Skip to main content

Nanomaterials as Toxic Gas Sensors and Biosensors

  • Chapter
  • First Online:
Nanosensor Technologies for Environmental Monitoring

Abstract

Nanosized particles in the size range 1–100 nm are emerging as an alternative to conventional particles in technological applications. This is due to their small size, which presents them with a great surface area to volume ratio. This unique property of nanomaterials along with the capacity to tune important physicochemical characteristics, such as molecular detection capabilities, based on size and morphology has increased their utilization for novel and improved gas sensor development in various fields of application. Most gases, above their exposure threshold concentration level, can be toxic to humans and the environment.

The improved gas detection ability of nanomaterials along with the potential to synthesize them via green methods promotes their use in sustainable sensor development for noxious gas detection. The present chapter discusses examples of nanomaterials that are used to fabricate sensors with the ability to detect toxic gases and biological molecules. In addition, the drawbacks of nanomaterials as sensors, and the efficiency and limitations of green synthesized nanomaterials for sustainable toxic gas detection and biosensing applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al2O3 :

Aluminium oxide

AuNPs:

Gold nanoparticles

BRET :

Bioluminescence resonance energy transfer

CdSe:

Cadmium selenide

CEA :

Carcinoembryonic antigen

CeO2 :

Cerium dioxide

CHS:

Chondroitin sulfate

CNMs:

Carbon nanomaterials

CNTs:

Carbon nanotubes

CO:

Carbon monoxide

CPE :

Carbon paste electrode

CRET:

Chemiluminescence resonance energy transfer

CTCs:

Circulating tumor cells

CV :

Cyclic voltammetry

DNA:

Deoxyribonucleic acid

EIS :

Electrochemical impedance spectroscopy

EMF:

Electromotive force

FETs:

Field effect transistors

Gly:

Glyphosate

GO:

Graphene oxide

GOx :

Glucose oxidase enzyme

GR:

Graphene

H2O2 :

Hydrogen peroxide

H2S:

Hydrogen sulfide

Hb :

Hemoglobin

hCG :

Human chorionic gonadotropin

HOPG :

Highly oriented pyrolytic graphite

IL-6 :

Interleukin-6

LbL:

Layer-by-layer

MgO:

Magnesium oxide

MnO2 NPs :

Manganese dioxide NPs

MNPs :

Metal nanoparticles

MWNTs:

Multi-walled carbon nanotubes

NADH :

Nicotinamide–adenine dinucleotide

NH3 :

Ammonia

NiOx:

Nickel oxide

NIR:

Near infrared

NO:

Nitrogen oxide

NPs:

Nanoparticles

PAH :

Poly (allylamine hydrochloride)

PAni:

Polyaniline

PEDOT:

Poly (3,4-ethylenedioxythiophene)

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

PNA :

Peptide nucleic acid

POC :

Point-of-care

PPy:

Polypyrrole

PSA :

Prostate-specific antigen

PSS:

Poly (styrene sulfonate)

PSS:

Polystyrene sulfonate

Pt :

Platinum

PTh:

Polythiophene

PVP :

Polyvinylpyrrolidone

QCM:

Quartz crystal microbalance

QDs :

Quantum dots

RNAs:

Ribonucleic acid

SAW:

Surface acoustic wave

SnO2 :

Tin dioxide

SPANI:

Poly (anilinesulfonic acid)

ssDNA:

Single-stranded DNA

STW:

Surface transverse wave

SWNTs:

Single-walled carbon nanotubes

TiO2 :

Titanium dioxide

TMF-α:

Tumor necrosis factor-α

USD:

United States Dollars

UV:

Ultraviolet

VOCs :

Volatile organic compounds

WO3 :

Tungsten oxide

ZnO:

Zinc oxide

ZnS:

Zinc sulfide

References

  • Acosta MA, Ymele-Leki P, Kostov YV, Leach JB (2009) Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials 30:3068–3074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari S, Chowdhury R (2010) The calibration of carbon nanotube based bionanosensors. J Appl Phys 107:124322

    Google Scholar 

  • Ajay Piriya VS, Joseph P, Daniel SCGK, Lakshmanan S, Kinoshita T, Muthusamy S (2017) Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C 78:1231–1245

    Google Scholar 

  • Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    CAS  PubMed  Google Scholar 

  • Alshammari AS, Alenezi MR, Lai KT, SRP S (2017) Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater Lett 189:299–302

    CAS  Google Scholar 

  • Amouzadeh Tabrizi M, Varkani JN (2014) Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sensors Actuators B 202:475–482. https://doi.org/10.1016/j.snb.2014.05.099

    Article  CAS  Google Scholar 

  • Anderson CD, Daniels ES (2003) Emulsion polymerisation and latex applications, vol 14. iSmithers Rapra Publishing.

    Google Scholar 

  • Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, San Chan Y, Danquah MK (2019) Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol 392(7):755–771

    CAS  PubMed  Google Scholar 

  • Annabi N et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124

    CAS  PubMed  Google Scholar 

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312

    CAS  Google Scholar 

  • Avramov ID, Rapp M, Voigt A, Stahl U, Dirschka M (2000) In: Comparative studies on polymer coated SAW and STW resonators for chemical gas sensor applications. IEEE, pp 58–65

    Google Scholar 

  • Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    CAS  Google Scholar 

  • Banihashemian SM, Hajghassem H, Nikfarjam A, Azizi Jarmoshti J, Abdul Rahman S, Boon Tong G (2019) Room temperature ethanol sensing by green synthesized silver nanoparticle decorated SWCNT. Mater Res Express 6:065602. https://doi.org/10.1088/2053-1591/ab07de

    Article  CAS  Google Scholar 

  • Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B 121:18–35

    CAS  Google Scholar 

  • Barsan MM, Pifferi V, Falciola L, Brett CMA (2016) New CNT/poly (brilliant green) and CNT/poly (3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Anal Chim Acta 927:35–45

    CAS  PubMed  Google Scholar 

  • Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    CAS  Google Scholar 

  • Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J Phys Chem B 108:19717–19720

    CAS  Google Scholar 

  • Bogue R (2014) Towards the trillion sensors market. Sens Rev 34:137–142

    Google Scholar 

  • Bollella P, Schulz C, Favero G, Mazzei F, Ludwig R, Gorton L, Antiochia R (2017) Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis 29:77–86. https://doi.org/10.1002/elan.201600476

    Article  CAS  Google Scholar 

  • Brousseau LC, Aurentz DJ, Benesi AJ, Mallouk TE (1997) Molecular design of intercalation-based sensors. 2. Sensing of carbon dioxide in functionalized thin films of copper octanediylbis (phosphonate). Anal Chem 69:688–694

    CAS  Google Scholar 

  • Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2000) Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array. Sens Actuators B 69:230–235

    CAS  Google Scholar 

  • Cardinal MF, Vander Ende E, Hackler RA, McAnally MO, Stair PC, Schatz GC, Van Duyne RP (2017) Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev 46:3886–3903

    CAS  PubMed  Google Scholar 

  • Carregal-Romero S et al (2013) Multiplexed sensing and imaging with colloidal nano-and microparticles. Annu Rev Anal Chem 6:53–81

    CAS  Google Scholar 

  • Casanova-Chafer J, Llobet E (2019) Carbon nanomaterials integrated in rugged and inexpensive sensing nanoscale materials for warfare agent detection. Nanoscience for Security 13

    Google Scholar 

  • Castro M, Kumar B, Feller J-F, Haddi Z, Amari A, Bouchikhi B (2011) Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sensors Actuators B 159:213–219

    CAS  Google Scholar 

  • Chandra P, Segal E (2016) Nanobiosensors for personalized and onsite biomedical diagnosis. The Institution of Engineering and Technology

    Google Scholar 

  • Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sensors Actuators B 221:1170–1181

    Google Scholar 

  • Chen S et al (2016) One-pot synthesis of mesoporous spherical SnO2@graphene for high-sensitivity formaldehyde gas sensors. RSC Adv 6:25198–25202

    CAS  Google Scholar 

  • Chinnadayyala SR, Santhosh M, Singh NK, Goswami P (2015) Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor. Biosens Bioelectron 69:155–161

    CAS  PubMed  Google Scholar 

  • Christ JF, Aliheidari N, Ameli A, Pötschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401

    CAS  Google Scholar 

  • Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40

    CAS  PubMed  Google Scholar 

  • Cui S et al (2013) Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J Mater Chem A 1:4462–4467

    CAS  Google Scholar 

  • Dai L, Soundarrajan P, Kim T (2002) Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl Chem 74:1753–1772

    CAS  Google Scholar 

  • Darwish A, Sayed GI, Hassanien AE (2019) The impact of implantable sensors in biomedical technology on the future of healthcare systems. In: Intelligent pervasive computing systems for smarter healthcare

    Google Scholar 

  • Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, MLH G (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem A Eur J 9:3732–3739

    CAS  Google Scholar 

  • Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217

    CAS  Google Scholar 

  • Dhara K, Ramachandran T, Nair BG, TGS B (2015) Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J Electroanal Chem 743:1–9

    CAS  Google Scholar 

  • Di Carlo G et al (2012) Green synthesis of gold–chitosan nanocomposites for caffeic acid sensing. Langmuir 28:5471–5479

    PubMed  Google Scholar 

  • Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13:16–27

    CAS  Google Scholar 

  • Do MH et al (2015) Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem 95:1489–1501

    CAS  Google Scholar 

  • Dong XM, Fu RW, Zhang MQ, Zhang B, Rong MZ (2004) Electrical resistance response of carbon black filled amorphous polymer composite sensors to organic vapors at low vapor concentrations. Carbon 42:2551–2559

    CAS  Google Scholar 

  • Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    CAS  PubMed  Google Scholar 

  • Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76:29–33. https://doi.org/10.1016/j.talanta.2008.01.062

    Article  CAS  PubMed  Google Scholar 

  • Ellis JE, Star A (2016) Carbon nanotube based gas sensors toward breath analysis. ChemPlusChem 81:1248–1265

    CAS  PubMed  Google Scholar 

  • Elosúa C, Bariáin C, Matías IR, Arregui FJ, Luquin A, Laguna M (2006) Volatile alcoholic compounds fibre optic nanosensor. Sensors Actuators B 115:444–449

    Google Scholar 

  • El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2007) Nanosensor design packages: a smart and compact development for metal ions sensing responses. Adv Funct Mater 17:3731–3745

    CAS  Google Scholar 

  • Endres HE et al (1996) A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation. Sensors Actuators B 36:353–357

    CAS  Google Scholar 

  • Eranna G (2016) Metal oxide nanostructures as gas sensing devices. CRC Press, Boca Raton

    Google Scholar 

  • Erden F, Velipasalar S, Alkar AZ, Cetin AE (2016) Sensors in assisted living: a survey of signal and image processing methods. IEEE Signal Process Mag 33:36–44

    Google Scholar 

  • Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306

    CAS  PubMed  Google Scholar 

  • Fraiwan L, Lweesy K, Bani-Salma A, Mani N (2011) In: A wireless home safety gas leakage detection system. IEEE, pp 11–14

    Google Scholar 

  • Freeman R, Girsh J, Willner I (2013) Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl Mater Interfaces 5:2815–2834

    CAS  PubMed  Google Scholar 

  • Fuku X, Kaviyarasu K, Matinise N, Maaza M (2016) Punicalagin green functionalized Cu/Cu2O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res Lett 11:386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Tjiu WW, Wei J, Liu T (2014) Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide—multiwalled carbon nanotube film modified glass carbon electrode. Talanta 120:484–490

    CAS  PubMed  Google Scholar 

  • García-Mendiola T et al (2018) Carbon nanodots based biosensors for gene mutation detection. Sensors Actuators B 256:226–233

    Google Scholar 

  • Gardner JW, Bartlett PN (1993) Design of conducting polymer gas sensors: modelling and experiment. Synth Met 57:3665–3670

    Google Scholar 

  • Gayda ZG et al (2019) Metallic nanoparticles obtained via “green” synthesis as a platform for biosensor construction. Appl Sci 9. https://doi.org/10.3390/app9040720

  • Geng X, Zhang C, Luo Y, Debliquy M (2017) Preparation and characterization of CuxO1-y@ ZnO1-α nanocomposites for enhanced room-temperature NO2 sensing applications. Appl Surf Sci 401:248–255

    CAS  Google Scholar 

  • Gilmore KJ et al (2009) Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 30:5292–5304

    CAS  PubMed  Google Scholar 

  • Gong J, Miao X, Wan H, Song D (2012) Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sensors Actuators B 162:341–347. https://doi.org/10.1016/j.snb.2011.12.094

    Article  CAS  Google Scholar 

  • Goustouridis D, Manoli K, Chatzandroulis S, Sanopoulou M, Raptis I (2005) Characterization of polymer layers for silicon micromachined bilayer chemical sensors using white light interferometry. Sensors Actuators B 111:549–554

    Google Scholar 

  • Gu B, Zhang Q (2018) Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv Sci 5:1700609

    Google Scholar 

  • Gupta SK, Joshi A, Kaur M (2010) Development of gas sensors using ZnO nanostructures. J Chem Sci 122:57–62

    CAS  Google Scholar 

  • Hagleitner C, Lange D, Hierlemann A, Brand O, Baltes H (2002) CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J Solid State Circuits 37:1867–1878

    Google Scholar 

  • Hallil H, Chebila F, Menini P, Pons P, Aubert H (2010) In: Feasibility of wireless gas detection with an FMCW RADAR interrogation of passive RF gas sensor. IEEE, pp 759–762

    Google Scholar 

  • Harman DG et al (2015) Poly (3,4-ethylenedioxythiophene): dextran sulfate (PEDOT: DS)—a highly processable conductive organic biopolymer. Acta Biomater 14:33–42

    CAS  PubMed  Google Scholar 

  • Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P (1994) Towards an integrated electronic nose using conducting polymer sensors. Sensors Actuators B 18:221–228

    CAS  Google Scholar 

  • Haun JB, Yoon TJ, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol 2:291–304

    CAS  Google Scholar 

  • He T, Shi Q, Wang H, Wen F, Chen T, Ouyang J, Lee C (2019) Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy 57:338–352

    CAS  Google Scholar 

  • Hirata T et al (2008) Chemical modification of carbon nanotube based bio-nanosensor by plasma activation. Japanese J Appl Phys 47:2068

    CAS  Google Scholar 

  • Hoefer U, Böttner H, Felske A, Kühner G, Steiner K, Sulz G (1997) Thin-film SnO2 sensor arrays controlled by variation of contact potential—a suitable tool for chemometric gas mixture analysis in the TLV range. Sensors Actuators B 44:429–433

    CAS  Google Scholar 

  • Holzinger M, Bouffier L, Villalonga R, Cosnier S (2009) Adamantane/β-cyclodextrin affinity biosensors based on single-walled carbon nanotubes Adamantane/β-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Biosens Bioelectron 24:1128–1134

    CAS  PubMed  Google Scholar 

  • Hu H, Sun Z, Jornet JM (2018) In: Through-the-body localization of implanted biochip in wearable nano-biosensing networks. IEEE, pp 278–283

    Google Scholar 

  • Huang P, Mao J, Yang L, Yu P, Mao L (2011) Bioelectrochemically active infinite coordination polymer nanoparticles: one-pot synthesis and biosensing property. Chem A Eur J 17:11390–11393. https://doi.org/10.1002/chem.201101634

    Article  CAS  Google Scholar 

  • Huang H, Bai W, Dong C, Guo R, Liu Z (2015a) An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 68:442–446

    CAS  PubMed  Google Scholar 

  • Huang J, Tian J, Zhao Y, Zhao S (2015b) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensors Actuators B 206:570–576

    CAS  Google Scholar 

  • Huang Q, Lin X, Zhu J-J, Tong Q-X (2017) Pd-Au@ carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens Bioelectron 94:507–512

    CAS  PubMed  Google Scholar 

  • Iftekhar Uddin ASM, Phan D-T, Chung G-S (2015) Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sensors Actuators B 207:362–369. https://doi.org/10.1016/j.snb.2014.10.091

    Article  CAS  Google Scholar 

  • Ijeh MO (2011) Covalent gold nanoparticle-antibody conjugates for sensivity improvement in LFIA

    Google Scholar 

  • Ismail M, Khan MI, Akhtar K, Khan MA, Asiri AM, Khan SB (2018) Biosynthesis of silver nanoparticles: a colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Phys E Low-dimens Syst Nanostruct 103:367–376. https://doi.org/10.1016/j.physe.2018.06.015

    Article  CAS  Google Scholar 

  • Istrate O-M, Rotariu L, Marinescu VE, Bala C (2016) NADH sensing platform based on electrochemically generated reduced graphene oxide–gold nanoparticles composite stabilized with poly (allylamine hydrochloride). Sensors Actuators B 223:697–704

    CAS  Google Scholar 

  • Jaegle M, Wöllenstein J, Meisinger T, Böttner H, Müller G, Becker T, Braunmühl CB-V (1999) Micromachined thin film SnO2 gas sensors in temperature-pulsed operation mode. Sensors Actuators B 57:130–134

    CAS  Google Scholar 

  • Jamdagni P, Khatri P, Rana JS (2016) Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int Nano Lett 6:139–146

    CAS  Google Scholar 

  • Jamshaid T, Neto ETT, Eissa MM, Zine N, Kunita MH, El-Salhi AE, Elaissari A (2016) Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends Anal Chem 79:344–362

    CAS  Google Scholar 

  • Janas D, Liszka B (2018) Copper matrix nanocomposites based on carbon nanotubes or graphene. Mater Chem Front 2:22–35

    CAS  Google Scholar 

  • Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2:19

    CAS  PubMed  Google Scholar 

  • Jang S, Kim S, Geier ML, Hersam MC, Dodabalapur A (2016) Inkjet printed carbon nanotubes in short channel field effect transistors: influence of nanotube distortion and gate insulator interface modification. Flexible Printed Electron 1:035001

    Google Scholar 

  • Jang JS et al (2018) Flexible gas sensors: glass-fabric reinforced Ag nanowire/Siloxane composite heater substrate: sub-10 nm metal@ metal oxide nanosheet for sensitive flexible sensing platform (Small 44/2018). Small 14:1870201

    Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L-Y, Wu X-L, Guo Y-G, Wan L-J (2009) SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C 113:14213–14219

    CAS  Google Scholar 

  • Jiang F, Yue R, Du Y, Xu J, Yang P (2013) A one-pot ‘green’synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens Bioelectron 44:127–131

    CAS  PubMed  Google Scholar 

  • Jimenez-Cadena G, Riu J, Rius FX (2007) Gas sensors based on nanostructured materials. Analyst 132:1083–1099

    CAS  PubMed  Google Scholar 

  • Kalanur SS, Yoo I-H, Lee Y-A, Seo H (2015) Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications. Sensors Actuators B 221:411–417. https://doi.org/10.1016/j.snb.2015.06.086

    Article  CAS  Google Scholar 

  • Kanan S, El-Kadri O, Abu-Yousef I, Kanan M (2009) Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9:8158–8196

    CAS  PubMed  Google Scholar 

  • Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N, Yamazoe N (2001) Metal oxide semiconductor N2O sensor for medical use. Sensors Actuators B 77:72–77

    CAS  Google Scholar 

  • Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81:6122–6129

    CAS  PubMed  Google Scholar 

  • Karuppiah C et al (2015) Green synthesized silver nanoparticles decorated on reduced graphene oxide for enhanced electrochemical sensing of nitrobenzene in waste water samples. RSC Adv 5:31139–31146. https://doi.org/10.1039/C5RA00992H

    Article  CAS  Google Scholar 

  • Kato K, Kato Y, Takamatsu K, Udaka T, Nakahara T, Matsuura Y, Yoshikawa K (2000) Toward the realization of an intelligent gas sensing system utilizing a non-linear dynamic response. Sensors Actuators B 71:192–196

    CAS  Google Scholar 

  • Kaushik A, Kumar R, Arya SK, Nair M, Malhotra BD, Bhansali S (2015) Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem Rev 115:4571–4606

    CAS  PubMed  Google Scholar 

  • Kavitha M, Kalpana AM (2017) Carbon nanotubes: properties and applications—a brief review i-Manager’s. J Electron Eng 7:1

    Google Scholar 

  • Kavitha T, Gopalan AI, Lee K-P, Park S-Y (2012) Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50:2994–3000

    CAS  Google Scholar 

  • Khalil I, Julkapli N, Yehye W, Basirun W, Bhargava S (2016) Graphene–gold nanoparticles hybrid—synthesis, functionalization, and application in a electrochemical and surface-enhanced Raman scattering biosensor. Materials (Basel) 9:406

    Google Scholar 

  • Khalil I, Rahmati S, Julkapli NM, Yehye WA (2018) Graphene metal nanocomposites—recent progress in electrochemical biosensing applications. J Ind Eng Chem 59:425–439

    CAS  Google Scholar 

  • Khan A, Khan AAP, Asiri AM, Abu-Zied BM (2016) Green synthesis of thermally stable Ag-rGO-CNT nano composite with high sensing activity. Compos Part B Eng 86:27–35. https://doi.org/10.1016/j.compositesb.2015.09.018

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Google Scholar 

  • Khaydukova M, Medina-Plaza C, Rodriguez-Mendez ML, Panchuk V, Kirsanov D, Legin A (2017) Multivariate calibration transfer between two different types of multisensor systems. Sensors Actuators B 246:994–1000

    CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5:8075–8109

    CAS  Google Scholar 

  • Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5:9306–9312

    CAS  PubMed  Google Scholar 

  • Khlobystov AN, Britz DA, GAD B (2005) Molecules in carbon nanotubes. Acc Chem Res 38:901–909

    CAS  PubMed  Google Scholar 

  • Kim SJ (2009) The effect on the gas selectivity of CNT-based gas sensors by binder in SWNT/Silane sol solution. IEEE Sens J 10:173–177

    Google Scholar 

  • Kim JS, Kim G-W (2014) New non-contacting torque sensor based on the mechanoluminescence of ZnS: Cu microparticles. Sensors Actuators A Phys 218:125–131

    CAS  Google Scholar 

  • Kimura T, Goto T (2005) Ir–YSZ nano-composite electrodes for oxygen sensors. Surf Coat Technol 198:36–39

    CAS  Google Scholar 

  • Ko T-H, Radhakrishnan S, Seo M-K, Khil M-S, Kim H-Y, Kim B-S (2017) A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications. J Alloys Compd 696:193–200

    CAS  Google Scholar 

  • Kocakulak M, Butun I (2017) In: An overview of wireless sensor networks towards internet of things. IEEE, pp 1–6

    Google Scholar 

  • Komathi S, Muthuchamy N, Lee KP, Gopalan AI (2016) Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens Bioelectron 84:64–71

    CAS  PubMed  Google Scholar 

  • Kondratiev VV, Malev VV, Eliseeva SN (2016) Composite electrode materials based on conducting polymers loaded with metal nanostructures. Russ Chem Rev 85:14

    CAS  Google Scholar 

  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    CAS  PubMed  Google Scholar 

  • Kumar N, Srivastava AK, Patel HS, Gupta BK, Varma GD (2015a) Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur J Inorg Chem 2015:1912–1923

    CAS  Google Scholar 

  • Kumar R, Al-Dossary O, Kumar G, Umar A (2015b) Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett 7:97–120

    Google Scholar 

  • Lai C-Y, Foot P, Brown J, Spearman P (2017) A urea potentiometric biosensor based on a thiophene copolymer. Biosensors 7:13

    PubMed Central  Google Scholar 

  • Lakshmi G, Sharma A, Solanki PR, Avasthi DK (2016) Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-less cholesterol biosensors. Nanotechnology 27:345101

    CAS  PubMed  Google Scholar 

  • Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mat Res 36:231–279

    CAS  Google Scholar 

  • Lee D-D, Chung W-Y, Choi M-S, Baek J-M (1996) Low-power micro gas sensor. Sensors Actuators B 33:147–150

    CAS  Google Scholar 

  • Lee Y, Trocchia SM, Warren SB, Young EF, Vernick S, Shepard KL (2018) Electrically controllable single-point covalent functionalization of spin-cast carbon-nanotube field-effect transistor arrays. ACS Nano 12:9922–9930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang Q, Xu J, Zhang W, Jin L (2002) A novel nano-Au-assembled amperometric SO2 gas sensor: preparation, characterization and sensing behavior. Sens Actuators B 87:18–24

    CAS  Google Scholar 

  • Li L-L et al (2008) Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnO2 and their gas sensor behaviors. Cryst Growth Des 8:4165–4172. https://doi.org/10.1021/cg800686w

    Article  CAS  Google Scholar 

  • Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res 3:429–437

    CAS  Google Scholar 

  • Li Z et al (2011) Graphene buffered galvanic synthesis of graphene–metal hybrids. J Mater Chem 21:13241–13246

    CAS  Google Scholar 

  • Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013) Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens Bioelectron 42:198–206

    CAS  PubMed  Google Scholar 

  • Liu A, Huang S (2012) A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized onto platinum nanoparticles modified graphene electrode. Sci China Phys Mech Astron 55:1163–1167

    CAS  Google Scholar 

  • Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. ACS Appl Mater Interfaces 6:6069–6087

    CAS  PubMed  Google Scholar 

  • Liu Y et al (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 44:4782–4785

    CAS  Google Scholar 

  • Liu D, Bruckbauer A, Abell C, Balasubramanian S, Kang D-J, Klenerman D, Zhou D (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128:2067–2071

    CAS  PubMed  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen M, Mohebbi M, Wang ML, Dokmeci MR (2011) In: The effect of sequence length on DNA decorated CNT gas sensors. IEEE, pp 2156–2159

    Google Scholar 

  • Liu R et al (2012a) Facile synthesis of au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: an enzyme-free electrochemical biosensor for hydrogen peroxide. Small 8:1398–1406. https://doi.org/10.1002/smll.201102298

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2012b) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer Nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041. https://doi.org/10.1002/adma.201200164

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhao N, Cheng Z, Liu H (2015) Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7:6836–6842

    CAS  PubMed  Google Scholar 

  • Ljungblad J (2009) Antibody-conjugated gold nanoparticles integrated in a fluorescence based biochip

    Google Scholar 

  • Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sensors Actuators B 179:32–45

    CAS  Google Scholar 

  • Lorestani F, Shahnavaz Z, Mn P, Alias Y, NSA M (2015) One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sensors Actuators B 208:389–398

    CAS  Google Scholar 

  • Lu G, Park S, Yu K, Ruoff RS, Ocola LE, Rosenmann D, Chen J (2011) Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5:1154–1164

    CAS  PubMed  Google Scholar 

  • Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanal Int J Devoted to Fundam Pract Asp Electroanal 18:319–326

    CAS  Google Scholar 

  • Lupan O, Postica V, Cretu V, Wolff N, Duppel V, Kienle L, Adelung R (2016) Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications. Phys Status Solidi Rapid Res Lett 10:260–266

    CAS  Google Scholar 

  • Lyson-Sypien B, Radecka M, Rekas M, Swierczek K, Michalow-Mauke K, Graule T, Zakrzewska K (2015) Grain-size-dependent gas-sensing properties of TiO2 nanomaterials. Sensors Actuators B 211:67–76

    CAS  Google Scholar 

  • Ma H, Zhou W, Yuan W, Jie Z, Liu H, Li X (2012) The gas sensing mechanism of the low-dimension carbon composites with metal oxide quantum dots. Phys Proc 32:31–38

    CAS  Google Scholar 

  • Madhurantakam S, Babu KJ, Rayappan JBB, Krishnan UM (2018) Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens Bioelectron 116:67–80

    CAS  PubMed  Google Scholar 

  • Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2017) Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sens Actuators B 253:879–892

    CAS  Google Scholar 

  • Malic L, Sandros MG, Tabrizian M (2011) Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors. Anal Chem 83:5222–5229

    CAS  PubMed  Google Scholar 

  • Mandal D, Mishra S, Singh RK (2018) Green synthesized nanoparticles as potential nanosensors. In: Environmental, chemical and medical sensors. Springer, pp 137–164

    Google Scholar 

  • Manoj D, Saravanan R, Santhanalakshmi J, Agarwal S, Gupta VK, Boukherroub R (2018) Towards green synthesis of monodisperse Cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor. Sensors Actuators B 266:873–882. https://doi.org/10.1016/j.snb.2018.03.141

    Article  CAS  Google Scholar 

  • Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1:198–210

    Google Scholar 

  • Markets Ma (2017) Gas sensors market by gas type (oxygen, carbon monoxide, carbon dioxide, ammonia, chlorine, hydrogen sulfide, nitrogen oxide, volatile organic compounds, hydrocarbons), technology, end-use application, geography—global forecast 2023. www.marketsandmarkets.com. https://www.marketsandmarkets.com/Market-Reports/gas-sensor-market-245141093.html. 2019

  • Markets Ma (2019) Biosensors market by type (sensor patch and embedded device), product (wearable and nonwearable), technology (electrochemical and optical), application (POC, home diagnostics, research lab, food & beverages), and geography—global forecast to 2024. www.marketsandmarkets.com. https://www.marketsandmarkets.com/PressReleases/biosensors.asp

  • Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z (2015) Synthesis and electrocatalytic effect of Ag@ Pt core–shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens Bioelectron 74:30–36

    CAS  PubMed  Google Scholar 

  • McNaghten ED, Parkes AM, Griffiths BC, Whitehouse AI, Palanco S (2009) Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy. Spectrochim Acta Part B Atom Spectrosc 64:1111–1118

    Google Scholar 

  • Mehaffey E, Majid DSA (2017) Tumor necrosis factor-α, kidney function, and hypertension. Am J Physiol Renal Physiol 313:F1005–F1008

    PubMed  PubMed Central  Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications—a review. J Oral Biol Craniofac Res 6:153–159. https://doi.org/10.1016/j.jobcr.2015.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram Int 42:18974–18982

    CAS  Google Scholar 

  • Mishra RK, Rajakumari R (2019) Nanobiosensors for biomedical application: present and future prospects. In: Characterization and biology of nanomaterials for drug delivery. Elsevier, pp 1–23

    Google Scholar 

  • Mishra RK, Nawaz MH, Hayat A, Nawaz MAH, Sharma V, Marty J-L (2017) Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor. Sensors Actuators B 247:366–373

    CAS  Google Scholar 

  • Molino PJ et al (2014) Influence of biodopants on PEDOT biomaterial polymers: using QCM-D to characterize polymer interactions with proteins and living cells. Adv Mater Interfaces 1:1300122

    Google Scholar 

  • Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1937–1949

    CAS  PubMed  Google Scholar 

  • Monerris MJ, Arévalo FJ, Fernández H, Zon MA, Molina PG (2016) Electrochemical immunosensor based on gold nanoparticles deposited on a conductive polymer to determine estrone in water samples. Microchem J 129:71–77

    CAS  Google Scholar 

  • Moozarm Nia P, Lorestani F, Meng WP, Alias Y (2015) A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites. Appl Surf Sci 332:648–656. https://doi.org/10.1016/j.apsusc.2015.01.189

    Article  CAS  Google Scholar 

  • Munoz BC, Steinthal G, Sunshine S (1999) Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose. Sensor Rev 19:300–305

    Google Scholar 

  • Muthuchamy N, Atchudan R, Edison TNJI, Perumal S, Lee YR (2018) High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. J Electroanal Chem 816:195–204. https://doi.org/10.1016/j.jelechem.2018.03.059

    Article  CAS  Google Scholar 

  • Muthukrishnan K, Vanaraja M, Boomadevi S, Karn RK, Singh V, Singh PK, Pandiyan K (2016) Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating. J Alloys Compounds 673:138–143

    CAS  Google Scholar 

  • Nayak P, Anbarasan B, Ramaprabhu S (2013) Fabrication of organophosphorus biosensor using ZnO nanoparticle-decorated carbon nanotube–graphene hybrid composite prepared by a novel green technique. J Phys Chem C 117:13202–13209. https://doi.org/10.1021/jp312824b

    Article  CAS  Google Scholar 

  • Nia PM, Meng WP, Alias Y (2015) Hydrogen peroxide sensor: uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Appl Surf Sci 357:1565–1572

    CAS  Google Scholar 

  • Nohria R, Khillan RK, Su Y, Dikshit R, Lvov Y, Varahramyan K (2006) Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sensors Actuators B 114:218–222

    CAS  Google Scholar 

  • Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45:97–105

    CAS  PubMed  Google Scholar 

  • Oliva N, Jo C, Wang K, Artzi N (2017) Designing hydrogels for on-demand therapy. Acc Chem Res 50:669–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omobayo Adio S, Basheer C, Zafarullah K, Alsharaa A, Siddiqui Z (2016) Biogenic synthesis of silver nanoparticles; study of the effect of physicochemical parameters and application as nanosensor in the colorimetric detection of Hg2+ in water. Int J Environ Anal Chem 96:776–788

    CAS  Google Scholar 

  • Pakapongpan S, Poo-Arporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater Sci Eng C 76:398–405

    CAS  Google Scholar 

  • Pallas-Areny R, Webster JG (2012) Sensors and signal conditioning. Wiley, New York

    Google Scholar 

  • Pandey P, Datta M, Malhotra BD (2008) Prospects of nanomaterials in biosensors. Anal Lett 41:159–209

    CAS  Google Scholar 

  • Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589. https://doi.org/10.1016/j.ijbiomac.2012.06.033

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Goswami GK, Nanda KK (2013) Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr Polym 94:229–234. https://doi.org/10.1016/j.carbpol.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Chaudhari R, Joshi B, Choudhary S, Kaur J, Joshi A (2019) Fluorescent Biocompatible platinum-porphyrin–doped polymeric hybrid particles for oxygen and glucose biosensing. Sci Rep 9:5029

    PubMed  PubMed Central  Google Scholar 

  • Pankhurst Q, Jones S, Dobson J (2016) Applications of magnetic nanoparticles in biomedicine: the story so far. J Phys D Appl Phys 49:R167–R181

    Google Scholar 

  • Park S, Kwon O, Lee J, Jang J, Yoon H (2014) Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors 14:3604–3630

    CAS  PubMed  Google Scholar 

  • Park RS, Hills G, Sohn J, Mitra S, Shulaker MM, HSP W (2017a) Hysteresis-free carbon nanotube field-effect transistors. ACS Nano 11:4785–4791

    CAS  PubMed  Google Scholar 

  • Park S, Park C, Yoon H (2017b) Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers 9:155

    PubMed Central  Google Scholar 

  • Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E, Giorgi R (2008) Surface modification of carbon nanotube networked films with Au nanoclusters for enhanced NO2 gas sensing applications. J Sensors 2008:1–8

    Google Scholar 

  • Pingarrón JM, Yañez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Google Scholar 

  • Ponamoreva ON, Rossinskaya IV, Alferov VA, Vlasova YA, Esikova TZ, Reshetilov AN (2019) Caprolactam detection using two types of microbial biosensors. Water Chem Ecol 118:30–35

    Google Scholar 

  • Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2015) Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron 74:353–359

    CAS  PubMed  Google Scholar 

  • Pramanik K, Sarkar P, Bhattacharyay D, Majumdar P (2018) One step electrode fabrication for direct electron transfer cholesterol biosensor based on composite of polypyrrole, green reduced graphene oxide and cholesterol oxidase. Electroanalysis 30:2719–2730

    CAS  Google Scholar 

  • Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X (2013) Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced graphene oxide nanocomposites for glucose detection. Cat Sci Technol 3:1027–1035

    CAS  Google Scholar 

  • Qu F, Pei H, Kong R, Zhu S, Xia L (2017) Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165:136–142

    CAS  PubMed  Google Scholar 

  • Radhakrishnan S, Kim SJ (2015) An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2-reduced graphene oxide nanocomposite. RSC Adv 5:12937–12943

    CAS  Google Scholar 

  • Rai M, Gade A, Gaikwad S, Marcato PD, Durán N (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23:14–24

    CAS  Google Scholar 

  • Raj DR, Sudarsanakumar C (2018) Colorimetric and fiber optic sensing of cysteine using green synthesized gold nanoparticles. Plasmonics 13:327–334

    Google Scholar 

  • Ramesan MT, Sampreeth T (2018) In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications. J Mater Sci Mater Electron 29:4301–4311

    CAS  Google Scholar 

  • Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C (2016) Electrochemical biosensors for fast detection of food contaminants—trends and perspective. TrAC Trends Anal Chem 79:80–87

    CAS  Google Scholar 

  • Ruan C et al (2013) One-pot preparation of glucose biosensor based on polydopamine–graphene composite film modified enzyme electrode. Senors Actuators B 177:826–832

    CAS  Google Scholar 

  • Saeed AA, Sánchez JLA, O'Sullivan CK, Abbas MN (2017) DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118:91–99

    CAS  PubMed  Google Scholar 

  • Saini R, Hegde K, Brar SK, Verma M (2019) Advances in whole cell-based biosensors in environmental monitoring. In: Tools, techniques and protocols for monitoring environmental contaminants. Elsevier, pp 263–284

    Google Scholar 

  • Sandeep S, Santhosh AS, Swamy NK, Suresh GS, Melo JS, Chamaraja NA (2018) A biosensor based on a graphene nanoribbon/silver nanoparticle/polyphenol oxidase composite matrix on a graphite electrode: application in the analysis of catechol in green tea samples. New J Chem 42:16620–16629

    CAS  Google Scholar 

  • Sanz V et al (2011) Optimising DNA binding to carbon nanotubes by non-covalent methods. Carbon 49:1775–1781

    CAS  Google Scholar 

  • Shafiee A, Ghadiri E, Kassis J, Pourhabibi Zarandi N, Atala A (2018) Biosensing technologies for medical applications, manufacturing, and regenerative medicine. Curr Stem Cell Rep 4:105–115

    Google Scholar 

  • Shafiei M, Hoshyargar F, Lipton-Duffin J, Piloto C, Motta N, O’Mullane AP (2015) Conversion of n-type CuTCNQ into p-type nitrogen-doped CuO and the implication for room-temperature gas sensing. J Phys Chem C 119:22208–22216. https://doi.org/10.1021/acs.jpcc.5b06894

    Article  CAS  Google Scholar 

  • Shan L, Freidman D, Kennedy C, Persak W, Lau K (2018) In: Backward compatible connectors for next generation PCIe electrical I/O. IEEE, pp 1798–1804

    Google Scholar 

  • Shang NG et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514

    CAS  Google Scholar 

  • Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924

    CAS  PubMed  Google Scholar 

  • Shrivas AG, Bavane RG, Mahajan AM (2007) In: Electronic nose: a toxic gas sensor by polyaniline thin film conducting polymer. IEEE, pp 621–623

    Google Scholar 

  • Smith MK, Martin-Peralta DG, Pivak PA, Mirica KA (2017) Fabrication of solid-state gas sensors by drawing: an undergraduate and high school introduction to functional nanomaterials and chemical detection. J Chem Educ 94:1933–1938

    CAS  Google Scholar 

  • So M-K, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339

    CAS  PubMed  Google Scholar 

  • Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21:5972–5977

    CAS  Google Scholar 

  • Song Y, He Z, Hou H, Wang X, Wang L (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65

    CAS  Google Scholar 

  • Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282

    CAS  Google Scholar 

  • Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22:18101–18110

    CAS  Google Scholar 

  • Su C-Y, Lan W-J, Chu C-Y, Liu X-J, Kao W-Y, Chen C-H (2016) Photochemical green synthesis of nanostructured cobalt oxides as hydrogen peroxide redox for bifunctional sensing application. Electrochim Acta 190:588–595. https://doi.org/10.1016/j.electacta.2015.12.092

    Article  CAS  Google Scholar 

  • Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC Trends Anal Chem 89:163–180

    CAS  Google Scholar 

  • Suri K, Annapoorni S, Sarkar AK, Tandon RP (2002) Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sensors Actuators B 81:277–282

    CAS  Google Scholar 

  • Šutka A, Gross KA (2016) Spinel ferrite oxide semiconductor gas sensors. Sensors Actuators B 222:95–105

    Google Scholar 

  • Tabatabaee RS, Golmohammadi H, Ahmadi SH (2019) Easy diagnosis of jaundice: a smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS Sensors 4(4):1063–1071

    CAS  PubMed  Google Scholar 

  • Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S (2013) Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B 183:144–149. https://doi.org/10.1016/j.snb.2013.03.106

    Article  CAS  Google Scholar 

  • Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S (2014) Green synthesis of polysaccharide stabilized gold nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv 4:24014–24019. https://doi.org/10.1039/C4RA02972K

    Article  CAS  Google Scholar 

  • Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2018) Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection. New J Chem 42:16378–16383

    CAS  Google Scholar 

  • Tallury P, Malhotra A, Byrne LM, Santra S (2010) Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 62:424–437

    CAS  PubMed  Google Scholar 

  • Thangamuthu M, Gabriel W, Santschi C, Martin O (2018) Electrochemical sensor for bilirubin detection using screen printed electrodes functionalized with carbon nanotubes and graphene. Sensors 18:800

    Google Scholar 

  • Thirumalraj B, Kubendhiran S, Chen S-M, Lin K-Y (2017) Highly sensitive electrochemical detection of palmatine using a biocompatible multiwalled carbon nanotube/poly-l-lysine composite. J Colloid Interface Sci 498:144–152

    CAS  PubMed  Google Scholar 

  • Tığ GA (2017) Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly (l-cysteine)/reduced graphene oxide nanocomposite. Talanta 175:382–389

    Google Scholar 

  • Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A (2019) Biosensors for epilepsy management: state-of-art and future aspects. Sensors 19:1525

    CAS  Google Scholar 

  • Tomer AK, Rahi T, Neelam DK, Dadheech PK (2019) Cyanobacterial extract-mediated synthesis of silver nanoparticles and their application in ammonia sensing. Int Microbiol 22:49–58. https://doi.org/10.1007/s10123-018-0026-x

    Article  CAS  PubMed  Google Scholar 

  • Töppel T, Lausch H, Brand M, Hensel E, Arnold M, Rotsch C (2018) Structural integration of sensors/actuators by laser beam melting for tailored smart components. JOM 70:321–327

    Google Scholar 

  • Trakhtenberg LI, Gerasimov GN, Gromov VF, Belysheva TV, Ilegbusi OJ (2012) Gas semiconducting sensors based on metal oxide nanocomposites. J Mater Sci Res 1:56

    CAS  Google Scholar 

  • Tran T-T, Mulchandani A (2016) Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends Anal Chem 79:222–232

    CAS  Google Scholar 

  • Tsiafoulis CG, Trikalitis PN, Prodromidis MI (2005) Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem Commun 7:1398–1404

    CAS  Google Scholar 

  • Valsami-Jones E, Lynch I (2015) How safe are nanomaterials? Science 350:388–389

    CAS  PubMed  Google Scholar 

  • Vasileva P, Donkova B, Karadjova I, Dushkin C (2011) Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 382:203–210

    CAS  Google Scholar 

  • Venditti I, Fratoddi I, Russo MV, Bearzotti A (2013) A nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties. Nanotechnology 24:155503. https://doi.org/10.1088/0957-4484/24/15/155503

    Article  CAS  PubMed  Google Scholar 

  • Vignesh RH, Sankar KV, Amaresh S, Lee YS, Selvan RK (2015) Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors Actuators B 220:50–58

    CAS  Google Scholar 

  • Vilian ATE, Chen S-M (2014) Simple approach for the immobilization of horseradish peroxidase on poly-l-histidine modified reduced graphene oxide for amperometric determination of dopamine and H2O2. RSC Adv 4:55867–55876

    CAS  Google Scholar 

  • Vukojević V, Djurdjić S, Ognjanović M, Fabian M, Samphao A, Kalcher K, Stanković DM (2018) Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. J Electroanal Chem 823:610–616

    Google Scholar 

  • Wahab AW, Karim A, La Nafie N, Sutapa IW (2018) Synthesis of silver nanoparticles using Muntingia calabura L. leaf extract as bioreductor and applied as glucose nanosensor. Oriental J Chem 34:3088–3094

    CAS  Google Scholar 

  • Wang Z, Dai Z (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431

    CAS  PubMed  Google Scholar 

  • Wang J, Xu D, Kawde A-N, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581

    CAS  PubMed  Google Scholar 

  • Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    CAS  PubMed  Google Scholar 

  • Wang YD, Djerdj I, Antonietti M, Smarsly B (2008) Polymer-assisted generation of antimony-doped SnO2 nanoparticles with high crystallinity for application in gas sensors. Small 4:1656–1660. https://doi.org/10.1002/smll.200800644

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    CAS  PubMed  Google Scholar 

  • Wang P, Jornet JM, Malik MGA, Akkari N, Akyildiz IF (2013) Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the Terahertz Band. Ad Hoc Networks 11:2541–2555

    Google Scholar 

  • Wang F et al (2016a) A highly sensitive gas sensor based on CuO nanoparticles synthesized via a sol–gel method. RSC Adv 6:79343–79349

    CAS  Google Scholar 

  • Wang L et al (2016b) Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta 160:268–275

    CAS  PubMed  Google Scholar 

  • Wang T et al (2016c) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8:95–119. https://doi.org/10.1007/s40820-015-0073-1

    Article  CAS  Google Scholar 

  • Wang R, Wang X, Sun Y (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors Actuators B 241:73–79

    CAS  Google Scholar 

  • Wang J, Wang X, Tang H, Gao Z, He S, Li J, Han S (2018) Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide–polyaniline composite. Biosens Bioelectron 100:1–7

    CAS  PubMed  Google Scholar 

  • Wanna Y, Srisukhumbowornchai N, Tuantranont A, Wisitsoraat A, Thavarungkul N, Singjai P (2006) The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. J Nanosci Nanotechnol 6:3893–3896

    CAS  PubMed  Google Scholar 

  • Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W (2009) Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films 517:2775–2780

    CAS  Google Scholar 

  • Wong KKL, Tang Z, Sin JKO, Chan PCH, Cheung PW, Hiraoka H (1995) In: Study on selectivity enhancement of tin dioxide gas sensor using non-conducting polymer membrane. IEEE, pp 42–45

    Google Scholar 

  • Wright KD (2017) Functionalization of carbon materials with metals

    Google Scholar 

  • Wu S et al (2017) Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide. Appl Surf Sci 401:262–270

    CAS  Google Scholar 

  • Wu J et al (2018) Two-dimensional molybdenum disulfide (MoS2) with gold nanoparticles for biosensing of explosives by optical spectroscopy. Sens Actuators B 261:279–287

    Google Scholar 

  • Xiang Q, Meng G, Zhang Y, Xu J, Xu P, Pan Q, Yu W (2010) Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens Actuators B 143:635–640

    CAS  Google Scholar 

  • Xu F, Li X, Shi Y, Li L, Wang W, He L, Liu R (2018a) Recent developments for flexible pressure sensors: a review. Micromachines 9:580

    PubMed Central  Google Scholar 

  • Xu K, Fu C, Gao Z, Wei F, Ying Y, Xu C, Fu G (2018b) Nanomaterial-based gas sensors: a review. Instrum Sci Technol 46:115–145

    Google Scholar 

  • Xue L, Wang W, Guo Y, Liu G, Wan P (2017) Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sensors Actuators B 244:47–53

    CAS  Google Scholar 

  • Yamazoe N, Shimanoe K (2008) Theory of power laws for semiconductor gas sensors. Sensors Actuators B 128:566–573

    CAS  Google Scholar 

  • Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    CAS  Google Scholar 

  • Yáñez-Sedeño P, Campuzano S, Pingarrón J (2017) Carbon nanostructures for tagging in electrochemical biosensing: a review. J Carbon Res 3:3

    Google Scholar 

  • Yang C, Denno ME, Pyakurel P, Venton BJ (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta 887:17–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    CAS  Google Scholar 

  • Yoo I-H, Kalanur SS, Seo H (2019) Deposition of Pd nanoparticles on MWCNTs: Green approach and application to hydrogen sensing. J Alloys Compd 788:936–943. https://doi.org/10.1016/j.jallcom.2019.02.298

    Article  CAS  Google Scholar 

  • Yoon HJ et al (2013) Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol 8:735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Zhang W, Zhang P, Su Z (2017) Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosens Bioelectron 89:72–84

    CAS  PubMed  Google Scholar 

  • Yuan G-L, Kuramoto N (2003) Synthesis and chiroptical properties of optically active poly (N-alkylanilines) doped and intertwined with dextran sulfate in aqueous solution. Macromolecules 36:7939–7945

    CAS  Google Scholar 

  • Yuan GL, Kuramoto N (2004) Synthesis of helical polyanilines using chondroitin sulfate as a molecular template. Macromol Chem Phys 205:1744–1751

    CAS  Google Scholar 

  • Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1:10078–10091

    CAS  Google Scholar 

  • Yusan S, Rahman MM, Mohamad N, Arrif TM, Latif AZA, Ma MA, Nik W (2018) Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase on the Se-MCM-41 mesoporous composite. J Anal Methods Chem 2018:1–8

    Google Scholar 

  • Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105

    Google Scholar 

  • Zaretski AV et al (2016) Metallic nanoislands on graphene as highly sensitive transducers of mechanical, biological, and optical signals. Nano Lett 16:1375–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67:15–22

    CAS  PubMed  Google Scholar 

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Func Mater 20:1152–1160

    CAS  Google Scholar 

  • Zhang H, Meng Z, Wang Q, Zheng J (2011) A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film. Sensors Actuators B Chem 158:23–27. https://doi.org/10.1016/j.snb.2011.04.057

    Article  CAS  Google Scholar 

  • Zhang Y, Gao G, Qian Q, Cui D (2012a) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:475

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2012b) One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Adv 2:538–545. https://doi.org/10.1039/C1RA00641J

    Article  CAS  Google Scholar 

  • Zhang P, Zhang X, Zhang S, Lu X, Li Q, Su Z, Wei G (2013) One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid membranes. J Mater Chem B 1:6525–6531. https://doi.org/10.1039/C3TB21270J

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Feng J, Fei T, Liu S, Zhang T (2014) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensors Actuators B Chem 190:472–478

    CAS  Google Scholar 

  • Zhang H, Yu L, Li Q, Du Y, Ruan S (2017) Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sensors Actuators B Chem 241:109–115. https://doi.org/10.1016/j.snb.2016.10.059

    Article  CAS  Google Scholar 

  • Zhang NMY et al (2019) One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sensors Actuators B Chem 286:429–436

    CAS  Google Scholar 

  • Zhao Z-Y, Wang M-H, Liu T-T (2015) Tribulus terrestris leaf extract assisted green synthesis and gas sensing properties of Ag-coated ZnO nanoparticles. Mater Lett 158:274–277. https://doi.org/10.1016/j.matlet.2015.05.155

    Article  CAS  Google Scholar 

  • Zhou X, Zeng Y, Liyan C, Wu X, Yoon J (2016) A fluorescent sensor for dual-channel discrimination between phosgene and a nerve-gas mimic. Angew Chem Int Ed 55:4729–4733

    CAS  Google Scholar 

  • Zor E, Saglam ME, Akin I, Saf AO, Bingol H, Ersoz M (2014) Green synthesis of reduced graphene oxide/nanopolypyrrole composite: characterization and H2O2 determination in urine. RSC Adv 4:12457–12466

    CAS  Google Scholar 

  • Zou N, Wei X, Zong Z, Li X, Wang Z, Wang X (2019) A novel enzymatic biosensor for detection of intracellular hydrogen peroxide based on 1-aminopyrene and reduced graphene oxides. J Chem Sci 131:28

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge their respective departments for their support while drafting this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Danquah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeevanandam, J., Kaliyaperumal, A., Sundararam, M., Danquah, M.K. (2020). Nanomaterials as Toxic Gas Sensors and Biosensors. In: Inamuddin, Asiri, A. (eds) Nanosensor Technologies for Environmental Monitoring. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45116-5_13

Download citation

Publish with us

Policies and ethics