Skip to main content

Polymer Based Nanocomposite: Recent Trend in Safety Assessment in Biomedical Application

  • Chapter
  • First Online:
Composite Materials: Applications in Engineering, Biomedicine and Food Science

Abstract

The breakthrough and rapid developments of nanotechnologies has become one of the significant technological advances in every sector especially in biomedical sectors (Kim et al. 2018; Müller et al. 2017). Among these nanotechnologies, polymer-based nanocomposites (NCs) are the most famous one owing to the unique properties of nanomaterials. It can be defined as a mixture of two or more-phase materials forming solids where one or more dispersed phase is in nanoscale and a polymeric major phase (Müller et al. 2017). Polymer-based NCs could be synthesized with the combination of polymers and inorganic/organic nanoparticles which have obtained extensive research due of its distinctive physiochemical properties, outstanding mechanical strength and their high surface-to-volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash M, Thomas D (2017) Biopolymers for biocomposites and chemical sensor applications. In: Biopolymer composites in electronics. Elsevier, pp 405–435

    Google Scholar 

  • Antovic A (2010, October). The overall hemostasis potential: a laboratory tool for the investigation of global hemostasis. In Seminars in thrombosis and hemostasis (Vol. 36, No. 07, pp. 772–779). © Thieme Medical Publishers

    Google Scholar 

  • Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85

    CAS  PubMed  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA (2013) Review of potential environmental and health risks of the nanomaterial graphene. Hum Ecol Risk Assess 19(4):873–887

    CAS  Google Scholar 

  • Bollino F, Armenia E, Tranquillo E (2017) Zirconia/hydroxyapatite composites synthesized via sol-gel: influence of hydroxyapatite content and heating on their biological properties. Materials 10(7):757

    PubMed Central  Google Scholar 

  • Brisbois EJ, Kim M, Wang X, Mohammed A, Major TC, Wu J, Brownstein J, Xi C, Handa H, Bartlett RH, Meyerhoff ME (2016) Improved hemocompatibility of multilumen catheters via nitric oxide (NO) release from S-Nitroso-N-acetylpenicillamine (SNAP) composite filled lumen. ACS Appl Mater Interfaces 8(43):29270–29279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colman RW (ed) (2006) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott Williams & Wilkins

    Google Scholar 

  • Cox AJ, Hukins DW (1989) Morphology of mineral deposits on encrusted urinary catheters investigated by scanning electron microscopy. J Urol 142(5):1347–1350

    CAS  PubMed  Google Scholar 

  • Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    CAS  PubMed  Google Scholar 

  • Dias RCM, Góes AM, Serakides R, Ayres E, Oréfice RL (2010) Porous biodegradable polyurethane nanocomposites: preparation, characterization, and biocompatibility tests. Mat Res 13(2):211–218

    CAS  Google Scholar 

  • Drouet C (2013) Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds. Biomed Res Int 2013:12

    Google Scholar 

  • Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eftekhari S, El Sawi I, Bagheri ZS, Turcotte G, Bougherara H (2014) Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater Sci Eng C 39:120–125

    CAS  Google Scholar 

  • Fisher LE, Hook AL, Ashraf W, Yousef A, Barrett DA, Scurr DJ, Chen X, Smith EF, Fay M, Parmenter CD, Parkinson R (2015) Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. J Control Release 202:57–64

    CAS  PubMed  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    CAS  PubMed  Google Scholar 

  • Gale AJ (2011) Continuing education course# 2: current understanding of hemostasis. Toxicol Pathol 39(1):273–280

    PubMed  Google Scholar 

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. In: The biomaterials: silver Jubilee compendium. Elsevier Science, pp 219–241

    Google Scholar 

  • Guggenbichler JP, Assadian O, Boeswald M, Kramer A (2011) Incidence and clinical implication of nosocomial infections associated with implantable biomaterials–catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip 6(1)

    Google Scholar 

  • Győri E, Fábián I, Lázár I (2017) Effect of the chemical composition of simulated body fluids on aerogel-based bioactive composites. J Compos Sci 1(2):15

    Google Scholar 

  • Handa H, Major TC, Brisbois EJ, Amoako KA, Meyerhoff ME, Bartlett RH (2014) Hemocompatibility comparison of biomedical grade polymers using rabbit thrombogenicity model for preparing nonthrombogenic nitric oxide releasing surfaces. J Mater Chem B 2(8):1059–1067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harter K, Levine M, Henderson SO (2015) Anticoagulation drug therapy: a review. West J Emerg Med 16:11–17

    PubMed  PubMed Central  Google Scholar 

  • Ho CC, Fang HY, Wang B, Huang TH, Shie MY (2018) The effects of biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties on human dental pulp cells. Int Endod J 51:e291–e300

    PubMed  Google Scholar 

  • Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32(4):354–358

    CAS  Google Scholar 

  • Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI (2015) Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost 13:S72–S81

    PubMed  Google Scholar 

  • Jaganathan SK, Mani MP (2018) Enriched mechanical, thermal, and blood compatibility of single stage electrospun polyurethane nickel oxide nanocomposite for cardiac tissue engineering. Polym Compos

    Google Scholar 

  • Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C, Yang WT, Shen J (2011) Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir 27(18):11575–11581

    CAS  PubMed  Google Scholar 

  • Juraski ADC, Rodas ACD, Elsayed H, Bernardo E, Soares VO, Daguano J (2017) The in vitro bioactivity, degradation, and cytotoxicity of polymer-derived wollastonite-diopside glass-ceramics. Materials 10(4):425

    PubMed Central  Google Scholar 

  • Khan MK, Nigavekar SS, Minc LD, Kariapper MS, Nair BM, Lesniak WG, Balogh LP (2005) In vivo biodistribution of dendrimers and dendrimer nanocomposites—implications for cancer imaging and therapy. Technol Cancer Res Treat 4(6):603–613

    CAS  PubMed  Google Scholar 

  • Kikuchi M, Matsumoto HN, Yamada T, Koyama Y, Takakuda K, Tanaka J (2004) Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 25(1):63–69

    CAS  PubMed  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98(3):849–864

    CAS  PubMed  Google Scholar 

  • Koo J (2017) Environmental and Health Impacts for Nanomaterials and Polymer Nanocomposites. Fundamentals, Properties, and Applications of Polymer Nanocomposites

    Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. J Biomed Biomater Res, 24(6), pp.721–734

    Google Scholar 

  • Lee SR, Park HM, Lim H, Kang T, Li X, Cho WJ, Ha CS (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8):2495–2500

    CAS  Google Scholar 

  • Li J, Zhang K, Ma W, Wu F, Yang P, He Z, Huang N (2016) Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and type IV collagen. Regen Biomater 3(3):149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater 16(1):384

    Google Scholar 

  • Maitz MF, Sperling C, Wongpinyochit T, Herklotz M, Werner C, Seib FP (2017) Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. Nanomed-Nanotechnol 13(8):2633–2642

    CAS  Google Scholar 

  • Mandal A (2019, Feb 26) Catheter uses. Retrieved from https://www.news-medical.net/health/Catheter-Uses.aspx

    Google Scholar 

  • Mazumder B, Ray S, Pal P, Pathak Y (2019) Nanotechnology: therapeutic, nutraceutical, and cosmetic advances. CRC Press

    Google Scholar 

  • Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron J, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. J Nanomater 7(4):74

    Google Scholar 

  • Neun BW, Ilinskaya AN, Dobrovolskaia MA (2018) Updated method for in vitro analysis of nanoparticle hemolytic properties. In: Characterization of nanoparticles intended for drug delivery. Humana Press, New York, NY, pp 91–102

    Google Scholar 

  • Nicolle LE (2014) Catheter associated urinary tract infections. Antimicrob Resist In 3(1):23

    Google Scholar 

  • Pal S, Patra AS, Ghorai S, Sarkar AK, Mahato V, Sarkar S, Singh RP (2015) Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes. Bioresour Technol 191:291–299

    CAS  PubMed  Google Scholar 

  • Pham CT, Thomas DG, Beiser J, Mitchell LM, Huang JL, Senpan A, Hu G, Gordon M, Baker NA, Pan D, Lanza GM (2014) Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles. Nanomed-Nanotechnol 10(3):651–660

    CAS  Google Scholar 

  • Quaye IK (2015) Extracellular hemoglobin: the case of a friend turned foe. Front Physiol 6:96

    PubMed  PubMed Central  Google Scholar 

  • Ramakrishna D, Rao P (2011) Nanoparticles: is toxicity a concern? EJIFCC 22(4):92

    Google Scholar 

  • Raghavendra GM, Varaprasad K, Jayaramudu T (2015) Biomaterials: design, development and biomedical applications. In: Nanotechnology applications for tissue engineering. William Andrew Publishing, pp 21–44

    Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rother RP, Bell L, Hillmen P, Gladwin MT (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293(13):1653–1662

    CAS  PubMed  Google Scholar 

  • Sanvicens N, Marco MP (2008) Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433

    CAS  PubMed  Google Scholar 

  • Schechter AN (2008) Hemoglobin research and the origins of molecular medicine. Blood 112(10):3927–3938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schechter AN (2012) Introduction to the symposium on synthetic life. Perspect Biol Med 55(4):467–469

    PubMed  Google Scholar 

  • Shalom Y, Perelshtein I, Perkas N, Gedanken A, Banin E (2017) Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res 10(2):520–533

    CAS  Google Scholar 

  • Shi X, Sitharaman B, Pham QP, Spicer PP, Hudson JL, Wilson LJ, Tour JM, Raphael RM, Mikos AG (2008) In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J Biomed Mater Res A 86(3):813–823

    PubMed  Google Scholar 

  • Siebers MC, Ter Brugge PJ, Walboomers XF, Jansen JA (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146

    CAS  PubMed  Google Scholar 

  • da Silva GR, da Silva-Cunha Jr A, Behar-Cohen F, Ayres E, Oréfice RL (2010) Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym Degrad Stab 95(4):491–499

    Google Scholar 

  • Speranskaya ES, Sevrin C, De Saeger S, Hens Z, Goryacheva IY, Grandfils C (2016) Synthesis of hydrophilic CuInS2/ZnS quantum dots with different polymeric shells and study of their cytotoxicity and hemocompatibility. ACS Appl Mater Interfaces 8(12):7613–7622

    CAS  PubMed  Google Scholar 

  • Standard practice for assessment of hemolytic properties of materials (2000) ASTM International: West Conshohocken, PA.

    Google Scholar 

  • Stickler DJ (2014) Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med 276(2):120–129

    CAS  PubMed  Google Scholar 

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):44

    PubMed  PubMed Central  Google Scholar 

  • Sun J, Shen J, Chen S, Cooper M, Fu H, Wu D, Yang Z (2018) Nanofiller reinforced biodegradable PLA/PHA composites: current status and future trends. Polymers 10(5):505

    PubMed Central  Google Scholar 

  • Tambyah PA (2004) Catheter-associated urinary tract infections: diagnosis and prophylaxis. Int J Antimicrob Agents 24:44–48

    CAS  Google Scholar 

  • Tambyah PA, Oon J (2012) Catheter-associated urinary tract infection. Curr Opin Infect Dis 25(4):365–370

    PubMed  Google Scholar 

  • Tibolla H, Pelissari FM, Martins JT, Lanzoni EM, Vicente AA, Menegalli FC, Cunha RL (2019) Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: in vitro cytotoxicity assessment. Carbohydr Polym 207:169–179

    CAS  PubMed  Google Scholar 

  • Tran N, Tran PA (2012) Nanomaterial-based treatments for medical device-associated infections. ChemPhysChem 13(10):2481–2494

    CAS  PubMed  Google Scholar 

  • Tynngård N, Lindahl TL, Ramström S (2015) Assays of different aspects of haemostasis–what do they measure? ThrombJ 13(1):8

    Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    CAS  PubMed Central  Google Scholar 

  • Wang B, Huang P, Ou C, Li K, Yan B, Lu W (2013) In vitro corrosion and cytocompatibility of ZK60 magnesium alloy coated with hydroxyapatite by a simple chemical conversion process for orthopedic applications. Int J Mol Sci 14(12):23614–23628

    PubMed  PubMed Central  Google Scholar 

  • Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M (2018) Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotech 6

    Google Scholar 

  • Whitehouse JD, Friedman ND, Kirkland KB, Richardson WJ, Sexton DJ (2002) The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital adverse quality of life, excess length of stay, and extra cost. Infect Cont Hosp Ep 23(4):183–189

    Google Scholar 

  • Xue LL, Long P, Wei H, Liang Y (2011) Hemocompatibility of TiO2 nanoparticles composite PTFE coating for medical devices. In: Advanced materials research, vol 299. Trans Tech Publications, pp 600–603

    Google Scholar 

  • Xu Z, Hodgson M, Cao P (2016) Effect of immersion in simulated body fluid on the mechanical properties and biocompatibility of sintered Fe–Mn-based alloys. Metals 6(12):309

    Google Scholar 

  • Yah CS, Iyuke SE, Simate GS (2012) A review of nanoparticles toxicity and their routes of exposures. Iran J Pharm Sci 8(1):299–314

    Google Scholar 

  • Yilmaz B, Doğan S, Çelikler Kasimoğullari S (2018) Hemocompatibility, cytotoxicity, and genotoxicity of poly (methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. Int J Polym Mater 67(6):351–360

    CAS  Google Scholar 

  • Yoshida E, Hayakawa T (2017) Quantitative analysis of apatite formation on titanium and zirconia in a simulated body fluid solution using the quartz crystal microbalance method. Adv Mater Sci Eng 2017:9

    Google Scholar 

  • Ziabka M, Dziadek M, Menaszek E (2018) Biocompatibility of poly(acrylonitrile-butadiene-styrene) nanocomposites modified with silver nanoparticles. Polymers 10(11):1–13

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Education (MOE) Malaysia for funding this work under Transdisciplinary Research Grant Scheme (TRGS) grant no. 6769003 and Research in Undergraduate Institutions (RUI) grant 2019/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiatul Basria S. M. N. Mydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mydin, R.B.S.M.N., Harun, N.H., Faudzi, K.N.I.K.M., Romli, N.A.A. (2020). Polymer Based Nanocomposite: Recent Trend in Safety Assessment in Biomedical Application. In: Siddiquee, S., Gan Jet Hong, M., Mizanur Rahman, M. (eds) Composite Materials: Applications in Engineering, Biomedicine and Food Science. Springer, Cham. https://doi.org/10.1007/978-3-030-45489-0_12

Download citation

Publish with us

Policies and ethics