Google Scholar 

  25. Kent UM, Lin HL, Noon KR, Harris DL, Hollenberg PF. Metabolism of bergamottin by cytochromes P450 2B6 and 3A5. J Pharmacol Exp Ther. 2006;318(3):992–1005.

    Article  CAS  Google Scholar 

  26. Lakhanpal S, Donehower RC, Rowinsky EK. Phase II study of 4-ipomeanol, a naturally occurring alkylating furan, in patients with advanced hepatocellular carcinoma. Investig New Drugs. 2001;19(1):69–76.

    Article  CAS  Google Scholar 

  27. Kasturi VK, Dearing MP, Piscitelli SC, Russell EK, Sladek GG, O’Neil K, et al. Phase I study of a five-day dose schedule of 4-ipomeanol in patients with non-small cell lung cancer. Clin Cancer Res. 1998;4(9):2095–102.

    CAS  Google Scholar 

  28. Buszewski B, Ulanowska A, Ligor T, Denderz N, Amann A. Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr. 2009;23(5):551–6.

    Article  CAS  Google Scholar 

  29. Gordon SM, Wallace LA, Brinkman MC, Callahan PJ, Kenny DV. Volatile organic compounds as breath biomarkers for active and passive smoking. Environ Health Perspect. 2002;110(7):689–98.

    Article  CAS  Google Scholar 

  30. Fan X. Formation of furan from carbohydrates and ascorbic acid following exposure to ionizing radiation and thermal processing. J Agric Food Chem. 2005;53(20):7826–31.

    Article  CAS  Google Scholar 

  31. Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, et al. Acrylamide formation mechanism in heated foods. J Agric Food Chem. 2003;51(16):4782–7.

    Article  CAS  Google Scholar 

  32. Fan X, Geveke DJ. Furan formation in sugar solution and apple cider upon ultraviolet treatment. J Agric Food Chem. 2007;55(19):7816–21.

    Article  CAS  Google Scholar 

  33. Perez Locas C, Yaylayan VA. Origin and mechanistic pathways of formation of the parent furan--a food toxicant. J Agric Food Chem. 2004;52(22):6830–6.

    Article  Google Scholar 

  34. Mark J, Pollien P, Lindinger C, Blank I, Mark T. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. J Agric Food Chem. 2006;54(7):2786–93.

    Article  Google Scholar 

  35. Sayre LM, Arora PK, Iyer RS, Salomon RG. Pyrrole formation from 4-hydroxynonenal and primary amines. Chem Res Toxicol. 1993;6(1):19–22.

    Article  CAS  Google Scholar 

  36. Xu G, Sayre LM. Structural characterization of a 4-hydroxy-2-alkenal-derived fluorophore that contributes to lipoperoxidation-dependent protein cross-linking in aging and degenerative disease. Chem Res Toxicol. 1998;11(4):247–51.

    Article  CAS  Google Scholar 

  37. Owczarek-Fendor A, De Meulenaer B, Scholl G, Adams A, Van Lancker F, Eppe G, et al. Furan formation from lipids in starch-based model systems, as influenced by interactions with antioxidants and proteins. J Agric Food Chem. 2011;59(6):2368–76.

    Article  CAS  Google Scholar 

  38. Spiteller G. The important role of lipid peroxidation processes in aging and age dependent diseases. Mol Biotechnol. 2007;37(1):5–12.

    Article  CAS  Google Scholar 

  39. Okada Y, Kaneko M, Okajima H. Hydroxyl radical scavenging activity of naturally occurring furan fatty acids. Biol Pharm Bull. 1996;19(12):1607–10.

    Article  CAS  Google Scholar 

  40. Limacher A, Kerler J, Davidek T, Schmalzried F, Blank I. Formation of furan and methylfuran by Maillard-type reactions in model systems and food. J Agric Food Chem. 2008;56(10):3639–47.

    Article  CAS  Google Scholar 

  41. Weenen H. Reactive intermediates and carbohydrate fragmentation in Maillard chemistry. Food Chem. 1998;62(4):393–401.

    Article  CAS  Google Scholar 

  42. Goldmann T, Perisset A, Scanlan F, Stadler RH. Rapid determination of furan in heated foodstuffs by isotope dilution solid phase micro-extraction-gas chromatography--mass spectrometry (SPME-GC-MS). Analyst. 2005 Jun;130(6):878–83.

    Article  CAS  Google Scholar 

  43. Mariotti M, Granby K, Fromberg A, Risum J, Agosin E, Pedreschi F. Furan occurrence in starchy food model systems processed at high temperatures: effect of ascorbic acid and heating conditions. J Agric Food Chem. 2012;60(40):10162–9.

    Article  CAS  Google Scholar 

  44. EFSA J. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to zearalenone as undesirable substance in animal feed. EFSA J. 2004;89:1–35.

    Google Scholar 

  45. Burka LT, Washburn KD, Irwin RD. Disposition of [14C] furan in the male F344 rat. J Toxicol Environ Health. 1991;34(2):245–57.

    Article  CAS  Google Scholar 

  46. Ravindranath V, Burka LT, Boyd MR. Reactive metabolites from the bioactivation of toxic methylfurans. Science. 1984;224(4651):884–6.

    Article  CAS  Google Scholar 

  47. Chen T, Williams TD, Mally A, Hamberger C, Mirbahai L, Hickling K, et al. Gene expression and epigenetic changes by furan in rat liver. Toxicology. 2012;292(2–3):63–70.

    Article  CAS  Google Scholar 

  48. Ravindranath V, Boyd MR. Metabolic activation of 2-methylfuran by rat microsomal systems. Toxicol Appl Pharmacol. 1985;78(3):370–6.

    Article  CAS  Google Scholar 

  49. Palmen N, Evelo C. Glutathione depletion in human erythrocytes and rat liver: a study on the interplay between bioactivation and inactivation functions of liver and blood. Toxicol In Vitro. 1996;10(3):273–81.

    Article  CAS  Google Scholar 

  50. Alizadeh M, Barati M, Saleh-Ghadimi S, Roshanravan N, Zeinalian R, Jabbari M. Industrial furan and its biological effects on the body systems. J Food Biochem. 2018;42(5):e12597.

    Article  Google Scholar 

  51. Gates LA, Lu D, Peterson LA. Trapping of cis-2-butene-1, 4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes. Drug Metab Dispos. 2012;40(3):596–601.

    Article  CAS  Google Scholar 

  52. Hamberger C, Kellert M, Schauer UM, Dekant W, Mally A. Hepatobiliary toxicity of furan: identification of furan metabolites in bile of male f344/n rats. Drug Metab Dispos. 2010;38(10):1698–706.

    Article  CAS  Google Scholar 

  53. Terrell AN, Huynh M, Grill AE, Kovi RC, O'Sullivan MG, Guttenplan JB, et al. Mutagenicity of furan in female Big Blue B6C3F1 mice. Mut Res/Gen Toxicol Environ Mutagen. 2014;770:46–54.

    Article  CAS  Google Scholar 

  54. Elmore LW, Sirica AE. Phenotypic characterization of metaplastic intestinal glands and ductular hepatocytes in cholangiofibrotic lesions rapidly induced in the caudate liver lobe of rats treated with furan. Cancer Res. 1991;51(20):5752–9.

    CAS  Google Scholar 

  55. Ramaiah SK. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol. 2007;45(9):1551–7.

    Article  CAS  Google Scholar 

  56. Smith G. Applied clinical pathology in preclinical toxicology testing. In: Handbook of toxicologic pathology. Amsterdam: Academic Press; 2002. p. 123–56.

    Chapter  Google Scholar 

  57. Mally A, Graff C, Schmal O, Moro S, Hamberger C, Schauer UM, et al. Functional and proliferative effects of repeated low-dose oral administration of furan in rat liver. Mol Nutr Food Res. 2010;54(11):1556–67.

    Article  CAS  Google Scholar 

  58. Selmanoğlu G, Karacaoğlu E, Kılıç A, Koçkaya EA, Akay MT. Toxicity of food contaminant furan on liver and kidney of growing male rats. Environ Toxicol. 2012;27(10):613–22.

    Article  Google Scholar 

  59. Du G, Song Z, Zhang Q. Gamma-glutamyltransferase is associated with cardiovascular and all-cause mortality: a meta-analysis of prospective cohort studies. Prev Med. 2013;57(1):31–7.

    Article  Google Scholar 

  60. Zhang H, Forman HJ, Choi J. γ-Glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 2005;401:468–83.

    Article  CAS  Google Scholar 

  61. Whitfield J. Gamma glutamyl transferase. Crit Rev Clin Lab Sci. 2001;38(4):263–355.

    Article  CAS  Google Scholar 

  62. Loomba R, Doycheva I, Bettencourt R, Cohen B, Wassel CL, Brenner D, et al. Serum γ-glutamyltranspeptidase predicts all-cause, cardiovascular and liver mortality in older adults. J Clin Exp Hepatol. 2013;3(1):4–11.

    Article  Google Scholar 

  63. Kozakova M, Palombo C, Paterni Eng M, Dekker J, Flyvbjerg A, Mitrakou A, et al. Fatty liver index, gamma-glutamyltransferase, and early carotid plaques. Hepatology. 2012;55(5):1406–15.

    Article  CAS  Google Scholar 

  64. Ramm S, Limbeck E, Mally A. Functional and cellular consequences of covalent target protein modification by furan in rat liver. Toxicology. 2016;361:49–61.

    Article  Google Scholar 

  65. Subhan F, Khan I, Arif R, Khan A, Khan A. Serum lipid profile as an indicator of the severity of liver damage in cirrhotic patients. Rawal Med J. 2012;37(4):387–9.

    Google Scholar 

  66. Smith RC, Southwell-Keely J, Chesher D. Should serum pancreatic lipase replace serum amylase as a biomarker of acute pancreatitis? ANZ J Surg. 2005;75(6):399–404.

    Article  Google Scholar 

  67. Dere E, Ferda O, Tosunoglu H. Hepatotoxicity of Dinitro-o-cresol in rats (Rattus norvegicus). Acta Vet Brno. 2007;57:5.

    Google Scholar 

  68. Maronpot RR, Giles HD, Dykes DJ, Irwin RD. Furan-induced hepatic cholangiocarcinomas in Fischer 344 rats. Toxicol Pathol. 1991;19(4–2):561–70.

    Article  CAS  Google Scholar 

  69. Program NT. Toxicology and carcinogenesis studies of furan (CAS No. 110-00-9) in F344 rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser. 1993;402:1.

    Google Scholar 

  70. Jun H-j, Lee K-G, Lee Y-K, Woo G-J, Park YS, Lee S-J. Correlation of urinary furan with plasma γ-glutamyltranspeptidase levels in healthy men and women. Food Chem Toxicol. 2008;46(5):1753–9.

    Article  CAS  Google Scholar 

  71. de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol. 2016;98:2–10.

    Article  Google Scholar 

  72. Edwards SG, Kennedy MC, O’Hagan S, O’Mahony C, Scholz G, Steinberg P, et al. A framework to determine the effectiveness of dietary exposure mitigation to chemical contaminants. Food Chem Toxicol. 2014;74:360–71.

    Article  Google Scholar 

  73. Mugford CA, Carfagna MA, Kedderis GL. Furan-mediated uncoupling of hepatic oxidative phosphorylation in Fischer-344 rats: an early event in cell death. Toxicol Appl Pharmacol. 1997;144(1):1–11.

    Article  CAS  Google Scholar 

  74. Leopardi P, Cordelli E, Villani P, Cremona TP, Conti L, De Luca G, et al. Assessment of in vivo genotoxicity of the rodent carcinogen furan: evaluation of DNA damage and induction of micronuclei in mouse splenocytes. Mutagenesis. 2009;25(1):57–62.

    Article  Google Scholar 

  75. Jestoi M, Järvinen T, Järvenpää E, Tapanainen H, Virtanen S, Peltonen K. Furan in the baby-food samples purchased from the Finnish markets—determination with SPME–GC–MS. Food Chem. 2009;117(3):522–8.

    Article  CAS  Google Scholar 

  76. Sujatha P. Monitoring cytotoxic potentials of furfuryl alcohol and 2-furyl methyl ketone in mice. Food Chem Toxicol. 2008;46(1):286–92.

    Article  CAS  Google Scholar 

  77. Altaki M, Santos F, Galceran M. Occurrence of furan in coffee from Spanish market: contribution of brewing and roasting. Food Chem. 2011;126(4):1527–32.

    Article  CAS  Google Scholar 

  78. Wang E, Chen F, Hu X, Yuan Y. Protective effects of apigenin against furan-induced toxicity in mice. Food Funct. 2014;5(8):1804–12.

    Article  CAS  Google Scholar 

  79. Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabet Complicat. 2016;30(4):723–7.

    Article  Google Scholar 

  80. Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and cause-specific mortality in a prospective cohort of one million US adults. Diabetes Care. 2012;35(9):1835–44.

    Article  Google Scholar 

  81. Lü Q, Tong N, Liu Y, Li N, Tang X, Zhao J, et al. Community-based population data indicates the significant alterations of insulin resistance, chronic inflammation and urine ACR in IFG combined IGT group among prediabetic population. Diabetes Res Clin Pract. 2009;84(3):319–24.

    Article  Google Scholar 

  82. Perticone F, Maio R, Sciacqua A, Andreozzi F, Iemma G, Perticone M, et al. Endothelial dysfunction and C-reactive protein are risk factors for diabetes in essential hypertension. Diabetes. 2008;57(1):167–71.

    Article  CAS  Google Scholar 

  83. Shanmugam KR, Mallikarjuna K, Nishanth K, Kuo CH, Reddy KS. Protective effect of dietary ginger on antioxidant enzymes and oxidative damage in experimental diabetic rat tissues. Food Chem. 2011;124(4):1436–42.

    Article  CAS  Google Scholar 

  84. Suresh S, Prithiviraj E, Lakshmi NV, Ganesh MK, Ganesh L, Prakash S. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. J Ethnopharmacol. 2013;145(1):32–41.

    Article  Google Scholar 

  85. Hickling K, Hitchcock J, Oreffo V, Mally A, Hammond T, Evans J, et al. Evidence of oxidative stress and associated DNA damage, increased proliferative drive, and altered gene expression in rat liver produced by the cholangiocarcinogenic agent furan. Toxicol Pathol. 2010;38(2):230–43.

    Article  CAS  Google Scholar 

  86. Morehouse KM, Nyman PJ, McNeal TP, DiNovi MJ, Perfetti GA. Survey of furan in heat processed foods by headspace gas chromatography/mass spectrometry and estimated adult exposure. Food Addit Contam. 2008;25(3):259–64.

    Article  CAS  Google Scholar 

  87. Uçar S, Pandir D. Furan induced ovarian damage in non-diabetic and diabetic rats and cellular protective role of lycopene. Arch Gynecol Obstet. 2017;296(5):1027–37.

    Article  Google Scholar 

  88. Saracoğlu G, Baş H, Pandır D. Furan-induced cardiotoxicity in diabetic rats and protective role of lycopene. J Food Biochem. 2019;43(3):e12738.

    Article  Google Scholar 

  89. Aldahmash BA, El-Nagar DM, Ibrahim KE. Attenuation of hepatotoxicity and oxidative stress in diabetes STZ-induced type 1 by biotin in Swiss albino mice. Saudi J Biol Sci. 2016;23(2):311–7.

    Article  CAS  Google Scholar 

  90. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634–58.

    Article  CAS  Google Scholar 

  91. Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. Biomed Res Int. 2002;2(3):120–3.

    Google Scholar 

  92. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4(1):5.

    Article  Google Scholar 

  93. Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1(1):5.

    Article  Google Scholar 

  94. Diplock A, Charuleux J-L, Crozier-Willi G, Kok F, Rice-Evans C, Roberfroid M, et al. Functional food science and defence against reactive oxidative species. Br J Nutr. 1998;80(S1):S77–S112.

    Article  CAS  Google Scholar 

  95. Cutler RG. Oxidative stress profiling: part I. Its potential importance in the optimization of human health. Ann N Y Acad Sci. 2005;1055(1):93–135.

    Article  CAS  Google Scholar 

  96. Sureda F, Junyent F, Verdaguer E, Auladell C, Pelegri C, Vilaplana J, et al. Antiapoptotic drugs: a therapautic strategy for the prevention of neurodegenerative diseases. Curr Pharm Des. 2011;17(3):230–45.

    Article  CAS  Google Scholar 

  97. Spiteller G. Is lipid peroxidation of polyunsaturated acids the only source of free radicals that induce aging and age-related diseases? Rejuvenation Res. 2010;13(1):91–103.

    Article  CAS  Google Scholar 

  98. Choi H-D, Seo P-J, Son B-W, Kang BW. Synthesis of 2-(4-hydroxyphenyl) benzofurans and their application to β-amyloid aggregation inhibitor. Arch Pharm Res. 2004;27(1):19.

    Article  CAS  Google Scholar 

  99. Lee E-S, Park BC, Paek S-H, Lee Y-S, Basnet A, Jin D-Q, et al. Potent analgesic and anti-inflammatory activities of 1-furan-2-yl-3-pyridin-2-yl-propenone with gastric ulcer sparing effect. Biol Pharm Bull. 2006;29(2):361–4.

    Article  CAS  Google Scholar 

  100. Pentreath VW, Slamon ND. Astrocyte phenotype and prevention against oxidative damage in neurotoxicity. Hum Exp Toxicol. 2000;19(11):641–9.. Epub 2001/02/24

    Article  CAS  Google Scholar 

  101. Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest. 2005;115(3):485–91.

    Article  CAS  Google Scholar 

  102. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16(7):804.

    Article  CAS  Google Scholar 

  103. Prentice KJ, Luu L, Allister EM, Liu Y, Jun LS, Sloop KW, et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction. Cell Metab. 2014;19(4):653–66.

    Article  CAS  Google Scholar 

  104. Fan X, Huang L, Sokorai KJ. Factors affecting thermally induced furan formation. J Agric Food Chem. 2008;56(20):9490–4. Epub 2008/09/25.

    Article  CAS  Google Scholar 

  105. Becalski A, Seaman S. Furan precursors in food: a model study and development of a simple headspace method for determination of furan. J AOAC Int. 2005;88(1):102–6. Epub 2005/03/12.

    Article  CAS  Google Scholar 

  106. Quarta B, Anese M. Furfurals removal from roasted coffee powder by vacuum treatment. Food Chem. 2012;130(3):610–4.

    Article  CAS  Google Scholar 

  107. Anese M, Manzocco L, Calligaris S, Nicoli MC. Industrially applicable strategies for mitigating acrylamide, furan, and 5-hydroxymethylfurfural in food. J Agric Food Chem. 2013;61(43):10209–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muzammil, S., Ashraf, A., Muzammil, A., Andleeb, R., Rafique, A. (2021). Role of Furans as EDCs in Metabolic Disorders. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_12

Download citation

Publish with us

Policies and ethics